Iterative Learning Control Based Fractional Order PID Controller for Magnetic Levitation System

  • Bushra Hanif Department of Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan
  • Inam-ul-Hassan Shaikh Department of Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan
  • Ahsan Ali  Department of Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan


Maglev (Magnetic Levitation) systems are an interesting class of systems since they work without any physical contact and are hence frictionless. Due to this attractive property, such systems have the potential for wide range of applications such as maglev trains. Maglev is non-linear due to magnetic field and unstable that suggest the need of stabilizing controller. An appropriate controller is required to levitate the object at desired position. FOPID (Fractional Order Proportional Integral Derivative) controller and ILC (Iterative learning Control) based FOPID controller are designed in this paper for the levitation of metallic ball with desired reference at minimum transient errors. Since maglev is unstable and ILC is used only for stable systems, FOPID controller is used to stabilize the plant. Non-linear interior point optimization method is used to obtain the parameters of FOPID controller. An ILC is used as a feedforward controller in order to improve the response iteratively. P, PD and PID-ILC control laws are used to update the new control input in ILC based FOPID controller. The overall control scheme is therefore a hybrid combination of ILC and FOPID. The effectiveness of proposed technique is analyzed based on performance indices via simulation. ISE (Integral Square Error) and IAE (Integral Absolute Error) is lesser in case of hybrid PID-ILC as compared to simple FOPID controller.

Oct 1, 2019
How to Cite
HANIF, Bushra; SHAIKH, Inam-ul-Hassan; ALI, Ahsan. Iterative Learning Control Based Fractional Order PID Controller for Magnetic Levitation System. Mehran University Research Journal of Engineering and Technology, [S.l.], v. 38, n. 4, p. 885-900, oct. 2019. ISSN 2413-7219. Available at: <>. Date accessed: 10 apr. 2020. doi:
This is an open Access Article published by Mehran University of Engineering and Technolgy, Jamshoro under CCBY 4.0 International License