Two-Dimensional Stagnation-Point Velocity-Slip Flow and Heat Transfer over Porous Stretching Sheet

  • Feroz Ahmed Soomro Department of Mathematics, Nanjing University, Nanjing 210093, China
  • Qiang Zhang Department of Mathematics, Nanjing University, Nanjing 210093, China
  • Syed Feroz Shah Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro.

Abstract

Present paper investigates 2D (Two-Dimensional) stagnation-point velocity-slip flow over porous stretching sheet. The governing non-linear PDEs (Partial Differential Equations) are non-dimensionlized by using the similarity transformation technique that results into coupled non-linear ODEs (Ordinary Differential Equations). Such ODEs are then solved by using shooting technique with fourth-order Runge-Kutta method. Since the behavior of boundary layer stagnation-point flow depends on the rate of cooling and stretching. Therefore, the main objective of this paper is to analyze the effects of different working parameters on shear stress, heat transfer, velocity and temperature of fluid. The results revealed that the velocity-slip has significant effect on the fluid flow as well as on the heat transfer. The numerical results are also compared with existing work for no-slip condition and found to have good agreement with improved asymptotic behavior.

Published
Oct 1, 2016
How to Cite
SOOMRO, Feroz Ahmed; ZHANG, Qiang; SHAH, Syed Feroz. Two-Dimensional Stagnation-Point Velocity-Slip Flow and Heat Transfer over Porous Stretching Sheet. Mehran University Research Journal of Engineering and Technology, [S.l.], v. 35, n. 4, p. 657-666, oct. 2016. ISSN 2413-7219. Available at: <https://publications.muet.edu.pk/index.php/muetrj/article/view/409>. Date accessed: 15 jan. 2025. doi: http://dx.doi.org/10.22581/muet1982.1604.15.
This is an open Access Article published by Mehran University of Engineering and Technolgy, Jamshoro under CCBY 4.0 International License