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ABSTRACT

The binary operation of usual addition is associative in all matrices over R. However, a binary operation
of addition in matrices over Zn of a nonassociative structures of AG-groupoids and AG-groups are defined
and investigated here. It is shown that both these structures exist for every integer n > 3. Various
properties of these structures are explored like: (i) Every AG-groupoid of matrices over Zn is transitively
commutative AG-groupoid and is a cancellative AG-groupoid if n is prime. (ii) Every AG-groupoid of
matrices over Zn of Type-II is a T3-AG-groupoid.  (iii) An AG-groupoid of matrices over Zn; GnAG(t,u), is an
AG-band, if t + u=1(mod n).

Key Words: AG-groupoid and AG-group of Matrices over Zn, T
3-AG-groupoid, Transitively Commutative

AG-groupoid, Cancellative AG-groupoid.
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1. INTRODUCTION

new classes of AG-groupoids have recently been
introduced and characterized [8-13]. Fuzzification of AG-
groupoids and AG-groups has also been done see for
instance [14,15]. Shah studied a lot about the AG-
groupoids and AG-groups exclusively [4]. However, the
construction of these structures, as well as of other
algebraic structures remains a difficult job for the
researchers. In this article we try to introduce construction
of these structures especially in matrices. A matrix A over
a field F is a rectangular array of scalars represented by:
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A magma that satisfies the left invertive law:
(ab)c=(cb)a is called left almost semigroup
abbreviated as LA-semigroup [1], or Abel-

Grassmann’s groupoid abbreviated as  AG-groupoid  [2].
An  AG-group G is  an AG-groupoid which  has the left
identity  and  has  inverse of  each  of  its elements. Both
these structures are nonassociative in general, and so
one has to play the game of brackets in a defined way. In
an AG-groupoid G an element a∈G is called idempotent
if  a=a2 and G is called idempotent or AG-2-band or simply
AG-band if each of its elements is idempotent [3]. AG-
groupoids generalize commutative semigroups, while an
AG-group generaliz an Abelian group. These structures
have a variety of applications in geometry, flocks theory,
topology, finite mathematics and many more [4-7].  Many
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The rows of matrix A are the p horizontal entries
(a11,a12,…,a1q), (a21,a22,…a2q), …, (ap1, ap2,…,apq), and the
column of A are the q vertical entries:
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Note that aij represents the entry in ith row and jth column.
A matrix with p rows and q columns is called pxq matrix. A
matrix having only one row is called row matrix or row
vector, and a matrix having only one column is called a
column matrix or column vector.

Let A=[aij] and B=[bij] be two matrices of the same order,
say pxq. Then A+B, is a matrix obtained by adding the
corresponding entries from A and B i.e. A+B=[aij+bij]. The
product of the matrix A by a scalar c, cA is a matrix obtained
by multiplying each entry of A by c i.e.  cA=[caij].

Vasantha, et., al. [16] has defined some nonassociative
construction for groupoids on matrices as follows:

Definition-1. Let G1={(x1,x2,…,xq)⎪x1 ∈ Zn; 1 < i < q}; n >
3 be the collection of row matrices  over Zn. Define a binary
operation ‘*’ on G1 as follows:
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Where t,u∈Zn-{0}, t ≠ u and (t,u)=1 for all (x1,x2,…,xq),
(y1,y2,…,yq)∈G1.

Thus (G1(t,u),*) is a groupoid of row matrix over Zn.

Definition-2. Let G2={(x1,x2,…,xp)
t⏐xi∈Zn; 1 < i < p}; n > 3

be the collection of px1 column matrices over Zn. Choose
t,u∈Zn-{0}, t≠u and (t,u)=1 for all (x1,x2,…,xp)

t,
(y1,y2,…,yp)

t∈G2. Define ‘*’ on G2 as follows:
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Thus (G2(t,u),*) is a groupoid of column matrix over Zn.

Definition-3. Let G={[mij]⏐1 < i < p, 1 < j < q}, be the
collection of pxq matrices over Zn; n > 3. For non zero
distinct integers t,u in Zn, define ‘*’ on G, for two matrices
M=[mij] and N=[nij] in G as follows:
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Thus (G(t,u),*) is any groupoid on pxq matrix over Zn.
Moreover, we generally represent this groupoid of (row
matrix, column matrix or pxq matrix) over Zn by Gn(t,u). We
will use G(n) to denote the class of Gn(t,u) for distinct
integers t,u∈Zn-{0}, and (t,u)=1, that is:

G(n)={Gn(t,u), for distinct integers t,u∈Zn-{0},and
(t,u)=1}.

By putting some additional conditions on t and u in G(n)
we get some other classes of groupoids of matrices over
Zn as follow:

(i) Type-I, if for non-zero distinct integers t,u  in Zn

and (t,u)≠1.

(ii) Type-II, if t,u∈Zn-{0}, such that t=u.

(iii) Type-III, if t,u∈Zn , where t or u is zero.

In the following section we show the existence of AG-
groupoid of matrices over Zn, and find its relations with
some of the already known classes of AG-groupoids.

2. EXISTENCE OF AG-GROUPOID OF
MATRICES OVER Zn

The  following  theorem  shows  the  existence  of AG-
groupoid  of  matrices  over  Zn  where  n > 3, and  indeed
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it  introduces  a  simple  way  of  construction  of  these
AG-groupoids of any finite order.

Theorem-1. Gn(t,u), is an AG-groupoid of matrices over
Zn, if t

2 ≅ u(mod n) for any t,u∈Zn.

Proof. Let Gn(t,u)  satisfies t2 ≅ u(mod n)  for  any t,u∈Zn.
To  show  that Gn(t,u) is an AG-groupoid of row matrices
(column matrices or pxq matrices), it is sufficient if we
show the left invertive law: (A*B)*C = (C*B)*A;  ∀ A,B, C
∈ Gn(t,u), holds;
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This implies that Gn(t,u) is nonassociative AG-groupoid
of matrices over Zn by Equations (1-3).

We denote this AG-groupoid of matrices over Zn by
GnAG(t,u), and GAG(n) will represent the class that contains
all AG-groupoids of matrices over Zn. Now by varying
values of t and u and by imposing some additional
conditions on t and u, we get different classes of AG-
groupoid of matrices over Zn for some fixed integer n > 3.
Thus the so obtained new classes of AG-groupoids  of
matrices  over Znwill be denoted by GAG-I(n), GAG-II(n) and
GAG-III(n). The following example shows the existence of
these AG-groupoids of matrices over Zn.

Example-1. G3(2,1) is an AG-groupoid of matrices over
Z3, that is G3AG(2,1)∈GAG(3).

Solution. As G3(2,1)∈G(3), to show that it is an AG-
groupoid of matrices over Z3, that is, G3AG(2,1)∈GAG(3),
we show that it satisfies the left invertive law:
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This implies that G3AG(2,1)∈GAG(3) by Equations (4 and
5), and is nonassociative by Equations (4 and 6).

Example-2. G8(6,4) is an AG-groupoid  of matrices over Z8

of  Type-I, that is G8AG(6,4)∈GAG-I (8).

The following examples show some various types of AG-
groupoids of matrices over Zn for n > 3.

Example-3. GAG(3) = {G3AG(2,1)} and GAG-II(3) = {G3AG(1,1)}.

Example-4. GAG(4) = {G4AG(3,1), GAG-II(4) = {G4AG(1,1)} and
GAG-III(4) = {G4AG(2,0)}.

Example-5. GAG(5) = {G5AG(4,1), G5AG(3,4)}
GAG-I(5)={G5AG(2,4} and GAG-II(5) = {G5AG(1,1)}.

Example-6. GAG(6) = {G6AG(5,1)}, GAG-I(6) = {G6AG(2,4)}
and GAG-II(6) = {G6AG(1,1), G6AG(3,3), G6AG(4,4)} and so on.
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The following corollaries are straight away by
Theorem-1.

Corollary-1. Any  GnAG(t,u)∈GAG-II(n) is an abelian group
(an AG-group), if t=u=1.

Corollary-2. GnAG(t,u)∈GAG-II(n) is a commutative
semigroup, if t=u ≠ 1.

Example-7. AG-groupoids of matrices G6AG(3,3) and
G6AG(4,4) of Z6 are commutative semigroups in GAG-II(6).

3. SOME PROPERTIES OF AN AG-
GROUPOID OF MATRICES OVER Zn

In this section we investigate the relations of these new
classes of AG-groupoid of matrices over Zn with some of
the already known classes of AG-groupoids that includes
the following:

(i) T3-AG-groupoid, if it is;

(a) T3
l-AG-groupoid, that is, if

a*b=a*c⇒b*a=c*a [17].

(b) T3
r-AG-groupoid, that is, if

b*a=c*a⇒a*b=a*c [17].

(ii) Transitively commutative AG-groupoid, if
a*b=b*a and b*c=c*b⇒a*c=c*a [17].

(iii) Cancellative AG-groupoid, an element a in an
AG-groupoid G is left (right) cancellative, if
a.x = x.y ⇒ x = y(x.a = y.a ⇒ x = y), and G is left
(right) cancellative if each of its elements is left
(right) cancellative  [18].

(iv) AG-band, if a*a=a [3].

Theorem-2. Every AG-groupoid of matrices over Zn of
Type-II that is GAG-II(n) is a  T3-AG-groupoid.

Proof. To show that GAG-II(n) is a T3-AG-groupoid, it is
sufficient if we show that an arbitrary AG-groupoid of
matrices over Zn of Type-II is T3

l-AG-groupoid and
T3

r-AG-groupoid.

For T3
l-AG-groupoid, let A,B,C∈GAG-II(n), and
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As t,u∈ GAG-II(n), therefore, by putting u=t in Equation
(7) we get:
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Hence GAG-II(n) is T3
l-AG-groupoid.  Similarly we can show

that GAG-II(n) is T3
r-AG-groupoid.  Hence GAG-II(n) is

T3-AG-groupoid.

Theorem-3. Every AG-groupoid of matrics over Zp that is
GpAG(t,u) is a T3-AG-groupoid, if p is prime and
u∈Zp-{0}.
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Proof. To show that every GpAG(t,u) is a T3-AG-groupoid
for u∈Zp-{0} it is sufficient to show that, GpAG(t,u) is
T3

l-AG-groupoid and T3
r-AG-groupoid.

For T3
l -AG-groupoid, let A,B,C∈GAG-II(n), and
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Hence every AG-groupoid of matrices over Zp is a T3
l-AG-

groupoid. Similarly, we can show that every AG-groupoid
of matrices over Zp 

is a T3
r-AG-groupoid.  Hence for non

zero u∈Zp, every AG-groupoid of matrices over Zp is a
T3-AG-groupoid.

Example-8. G5AG(3,4) is a T3-AG-groupoid.  However, the
result is not true in general.

For example; G8AG(6,4) is not a T3-AG-groupoid.

From  the  following  theorem  it  is  clear  that  the
collection  of  AG-groupoids  of matrices over Zn in any
class is a subclass of transitively commutative AG-
groupoid.

Theorem-4. Every GnAG(t,u) is a transitively commutative
AG-groupoid.

Proof. To show that every GnAG(t,u) is a transitively
commutative AG-groupoid, we show that an arbitrary AG-
groupoid of matrices is transitively commutative AG-
groupoid. Let A,B,C∈GnAG(t,u), and
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This implies that,
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also,
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This implies that,
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as n⎮[t(aij-bij) + u(bij-aij)] and n⎮[t(bij-cij) + u(cij-bij)] by
Equations (9) and (10)
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Hence every GnAG(t,u) is a transitively commutative AG-
groupoid.

Example-9. G7AG(5,4) is transitively commutative AG-
groupoid.

Theorem-5. Every GpAG(t,u) is a cancellative AG-groupoid,
if p is prime and u∈Zp-{0}.

Proof. Let p is prime and u∈Zp-{0}, to show that
GpAG(t,u) is a cancellative AG-groupoid, we show that it is
left cancellative AG-groupoid and right cancellative AG-
groupoid.

For left cancellativity, let
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a
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ij
aA*YA*X

0

Since as u is not devisible by p, because a non-zero u and
(xij-yij) both are less than p, where p is prime. Therefore,
p⏐u(xij-yij) ⇒[xij (mod p)]≅ [yij (mod p)] ⇒X=Y, and thus
GpAG(t,u) is left cancellative. As every left cancellative
AG-groupoid is the right cancellative AG-groupoid  [17].
Hence, for  prime  p and u∈Zp-{0}, GpAG(t,u) is a cancellative
AG-groupoid.

Example-10. G5AG(3,4) is a cancellative AG-groupoid.

Theorem-6. An AG-groupoid of matrices over Zn; GnAG(t,u)
is an AG-band, if t+u ≅ 1 (mod n).

Proof. Let t+u = 1, to show that a matrix AG-groupoid
GnAG(t,u) is an AG-band it is sufficient to show that
A*A=A;

( )
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1

Hence a matrix AG-groupoid GnAG(t,u) is an AG-band, if
t+u ≅ 1 (mod n).

Example-11. G5AG(2,4) is an AG-band.

4. EXISTENCE OF AG-GROUP OF
MATRICES OVER Zn

In  this  section,  we  introduce  another class  of  groupoid
of  matrices  as an  AG-groups of  matrices  over Zn. We
study this AG-group of matrices over Zn and obtain
different results. The following theorem shows the
existence of AG-groups of matrices over Zn for n > 3, and
indeed it gives a simple way of construction for matrix
AG-groups (mod n) of any finite order.

The  following  theorem  guarantees  the  existence  of  at
least  one  AG-groups  of matrices over Zn for n > 3, if
t2 ≅1(mod n).

Theorem-7.  A groupoid of matrices over Zn; Gn(t,u) is an
AG-groups of matrices over Zn, if t

2 ≅1(mod n) for t∈Zn-
{0}.

Proof. Given that a groupoid of matrices over Zn; Gn(t,u)
satisfies t2 ≅1(mod n) for t∈Zn-{0}, we have to show
Gn(t,u) is an AG-group of matrices over Zn.

Left invertive law:  We show that (A*B)*C =(C*B)*A,
holds for all A,B,C ∈ Gn(t,u), since

(A*B) * C ≅ (t2 aij + tbij + cij)(mod n) (11)

and

(C*B) * A ≅ (t2 cij + tbij + aij) (mod n) (12)
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This implies  that Gn(t,u) is an AG-groupoid (mod n), as

Equations (11 and 12) coincide for t2 ≅ 1(mod n).

Nonassociativity:  since

A* (B*C) ≅[(taij + tbij + cij) (mod n)] (13)

From Equations (11 and 13) it is clear that Gn(t,u) is

nonassociative in general.

Existence of left identity: ‘0=[0ij]’ is the left identity of

Gn(t,u);

0*X ≅[xij(mod n)] = X; ∀X∈Gn(t,u)

but

X*0 ≅ [(txij)(mod n)] ≠ X in general.

Existence of inverses: (n-1)tX or –tX is the inverse of  X ∀

X∈Gn(t,u);
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Hence Gn(t,u) is an AG-group of matrices over Zn.

For varying values of t we get different classes of AG-
group of matrices over Zn.

Corollary-3. Let Gn(t,u) be a groupoid of matrices,  then
Gn(1,1) is  an AG-group of matrices over Zn.

Proof. Since (n-1)2 ≅ 1(mod n). The proof now follows by
the Theorem 7.

5. CONCLUSION

In this paper a new class of AG-groupoids and AG-
groups of modulo matrices over Zn is investigated,
moreover, various types of construction have been
introduced for these AG-groupoids and AG-groups.
Sufficient examples to show the existence of these
notions are provided. It is to be noted that the provided
examples are verified by various computer programs. The
paper contains various nice results, the main result
shows that a groupoid is an AG-groupoid of modulo
matrices over Zn, if t

2 ≅ u(mod n) for all t,u∈Zn. Various
other relations of these AG-groupoids and AG-groups
of modulo matrices over Zn with some of the already
known classes of AG-groupoids are investigated. In
Theorem-7, the class of AG-groupoids of modulo
matrices over Zn is further restricted to introduce AG-
groups of modulo matrices over Zn. In future, fuzzification
of these AG-groupoids and AG-groups of modulo
matrices over Zn will be a nice work.
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