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ABSTRACT

This study investigates a linear homogeneous initial-boundary value problem for a traveling string

under linear viscous damping. The string is assumed to be traveling with constant speed, while it is fixed

at both ends.  Physically, this problem represents the vertical (lateral) vibrations of damped axially

moving materials. The axial belt speed is taken to be positive, constant and small in comparison with a

wave speed, and the damping is also considered relatively small. A two timescale perturbation method

together with the characteristic coordinate’s method will be employed to establish the approximate-

analytic solutions. The damped amplitude-response of the system will be computed under specific initial

conditions. The obtained results are compared with the finite difference numerical technique for

justification. It turned out that the introduced damping has a significant effect on the amplitude-response.

Additionally, it is proven that the mode-truncation is applicable for the damped axially traveling string

system on a timescale of order -1.
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M
oving structures have vast applications in

various engineering disciplines such as

civil,  mechanical and aerospace

engineering. These systems represent many engineering

devices, for instances; conveyor belts, elevator cables,

chair lifts, pipes transporting liquids and gases, power

transformation lines, and serpentine belts are few of

them.Axially moving systems are mainly divided into

two categories, that is, traveling string and Euler-

Bernoulli beam. Axial speed and/or tension may excite

the transversal vibrations of axially moving systems.

1. INTRODUCTION

Vibrations (mainly lateral) in such devices have limited

their applications. Over the last six decades, there has

been vast research on the lateral vibrations of axially

traveling strings or beams. Miranker [1] was the first

who developed the mathematical equations of motion

for laterals oscillations of axially accelerating string.  For

further studies on vibrations of string and beams, the

reader is referred the papers [2-16]. To suppress the

vibrations and noise in structures and machines,

damping of string material is widely taken into

consideration [17]. Gaiko [8] recently developed the
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equations of motion for viscous damping of accelerating

string with the help of extended Hamilton principle.

Various analytical and numerical techniques were

employed to investigate elastic and viscoelastic strings

or beams under different operating conditions.  Sandilo

et. al. [10] examined the viscous damping via two

timescales perturbation method. Gaiko and van Horssen

[5] used the method of Laplace transform and two

timescale perturbation method to investigate the

transversal vibrations of traveling string with the

boundary damping. Fung et. al. [11] computed the

response of a moving viscoelastic string by means of

Galerkin discretization and finite difference numerical

technique. Gahyesh [18] examined the steady state

response of viscoelastic string through Routh-Hurwitz

criterion. Shahruz [19] analyzed the stability of a nonlinear

axially moving string with Kelvin-Voigt damping through

Lyapunov function. Chen, et. al. [20] examined the effects

of viscous damping at one end of the boundary under

the effect of various axial string velocities in axially

moving string via finite element method. Zhang and Zu

[21] examined the free transverse vibrations in

viscoelastic axially moving string via method of multiple

scales. Maitlo et. al. [14] investigated the damped axially

moving system via perturbation method together with

the Fourier-series expansion method. However, only few

modes were taken in [13] to examine the behavior of the

amplitude-response of the damped traveling string

system.

In continuation of [14], this study will compute the all

mode-responses without any truncation via the

combination of the method of characteristic coordinates

and two timescales perturbation method. In addition,

the (non)applicability of mode-truncation for damped

traveling string systems will also be discussed. The

results obtained through the proposed technique will

also be validated via finite difference numerical

technique.

2. EQUATIONS OF MOTION

Consider a uniform axially moving string of mass

density, initial tension T
0
, the viscous damping

parameter and uniform axial transport speed V that

travels between a pair of pulleys separated by a distance

L and is assumed to be fixed at both ends, i.e. at x = 0

and x = L as shown in Fig. 1. The model is restricted

under the following assumptions: (i) only the vertical

displacement u(x,t) is considered, where x spatial

coordinate along the string, and t is the time. (ii) The

parameters ,V,T
0 

 and  are all taken as positive

constants. The gravity and other external forces are not

taken into consideration. Based on the above mentioned

assumptions, the governing equations describing the

vertical (transversal) oscillations of the traveling string

with linear viscous damping are derived by using the

Hamilton principle [8,13] and are given by:

(u
tt
+2Vu

xt
+V2u

xx
)-T

0
u

xx
+(u

t
+Vu

x
)=0  0<xL, t0 (1)

with the boundary conditions:

u(0,t) = u(L,t) = 0,  t  0 (2)

FIG. 1. SCHEMATIC MODEL OF A TRAVELING STRING
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and initial conditions:

u(x,0) = u
0
(x), u

t
(x,0) = u

1
(x),    0  x  L (3)

where u
0
 is the initial displacement and u

1
 is the initial

speed of the system.

To put the Equations (1-3) in a dimensionless form, the

following non-dimensional quantities are taken into

consideration:

c

u
u~,

L

u
u~,

ρc

βL
β
~

,
c

L
V
~

,
L

tc
t
~

,
L

u
u~,

L

x
x~ l

1
0

0  (4)

where
ρ

T
c 0  is a wave speed.

Thus, the Equations (1-3) in dimensionless form becomes,

u
tt
 + 2Vu

xt
 + (V2 – 1)u

xx
 + (u

t
-Vu

x
) = 0   0  x  1, t  0 (5)

with boundary conditions

u(0,t) = u(1,t) = 0,     t  0 (6)

with initial conditions

u(x,0) = u
0
(x), u

t
(x,0) = u

1
(x),      0  x  1 (7)

The hats describing the non-dimensional quantities are

neglected in Equations (5-7), and from now on. In the

subsequent sections, the Equations (5-7) will be solved

through the combination of two timescales perturbation

method and the method of characteristics.

3. CONSTRUCTION OF FORMAL

APPROXIMATIONS

In this section, the formal asymptotic approximations for

the homogeneous linear initial-boundary value problem

Equations (5-7) will be developed via the combination of

the method of two timescales perturbation and the method

of characteristic coordinates. For further details of this

technique, the reader is referred to [2,6-7,22-23]. The low

axial belt speed Vof the string is considered in comparison

to wave speed cand 0()  that is, V = 0(), where (0 

1) is a book keeping parameter. It is also presumed that L

is small compared to c and 0(), i.e.  = 0(). Based on

these assumptions, Equations (5-7) can be written as

follows:

u
tt
 – u

xx
 = - (2Vu

xt
 + u

t
) – 2(V2u

xx
 + Vu

x
)     0  x  1, t  0 (8)

where the boundary and initial conditions are given as

in Equations (6-7). In order to investigate the initial

boundary value problem (8),  a two timescales

perturbation technique will be employed. However, we

encounter several computational complexities whenever

we employ a Fourier expansion method of the

unperturbed solution as were noticed in [13]; the

equations of motion (8) is alternatively investigated by

means of the characteristic variables  = x – t and =x+t.

In this method, we will replace the initial-boundary value

problem (8) by an initial-value problem. This replacement

requires the extension of the dependent variable u and

its derivatives and the initial values in x to two-periodic

odd functions. Since the terms u
xt
 and u

x 
in Equation (8)

are not odd; in order to make them odd, we multiply

these terms with the Fourier-sine series:

 
 

   





1n
πx12nsin

π12n

4
xH (9)

With the multiplication of H(x) in Equation (8), the

equation becomes

u
tt
-u

xx
 = -(2Vu

xt
H(x) = u

t
)-2(V2u

xx
 + Vu

x
H(x)), 0x1, t0 (10)
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By applying the perturbation method to Equation (10),

the solution is assumed in the form

u(x,t) = v() (11)

where  = x – t,  = x + t, and  = t.

The introduction of  and  leads to the following

transformation:

u
t
 = -v


 + v


 + v


, u

tt
 = v


 + v


 – 2v


 + 2(v


 – v


)

u
x
=v


+v


, u

xx
=v


+v


+2v


, u

x
=-v


+v


+(v


+v


) (12)

Plugging Equations (11-12) into Equation (10), we obtain:

     2
ξσξξσσξτστσξ εOvvβvv

2

σξ
2VH2v2vε4v 


 
















(13)

Further, we assume that the function v() can be

expanded as:

v() = v
0
() + v

1
() + O(2) (14)

Plugging Equation (14) into Equation (13), and comparing

the terms of order0 and 1, we obtain the O(1) and O()-

problem below:

     
     














0 ,-    σuσ,0σ,vσ,0σ,v

0 ,-                            σuσ,0σ,v

0 ,-                                       04v

:1O

10ξ0σ

00

0σ







(15)

and

 

   

 
     































0 τ,ξσ-                                                σ,0σ,vσ,0σ,vσ,0σ,v

0 τ,ξσ-                                                                                       0σ,0σ,v

0 τ,ξσ-     vvβvv
2

σξ
2VH2v-2v 4v

:O

0τ1ξ1σ

1

0ξ0σ0ξξ0σσ0ξ0σ1σ

ε



(16)

It should be noticed that the term v
1 
in Equation (14) is

assumed to be small in comparison to the term v
o 
and that

the expansion is uniform in the sense that the ratio v
1
/v

o

is O(1) for all t.  For the solution Equation (14) to be valid

for times as large as O(-1);  the terms in v
1
which, grow

linearly with respect to t must be eliminated.The general

solution of O(1)-problem is given by:

v
0
() = f

0
() + g

0
() (17)

where  appears only parametrically to this order of

approximation, and the functions f
0 

 and g
0 

satisfy the

initial conditions:

f
0
(,0) + g

0
(,0) = u

0
() and -f

0
(,0) + g

0
(,0) = u

1
()

In addition to this, the two-periodic odd extension of the

dependent variable u imply that the functions f
0
 and g

0

also have to satisfy g
0
() = - f

0
() and f

0
() = f

0
( + 2,

), -, and  0. The unknown behavior of f
0
 and g

0

with respect to will be used so that v
1 
does not involve

secular terms. From Equation (16), v
1

and v
1

can easily

be obtained by integration, respectively, with respect to

and. Substitution of Equation (17) into the right hand

side of Equation (16) gives:

   0ξ0σ0ξξ0σσ0ξ0σ1σ -gfβ-gf
2

σξ
2VH2g-2f4v 


 








 (18)

 Integration of Equation (18) with respect to  yields:

      

      




















ξ

σ
0ξξ0σσ0ξ0ξ

0σ0σ1σ1

τσ,Fdξgf
2

σξ
2VHβg2g

βf2fσ-ξ-τσ,σ,4vτξ,σ,4v





(19)

where the function F() is a constant of integration and

to be determined by the condition on v
1
. In Equation (19),

it can be observed that the term  -  = 2t is of order -1. So,

v
1
will be of O(-1) unless the terms linear in (that is,

of order -1 are eliminated.  It turns out that both v
1

 and

v
1

 is of O(1) on a timescale of O(-1) if the functions f
0 
and

g
0 
satisfy the following conditions:
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2f
0

 + f
0

 = 0 (20)

and

-2g
0

 – g
0

 = 0 (21)

The Equation (20) and Equation (21) are equivalent.

The solution of Equation (20) subject to the initial

conditions:

      σu-σu
2

1
σ,0f 100

 (22)

is

       






 


2

βτ
expσu-σu

2

1
τσ,f 100σ (23)

The integration of Equation (23) with respect to yields

      


















2

βτ
expdσσuσu

2

1
τσ,f

σ

0
110 (24)

4. SPECIFIC INITIAL CONDITIONS

u(x,0) = 2sin(x), u
t
(x,0) = 0 (25)

With above initial conditions, the Equation (23) becomes

    






 


2

βτ
expsinτσ,f0  (26)

Since g
0
() = - f

0
(-), so the first order approximation is

obtained as:

            εO
2

βτ
expπξsinπσsinτξ,fτσ,fτξ,σ,v 000 


 








(27)

Thus, the close form solution of initial-boundary value

problem Equations (1-3) valid on t = O(-1) is expressed

as:

              εO
2

βτ
exptxπsint-xπsinεOτt,x,vtx,u 0 


 








(28)

u(x,0) = sin (x), u
t
(x,0) = 0.5 sin (x) (29)

The first order approximations is:

           O


 






























2

βτ
expπξcos

π

0.25
πξ0.5sinπσcos

π

0.25
πσ0.5sintx,u (30)

where = x t,  = x + t

5. RESULTS AND DISCUSSIONS

The behavior of the approximate-analytic solution v
o

and the numerical solution u of the Equations (1-3) in

terms of amplitude-response under two different initial

conditions are shown, in Figs. 2-3. In Fig. 2(a-b), the

amplitude-response is computed with the harmonically

varying initial displacement and zero initial velocity

(that is, u(x,0) = 2sin(x), u
t
(x,0) =0). While, Fig. 3(a-b)

exhibits the amplitude-response of the system with the

initial displacement: u
0
(x) = sin(x) and the initial

velocity: u
1
(x) = 0.5sin(x). It is shown in Figs. 2-3 that

the amplitude-response of the system is damped out

so rapidly as the damping rate increases in the system.

Furthermore, the reasonable agreement between the

approximate-analytic and numerical solutions can be

witnessed in Figs. 2-3.

6. CONCLUSION

In this study, we examined the transverse (lateral)

vibrations of a damped traveling string. It is assumed

that the string is traveling between a pair of pulleys

under constant speed. The non-vibration boundary

conditions are taken into consideration. The approximate-

analytic solutions are constructed via the combination

of two timescales perturbation method and the method

of characteristic coordinates. The explicit formal

approximations are computed in terms of the amplitude-
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response subject to the two specific initial conditions.

Under certain parameter values, it turned out that the

amplitude response is damped out with the increasing

values of damping parameter. Moreover, the amplitude-

response of individual modes in a traveling string was

computedand shown as damped out. However, in this

paper, the amplitude-response of the system in explicit-

form has been computed and shown to be damped out.

It is concluded that the mode-truncation is also possible

for a damped traveling string.
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(a) v
0
 (APPROXIMATE-ANALYTIC SOLUTION) (b) u (NUMERICAL SOLUTION) WITH u

0
(x) = sin(x) AND

u
1
(x) = 0.5 sin (x) for  = 0.01, V = 5,  = 8

FIG. 3.  AMPLITUDE-RESPONSE

(a) v
0
 (APPROXIMATE-ANALYTIC SOLUTION) (b) u (NUMERICAL SOLUTION) WITH u

0
(x) = 2 sin(x) AND

u
1
(x) = 0, for  = 0.01, V = 2,  = 4

FIG. 2. AMPLITUDE-RESPONSE
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