Signal Based Indirect Wheel Profile Estimation Technique for Solid Axle Railway Wheelset
Abstract
Wheel profile is a very important factor that helps the steering performance of the railway vehicle. However, during the operation, the wheel profile tends to vary inconsistently due to frictional contact at wheel-rail interface. This paper focuses on the problem of railway wheelset profile and its alteration that affects the performance of railway vehicle. Signal-based indirect estimation technique using Fast Fourier Transform (FFT) is proposed to establish a relationship between dynamic response of vehicle and wheel profile. It is observed that changes in wheel profile has direct impact on the frequency of lateral dynamics. The effect of vehicle speed is also analyzed on the yaw and lateral motions of the wheelset. The effectiveness of the proposed technique in determining the relationship between the frequency of the oscillation and conicity level of the solid axle railway wheelset is demonstrated by developing simulation model in MATLAB and Simulink.