On (Non) Applicability of a Mode-Truncation of a Damped Traveling String
Abstract
This study investigates a linear homogeneous initial-boundary value problem for a traveling string under linear viscous damping. The string is assumed to be traveling with constant speed, while it is fixed at both ends. Physically, this problem represents the vertical (lateral) vibrations of damped axially moving materials. The axial belt speed is taken to be positive, constant and small in comparison with a wave speed, and the damping is also considered relatively small. A two timescale perturbation method together with the characteristic coordinate’s method will be employed to establish the approximateanalytic solutions. The damped amplitude-response of the system will be computed under specific initial conditions. The obtained results are compared with the finite difference numerical technique for justification. It turned out that the introduced damping has a significant effect on the amplitude-response. Additionally, it is proven that the mode-truncation is applicable for the damped axially traveling string system on a timescale of order ε -1