Mehran University Research Journal of Engineering & Technology
Vol. 37, No. 4, 521-534 October 2018
p-ISSN: 0254-7821, e-ISSN: 2413-7219

DOI:

10.22581/muet1982.1804.07

Ontology-Based Verification of UML Class/OCL Model

ABDUL HAFEEZ*, SYED HYDER ABBAS MUSAVI**, AND AQEEL UR REHMAN*
RECEIVED ON 09.05.2017 ACCEPTED ON 13.11.2017
ABSTRACT

Software models describe structures, relationships and features of the software. Modern software
development methodologies such as MDE (Model Driven Engineering) use models as core elements. In
MDE, the code is automatically generated from the model and model errors can implicitly shift into the
code, which are difficult to find and fix. Model verification is a promising solution to this problem.
However, coverage of all facets of model verification is a painful job and existing formal/semi-formal
verification methods are greatly inspired by mathematics and difficult to understand by the software
practitioners.

This work considers particularly UML Class/OCL (Unified Modeling Language Class/Object Constraint
Language) model and presents an ontology-based verification method. In the proposed method, a class
diagram is transformed into ontology specified in OWL (Web Ontology Language) and constraints into
SPARQL NAF (Negation as Failure) queries. This work tries to demonstrate that the proposed approach
can efficiently cover all aspects of UML Class/OCL model verification.

Key Words: Software Verification, Model Verification, Unified Modeling Language Class/ Object
Constraint Language Model.

INTRODUCTION

ur daily life is extremely dependent upon
software. They are everywhere, for example,
in a smartphone, high-end television sets, and
even they drive the vehicle. However, the history shows
the failure of the software cause lives and economic losses
[1] and correctness of the software is a key issue. Testing
of the software before implementation is very important.
Although, testing has two major limitations: (1) the testing
only checks the absence of errors (2) and testing is

performed in later phases of software development. The

cost of errors correction in later phases is higher than
earlier phases [2]. On the other side, modern software are
becoming more and more complex and large. They require
a lot of human efforts and time, and software development
companies want to release software as early as possible
[3]. Therefore, new software development methodologies
have been introduced for accelerating the software
development. MDE is one of them in which software
models are considered as a nucleus of software

development.

Authors E-Mail: (abdulhafeez@hamdard.edu, dean@indus.edu.pk, aqeel.rehman@hamdard.edu)

* Department of Computer Science, Hamdard University, Karachi.

** Faculty of Engineering Science & Technology, Indus University, Karachi.

This is an open access article published by Mehran University Research Journal of Engineering and Technology, Jamshoro under the CC by 4.0 International License.


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

UML is a graphical modeling language and it is commonly
used in MDE [4]. It is used in software specification,
analysis, design, documentation, and even for code
generation [5]. UML offers a number of models for dealing
with various aspects of software [6-7]. The class model is
an important part of UML and describes the system
through concepts, relationships, and constraints [8]. OCL
is combined with a class model for specifying the integrity
constraints and business rules. However, MDE approach
isnot also free from error risks. In MDE, models are created
in the initial stages of software development and in the
initial stages, software development team does not fully
aware of the business domain and their constraints.
Therefore, models can develop with errors, and these
errors can implicitly shift into the code [9]. A promising

solution to this problem is model verification.

Model verification is also a solution to the problems
which are faced by testing such as model verification
checks the correctness of model and makes sure that
the model is bug-free. Model is created during the early
phases of software development, therefore, error
checking is economical in the early phases [ 10]. Current
UML Class/OCL models verification methods are sound
and provide great efforts to check the correctness.
However, they are based on formal/semi-formal methods,
therefore, their notation extremely inspired by
mathematics [11]. They are entirely different from the
UML class model and difficult to understand by the
software practitioners. They also have some limitations
such as support of various basic data types (string and
date), graphical constraints (xor and dependency
relationships) and support of logical consequences. On
the other side, ontology and UML class model have
many similar elements and both are used for modeling

real-world concepts [12].

This work presents an ontology-based verification
method, particularly for UML Class/OCL model.
Currently, the proposed method supports OCL invariants
and does not support OCL operations. However, in this
work, ontology as the target notation is motivated by
the fact that the current ontology reasoners support
reasoning over thousands of ontological items within a
reasonable time [13], and all the verification facets
mentioned in existing benchmarks can be easily
achieved through the ontology-based method. In the
proposed approach class diagram is transformed into
ontology specified in OWL-DL and OCL constraints into
SPARQL NAF queries.

The rest of the paper is organized as follows. Section 2
discusses the background and related work. Section 3
describes the proposed solution. Section 4 presents an
example of ontology-based verification and results. Finally,
section 5 and 6 present our conclusions and points out

future works.

2. BACKGROUND AND RELATED
WORK

2.1.  Ontology

Ontology is the concept of metaphysics, which is using
by the philosopher from mid of sixteen century for
categorization and representation of real-world entities.
Ontology has many elements (e.g. classes, relations,
and individuals) similar to the UML class model
elements. Currently, software engineering professional
are also integrating ontology in software development
practices (processes, methods, tools, etc.). Many
researchers [14-17] have been used ontology for
representation and verification of various software

artifacts.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

522


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

Mahmud [14] proposed domain specific language
called ReSA for an embedded system. The ReSA utilizes
axioms of ontology for specification of the embedded
system. They perform scalable formal verification of
various Simulink models. Nguyen et. al. [15] presented
an ontology-based integrated framework for
verification of goal-oriented and use case modeling
techniques. They developed a tool called GUITAR, it
takes textual requirements and transforms into the
structured specification for automatic reasoning. Corea
et. al. [16] presented an ontology-based approach for
verification of business processes. They specified
business rules as a logic program and used ontology
reasoner for discovering model elements which violate

the rules.

Liao et. al. [17] presented ontology-based notification-
oriented data intensive EIS (Enterprise Information
System). A notification-oriented paradigm is a new
approach for software and hardware specification. They
also pointed out the challenges which faced by the legacy
EIS in the fourth industrial revolution and presented

ontology-based potential solutions.

The different researcher also used ontology for
transformation and verification of various UML models.
He et. al. [18] verified UML behavior model through
ontology. In this approach, UML behavior model is
divided into the static and dynamic elements. The static
elements are transformed into the OWL-DL and dynamics
elements are transformed into the DL-safe rules and then
they are verified by the reasoner. Diloet. al. [19] presented
a comparison between UML and web ontology language
and identified that both have many common elements
e.g. classes, relationships, attributes. They also identified
the differences of both languages e.g. UML class model

has many relationships (association, generalization,

composition) and OWL only has an object property. At
last, they concluded that both are compatible with each

other.

Bahaj et. al. [20] presented an alternative translation
method of UML class model into the ontology and
categorized aggregation and composition as a special type
of association. Belghiat et. al. [21] proposed the graph-
based transformation of class diagram meta-model into
the ontology. Parreiras et. al. [22] combined UML and
ontology for representing software models and
incorporated MOF (Meta Object Facility) meta-model as
the backbone for UML and ontology.

2.2 UML Class/OCL Model Verification

Verification of UML Class/OCL model through formal/
semi-formal notation discussed in many works. UML only
provides graphical elements for representing software
components without any formal foundation [23]. In UML
well-formedness rules are defined by meta-model and OCL
without any proof. Hence, the majority of early works
only formalized UML meta-model and well-formedness
rules by different formal methods (such as Z notation, B

method).

France et. al. [23] used Z notation for the formalization of
UML core meta-model and they translated the UML meta-
model into the compositional schema. The schema
contains many sub-schemas which correspond to every
component of core UML meta-model. Different formal
methods have different strength in different areas and a
single method cannot cover all aspects of UML model
verification and validation. In this regard, Kim et. al. [24]
proposed an integrated verification and validation
framework in which suitable formalism can be selected by

the designer according to the need.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

523


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

Truong et. al. [25] presented the transformation of UML
class model into the B method and verified consistency
of a class model against UML well-formedness rules. In
this method, the UML well-formedness rules are
transformed into the invariant of B abstract machine. Some
works also used semi-formal methods for formalization
and verification of UML Class/OCL model e.g. CSP
(Constraint Satisfaction Problem) and Alloy. Cabot et. al.
[26] presented incremental verification of UML Class/OCL
model through CSP. They argued that verification of
constraints after every structure event (Insert Entity,
Update Attribute, Delete Entity, etc.) can be very costly
and inefficient. They introduced a term PSEs (Potential
Structure Events). The PSEs are events which can cause
of constraints violation. In this technique, PSEs for every
integrity constraint are recorded and instances of entities
and relationships are incrementally verified according to
the PSEs. They presented fully automatic, decidable
solution for bounded verification of UML Class/OCL
model.

Moaz et. al. [27] transformed advanced features of UML
class model (multiple inheritance, interface) into alloy
specification and performed various analyses such as
the intersection of two or more classes and refinement

analysis.

Shaikh et. al. [28] reduced the complexity of UML Class/
OCL model verification through model slicing. In this

approach, the model is divided into many sub-models

and unnecessary elements are removed from the sub-
models (slices). They reported the model slicing technique
reduces the verification time of a large model with few
constraints. However, if the model has many disjoint sub-
models, then fewer partitions will be made and efficiency

will not be gained.

Moreover, in the area of UML Class/OCL model
verification, Gogolla et. al. [29] presented comprehensive
guidelines for future UML Class/OCL model verification
methods. These guidelines more or less cover all aspects
of UML Class/OCL model verification and may be
considered as functional requirements for new verification
methods. These requirements are partly overlapping,
therefore, the core requirements summarized in Table 1.
The next section briefly describes these requirements for
further detail see [29].

2.3  Requirements for UML Class/OCL
Model Verification Method

Requirement-1: The consistency verification ensures
that a non-empty model should be created without
violation of any constraint. Constraints can be local or
global and simple or complex. The local constraint is
applied on a single class and the global constraint is
applied on many classes. The simple constraint performs
easy computation and complex constraint performs the
enormous computation. The verification method should

support the local/global and simple/complex constraints.

TABLE 1. SUMMARY OF REQUIREMENTS [29]

D Requirements Description
Reg-1 Consistency Verification Local/Global Constraints, Simple/Complex Constraints
Req-2 Intensive Arithmetic Computation Support of mteger; and real number operations and finctions
Reg-3 Intensive String Processing Support of String values and string function
Req-4 Consequences Infer new nformation
Req-5 Large no of instances 10 to 30 instances of each class

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

Requirement-2: Constraints can perform arithmetic
computation on both integer and real numbers.
Verification method should support the intensive

arithmetic computation on integer and real numbers.

Requirement-3: Constraints can also perform string
computation and can use string functions. Verification

method should support the string processing.

Requirement-4: Verification method should be able to
infer consequences (new facts) from a set of asserted facts

or axioms.

Requirement-5: Verification method should support a
large number of instances because sometimes verification
of minimum cardinality cannot explore the complete
features of the model. Therefore, at least 10-30 instances
of each class should be supported by a verification
method.

3. PROPOSED SOLUTION

Ontology and UML Class/OCL model both are used for
representing real-life entities and both have many
common elements e.g. classes, properties, instances, and
generalization. However, ontology has an advantage over
UML Class/OCL model. It has a proper formal
foundation. The main difference between ontology and
Class/OCL model is: the ontology works on OWA (Open
World Assumption) and Class/OCL model works on
CWA (Close Work Assumption). In OWA, unknown
assumptions are considered true, and in CWA unknown
assumptions are considered false. For closing the world
this work represents constraints into the SPARQL NAF
queries. SPARQL is not only a query language. It also
provides other constructs for performing different
functionality e.g. ASK and CONSTRUCT. ASK can be

used for verification consistency of constraints and

CONSTRUCT can be used for inferring new assertion
from the existing one. Fig. 1 shows the verification steps
of the proposed method. Initially, the class diagram is
transformed into the ontology (specified by OWL-DL)
and OCL constraints are transformed into the SPARQL
ASK. After that, the correctness of the model against
the constraints is verified and finally, feedback is
returned to the user. The rest of the section presents the
translation of UML Class/OCL model into the ontology
and how the proposed method realizes all the

requirements mentioned in section 2.3.

3.1 Transformation of Class diagram

3.1.1 Translation of Classes

In the proposed method UML classes are transformed
into ontology classes. UML supports UNA (Unique Name
Assumption) in which each instance of a class is
considered as a unique entity. On the other side, in
ontology two different instances can be considered as a
same entity. However, by the combination of other
ontology constructs the semantic of UNA can be
achieved. For Example, in each class, an extra datatype
property (ID) is attached as a key through HasKey
construct. Individuals of a class are annotated as All

different and Classes are declared mutually disjoint.

Declaration (Class (Class Name))

Has Key (Class Name (key Attribute))

Functional Data Property (Key Attribute)
Inverse Functional Data Property (Key Attribute)

3.1.2 Class Attribute

tributes of the class are represented by datatype property.
The domainof property represents respective ontology

class and range represents an appropriate datatype.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

525


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/0CL Model

Declaration (Data Property (Attribute Name))
Data Property Domain (Attribute Class Name)
Data Property Range (Attribute Data type)

3.1.3 Translation of Association Relationship

Association relationships between classes are
transformed into the object properties. Additionally,
inverse properties are added for representation of two-
way association communication. Multiplicities of
associations are represented by the ontology qualified

cardinalities.

Declaration (Object Property (4))

Object Property Domain (4 C1)

Object Property Range (A C2)

Declaration (Object Property (A7)

Object Property Domain (A C2)

Object Property Range (A" Cl1)

Declaration (Inverse Object Properties (A A7)

| SPARQL
(Construct)

] ———
— Ontology
(T-Box)
Ontology SPARQL
(A-Box) (ASK)

3.2 Realization of Requirements

3.2.1 Constraints Consistency

According to the section 2.3, the first requirement is
constraints consistency. In the proposed method, local
and global constraints can be easily represented and
verified by ASK NAF queries. Table 2 shows the
representation of local constraints PaperLenght which
presented in [29] through ASK NAF query. The
representation of global constraint illustrated in Table 3,

where the constraint involves two classes.

TABLE 2. TRANSFORMATION OF OCL CONSTRAINT

CL Constraint ASK NAF
ASK Where
context Paper inv paperLength: {

self wordCount < 10000 ?paperinstance :WordCount ?WC

}

v

I Verification ‘

*

Result

FIG. 1. VERIFICATION STEPS OF PROPOSED METHOD

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

526


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

3.2.2 Intensive Arithmetic Computation

The second requirement for new UML/OCL model
verification is the intensive support of arithmetic
computation. This requirement can be easily realized by
the proposed method. Ontology supports all numeric data
types such as integer, float, decimal. SPARQL supports
all standard arithmetic operations (+,-,*, /, etc), and
numeric functions (floor, ceil, absolute, min, max, etc).
Constraints with massive arithmetic computations can
be easily specified through SPARQL ASK. Table 3 shows
the example of intensive arithmetic constraint and
equivalent SPARQL ASK query.

3.2.3 Intensive use of String

The most important requirement for the new UML Class/
OCL model verification method is support of string
because existing methods rarely support the constraints
which have string operations. However, Ontology
supports string data types and SPARQL has many built-
in string functions e.g. Substr, Strlen, Ucase. Table 4

TABLE 3. TRANSFORMATION OF GLOBAL CONSTRAINT WITH ARITHMETIC COMPUTATION

shows the SPARQL ASK query for constraint mentioned

in [29] which has string computation.
3.2.4 Logical Consequences

Support of logical consequences is a very vital
requirement for new verification methods. Since this
requirement is also not supported by most of the existing
methods. In ontology, SPARQL CONSTRUCT queries are
used for specifying the inference rules and generate the
new dataset. Therefore, they can be used for performing
logical consequences on UML Class/OCL model. Table 5
shows the SPARQL CONSTRUCT for bigamy logical

consequence which described in [29].

TABLE 5. CONSEQUENCE REPRESENTATION

Logical Consequences

CONSTRUCT { ?Iper :isbigamy "yes" }
Where {
per RDF:TYPE :CPerson
Mper :Married ?IPer2
}Group by ?Iperl
Having (COUNT (?Iper2) > 1) }

OCL Constraint

ASK NAF

Context Department inv NumberEmployees: self.employee->size()<=
Employee.alllnstances()->size()/2

ASK Where

{
{SELECT (COUNT (?IEMP) as ?deptEmp)
Where
{ Ndept :RoleEmployee ?TEmp
1Emp RDF:TYPE :CEmployee
} Group By (Idept) }
{SELECT (COUNT(?IEMP)/2 AS EEMP)
Where
{ 2IEMP RDF:TYPE :CEmployee }
} Filter ({(DEmp <=?EEMP)) }

TABLE 4. OCL CONSTRAINT WITH STRING PROCESSING TRANSFORMATION

'm0 g S Y WK, 2 in
let capital:Set(String)=
Set{'A''B,'C’)D,E,F,'G,'H,T,T,K\'L'M,
N0, P,'Q, RS, T, UV, W, X,'Y/Z} in
capital->includes(name.substring(1,1)) and
Set{2..name.size } ->forAll(i |
small->includes(name.substring(i,i)))

OCL Corstraint ASK NAF
inv nameCapitalThenSmmalll etters:
let small:Set(String)= ASK Where
Set{lal,lbl,lCl,ldl,leV,Vf,Vgl,VH,VT,VjV,VkV,Vl‘,VIﬁ, {

Mper RDF:TYPE :CPerson
Mper mame ?ma
FILTER (REGEX
(?na, STR(UCASE(SUBSTR(?m,1,1))))
&& (REGEX(?na,
STR(LCASE(SUBSTR(?na,2,STRLEN(?na)-1)))))

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

527


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

3.2.5 Large Number of Instances

Ontology is used for making formal models of real-world
entities and ontology reasoner can perform reasoning
over the large models. Modern reasoning and a rule engine
can process thousands of ontological items within a
reasonable time [13]. Next section demonstrates through
a real-life example that the proposed solution can also

achieve this requirement efficiently.

4. UML CLASS/OCL MODEL
VERIFICATION EXAMPLE

This section illustrates the whole formalization and
presents how the proposed method effectively verifies
the UML Class/OCL model. Fig. 2 shows a UML Class
model of a company. The model has three classes
(Employee, Department, and Project) and two associations
(Work In and Control). The multiplicity constraint of
association Work In states that employee can work utmost
one department and department must hold at least one
employee and utmost many. The multiplicity constraint
of association Control specifies that department can
control minimum one project and maximum five projects

and project control by utmost one department.

Employee

EID : integer
EMame : String

WWorkin

The company model also has OCL constraints which
specified in Table 6. The Dept Budget and Pro Budget
constraints state that Budget of the department and
project should be greater than zero. Pro Bud Less Dept
constraint specifies that the project budget should be
less than their respective department. Emp H Date Greater
B date constraint states that the employee Hire Date
should be greater than his date of birth. The constraint
Dept Bud Greater all Pro states that the budget of all
departmental projects should be less than or equal to
their department budget. The last constraint Emp ID
Intial Letter then No specifies that the EID should be
started by the letter and followed by the numbers. It is
possible to infernew properties from the existing one
such as Large Department which specifies if a department
controls 4-5 projects then it will be considered as a large

department.

The company model has all the requirements which
described in section 2.3. It has intensive arithmetic
computation in Dept Bud Greater all Pro constraint,
intensive string processing in Emp ID Intial Letter then
No constraint, and inferred consequences in Large

Department. Table 7 shows the complete translation of

Departrment

DID : Integer
DMame : String

HireDate : date 1.*
Sal : inetegr

DBudget : Integer

1
Control

1.5

Froject

PID : Integer
PMName : String
PBudget : Integer

FIG 2. UML CLASS/OCL COMPANY MODEL

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

528


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

the company model into the ontology and ASK NAF.
For analysis of a large number of instances, 30 instances
of Employee, 10 instances of Department and 20
instances of Project have been created and linked to
each other as shown in Fig. 4. The valid properties setting
is shown in Table 8 and invalid properties setting is

shown in Tables 9.

The proposed method stated in the previous section has
been implemented in a prototype tool. The tool uses Jena
framework for representing class diagram into the
ontology and OCL constraints into the JENA ARQ (JENA
implementation of SPARQL). The tool interacts with Pellet
reasoner to perform verification on generated ontology,
and ARQ queries executed one by one to check the
consistency of constraints. The current version of the
tool does not support automatic transformation. However,
a future release of the tool will support the automatic

transformation. Fig. 5(a-b) illustrates the verification

results of both valid and invalid company model using

the prototype tool.

The proposed method more or less supports all aspects
of UML Class/OCL model verification presented in
existing literature. Almost all existing work use formal
methods for verification of UML Class/OCL model which
are extensively inspired by mathematics. On the other
side, the current method is ontology-based and ontology
and UML Class model have many common elements.
Most of the verification methods only work on integer
data types. However, the proposed method supports all
data types such as number, string, date and also provides
related functions for performing the advanced
computation. Ontology is based on a decidable fragment
of first-order logic and current ontology reasoners are
powerful enough that can do reasoning over thousands

of elements.

TABLE 6. OCL CONSTRAINTS OF COMPANY MODEL

Context Department
Inv: DeptBudget: self. Dbudget >0

Context Project
Inv: ProBudget: self.Pbudget >0

Context Project
Inv: ProBudLessDeptself PBudget <= self.department. Dbudget

Context Employee
Inv: EmpHDateGreaterBdate: selfhireDate > selEDOB

Context Department
Inv: DeptBudGreaterallPro: self dBudget >=  selfproject (iterate(pro:Project;suminteger=0 | sum + pro.PBudget)

inv EmpIDIntiall_etterthenNo:
let No:Set(String)=
Set{'1',2','3''4"'5"'6','7"'8','9",'0} in
let Letter:Set(String)=
Set{'A",'B,'C"D,’E,'F'|G,'H,T,J,K",'L,'M,
'N,'O,'P,'Q",'R,'S",'T,'U,'V,'W'X"'Y','Z} in
letter->includes(EID.substring(1,1)) and
Set{2..EID.size } ->forAlld |
No->includes(EID.substring(i,i)))

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

TABLE 7. COMPLETE ONTOLOGY-BASED TRANSLATION OF COMPANY MODEL

Ontology for Company Model

—_

Class: Department

2. Class: Project

3. Class: Employee

4. ObjectProperty: Contro/Domain: DepartmentRange: Control max 3 :Project, :Control min 1 :Project
5. ObjectProperty: WorkinDomain: EmployeeRange: Workin exactly 1 :Department

6. ObjectProperty: /Control ~ Domain: ProjectRange: [Control exactly 1 :Department
7. ObjectProperty: [Workin  Domain: DepartmentRange: [Workin some :Employee

8. DataProperty: E/D  Domain: EmployeeRange:  xsd:integer

9. DataProperty: EName Domain: EmployeeRange:  xsd:string

10. DataProperty: sa/Domain: EmployeeRange:  xsd:float

11. DataProperty: HireDateDomain: EmployeeRange: xsd:dateTime

12. DataProperty: PIDDomain: Project Range:  xsd:integer

13. DataProperty: DIDDomain: DepartmentRange:  xsd:integer

14. DataProperty: DName  Domain: DepartmentRange:  xsd:string

15. DataProperty: PBudgetDomain: Project Range: xsd:double

16. DataProperty: PNameDomain: ProjectRange:  xsd:string

17. DataProperty: DBudgetDomain: DepartmentRange: xsd:double

SPARQL NAF Queries for Company Model OCLs

Constraint: DeptBudget
ASK Where{?Department :DBudget ?DB
Filter (!(?DB >0) }

Constraint: ProBudget
ASK Where {?Project :PBudget ?PB
Filter (!(?PB > 0) }

Constraint: ProBudLessDept
ASK Where{?Department :control ?Project;
?Project :PBudget ?pb.
?Department :DBudget ?db
Filter(!(?pb <= ?db)) }

Constraint: EmpHDateGreaterBdate
ASK Where {
?Employee :DOJ ?DOJ.
?Employee :DOB ?DOB.
Filter ({(?DOJ > ?DOB)) }

Constraint: DeptBudGreaterallPro
ASK Where {
?DIndividualrdf:typeDepartment.
?DIndividual :DBudget ?DBD
{SELECT (SUM(?PB) AS ?APB)

Where {? PIndividul rdf:type Project.
?PIndividual :PBudget ?PB.
?PlIndividual :control? DIndividual.}
group by (?DIndividual)} Filter (!(?APB < ?DBD)) }

Constraint: EmpIDIntialLetterthenNo
ASK Where {? Elndividualrdf:type :Employee
?Elndividual :name ?na
FILTERREGEX (?na, STR(UCASE(SUBSTR(?na,1,1))))&&
(REGEX(?na,(SUBSTR(?na,2,STRLEN(?na)-1)),”\\d”)}

El E2 E3 E4 ES E6 E7 EZ E9 EIO0EI11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25 E206 E27 E28 E29 E30

Y NIL QA0 E Bld X
DL D2 D3 D4

AUN d1% L8 LN

Zwielh Alatd Xl DL B4
D6 D7 D8 D3 D10

F N xR EEY WX

D1 P72 PT PA PS5 PR PB7 PR P9 PINP11 P17 P12 P14 P15 B1A P17 P1R B19 P20 D721 P77 B22 P74 P75 BIA PI7 BIR D9 PAr

FIG. 4. COMPANY MODEL INSTANCES AND LINKS

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

530



http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

TABLE 8. VALID PROPERTIES SETTING FOR COMPNAY MODEL

EID Hire Date DOB DID Dbudget PID Pbudget
El 12.12.2005 12.12.1978 Pl 1
E2 13.12.2005 13.12.1978 D1 100 P2 5
E3 14.12.2005 14.12.1978 P3 9
E4 15.12.2005 15.12.1978 P4 13
E5 16.12.2005 16.12.1978 D2 500 P5 17
E6 17.12.2005 17.12.1978 P6 21
E7 18.12.2005 18.12.1978 P7 25
E8 19.12.2005 19.12.1978 D3 900 P8 29
E9 20.12.2005 20.121978 P9 33
E10 21.12.2005 21.12.1978 P10 37
Ell 22.12.2005 22.12.1978 D4 1300 P11 41
E12 23.12.2005 23.12.1978 P12 45
El13 24.12.2005 24.12.1978 P13 49
El14 25.12.2005 25.12.1978 D5 1700 P14 53
El5 26.12.2005 26.12.1978 P15 57
El6 27.12.2005 27.12.1978 P16 61
E17 28.12.2005 28.12.1978 D6 2100 P17 65
E18 29.12.2005 29.12.1978 P18 69
E19 30.12.2005 30.12.1978 P19 73
E20 31.12.2005 31.12.1978 D7 2500 P20 77
E21 01.01.2006 01.01.1979 P21 81
E22 02.01.2006 02.01.1979 P22 85
E23 03.01.2006 03.01.1979 D8 2900 P23 89
E24 04.01.2006 04.01.1979 P24 93
E25 05.01.2006 05.01.1979 P25 97
E26 06.01.2006 06.01.1979 D9 3300 P26 101
E27 07.01.2006 07.01.1979 P27 105
E28 08.01.2006 08.01.1979 P28 109
E29 09.01.2006 09.01.1979 D10 3700 P29 113
E30 10.01.2006 10.01.1979 P30 117

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
531



http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

TABLE 9. INVALID PROPERTIES SETTING FOR COMPNAY MODEL

EID Hire Date DOB DID Dbudget PID Pbudget

El 15.12.2005 15.12.1978 P4 130

ES 16.12.2005 16.12.1978 D2 500 P5 230

E6 17.12.2005 17.12.1978 P6 270

E10 21.12.2005 21.12.2010 P10 37

Ell 22.12.2005 22.12.1978 D4 1300 P11 41

E12 23.12.2005 23.12.1978 P12 45
Bl sd . s ot Bl B
Select Model Select Model
| Valid (Company Model) 7'] | Verfication | Invalid (Company Model) B | Verfication |

Verification result

Association Constraints Satisfied

ProBudget->Satisfied
ProBudLessDept->Satisfied
EmpHDateGreaterBdate—=Satisfied
DeptBudGreaterallPro—=Satisfied
EmpiDintialLetterthenNo—>Satisfied

(a) VALID MODEL VERIFICATION RESULT

Verification resuft

Error (KB is inconsistent!): No specific explanation was generated. Generic explanation: The maxCardinality rest
fiction is violated

OCL Constraints

q
ProBudget->Unsatisfied
ProBudLessDept->Unsatisfied
EmpHDateGreaterBdate—>Satisfied
DeptBudGreaterallPro->Unsatisfied
EmplDintialLetterthenNo—>Satisfied

(b) INVALID MODEL VERIFICATION RESULT

FIG. 5. VERIFICATION RESULTS

S. CONCLUSION

UML Class/OCL model is an important part of UML. It
serves as a graphical notation for representing real-world
entities without any formal verification mechanism.
Numerous formal and semi-formal methods have been
used for verification of UML Class/OCL model. This
paper proposes a new method for verification of UML
Class/OCL model and outlines how different features of
the model can be mapped into ontology and SPARQL
NAF Queries. Moreover, this work proposes how CWA
and UNA can be obtained in ontology through different
techniques. This work also presents how the proposed

method can tackle all aspects of UML Class/OCL model

verification presented in existing literature such as
consistency verification, extensive integer computation,
string processing, and logical consequences. Finally,
implemented the proposed method and developed a

prototype tool to provide a proof of concept.

6. FUTURE WORK

The future work will cover more elements (xor constraints
and dependency relationships) of the UML class diagram
which have not yet been covered by any existing method
and will focus on scalability problem. Furthermore, the
tool will be extended with the support the automatic
transformation of UML Class/OCL model into the ontology
and SPARQL NAF queries.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

532



http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

ACKNOWLEDGMENT

Authors acknowledge the support by Jena team for

providing the assistance in using the API for ontology

processing. Authors are indebted to the referees for

valuable comments/suggestions and also thankful to the

Editorial Board, Mehran University Research Journal of

Engineering & Technology, Jamshoro, Pakistan, for

providing a platform to publish our research.

REFERENCES

(1]

Baier, C., and Katoen, J.P., “Principles of Model
Checking”, The MIT Press Cambridge, Massachusetts,

USA, 2008.

Anastasakis, K., Bordbar, B., Georg, G., and Ray, 1.,
“UML2Alloy: A Challenging Model Transformation”,
ACM/IEEE 10th International Conference on Model
Driven

Engineering Languages and Systems,

Volume 4735, pp. 436-450, Springer, USA, 2007.

Traore, 1., and Aredo, D.B., “Enhancing Structured
Review with Model-Based Verification”, IEEE

Transactions on Software Engineering, Volume 30,

No. 11, pp. 736 - 753,2004.

Przigoda, N., Filho, J.G., Niemann, P., Wille, R., and
Drechsler, R., “Frame Conditions in Symbolic
Representations of UML/OCL Models”, ACM/IEEE
International Conference on Formal Methods and Models

for System Design, pp. 65-70, Kanpur, 2016.

Anastasakis, K., Bordbar, B., Georg, G., and Ray, L., “On
Challenges of Model Transformation from UML to
Alloy”, Software & Systems Modeling, Volume 9, No. 1,

pp. 69-86, Springer, 2010.

(6]

[10]

[13]

[14]

Malgouyres, H., and Motet, G., “A UML Model

Consistency Verification Approach Based on

Metamodeling Formalization”, ACM Symposium on

Applied Computing, pp. 1804-1809, 2006.

Cadoli, M., Calvanese, D., Giacomo, G.D., and Mancini,
T., “FiniteSatisfiability of UML Class Diagram by
Constraint Programming”, International Workshop on

Description Logics, Volume 104, BC, Canada, 2004.

Shaikh, A., and Wiil, UK., “A Feedback Technique for
Unsatisfiable UMLOCL Class Diagrams”, Software
Practice and Experience, Volume 44, No. 11,

pp. 1379-1393, Wiley, 2013

Shaikh, A., and Wiil, UK., “Efficient Verification-Driven
Slicing of UML/OCL Class Diagrams”, International
Journal of Advanced Computer Science and Applications,

Volume 7, No. 5, pp. 530-547, UK, 2016.

Encarnaci, M., Barrio-sol, M., Cuesta, C.E., and Fuente,
P.D., “UML Automatic Verification Tool with Formal
Methods”, Volume, 127, pp. 3-16, 2005.

Clark, T., and Evans, A., “Foundations of the Unified
Modeling Language”, 2nd BCS-FACS Conference on
Northern Formal Methods, pp. 1-14, Springer, UK, 1997.

Cali, A., Calvanese, D., Giacomo, G.D., and Lenzerini,
M., “A Formal Framework for Reasoning on UML Class
Diagram”, 13th International Symposium on
Foundations of Intelligent Systems, pp. 503-513, France,

2002.

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., and Katz,
Y., “Pellet: A Practical OWL-DL Reasoner”, Journal of
Web Semantics: Science, Services and Agents on the
World Wide Web archive, Volume 5, No. 2, pp. 51-53,
2007.

Mahmud, N., “Ontology-Based Analysis and Scalable
Model Checking of Embedded Systems Models”
M{é}lardalen University, 2017.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

533


http://www.foxitsoftware.com/shopping

Ontology-Based Verification of UML Class/OCL Model

[15]

[16]

[17]

[19]

[20]

[21]

Nguyen, T.H., Grundy, J.C., and Almorsy, M., “Ontology-
Based Automated Support for Goal-Use Case Model
Analysis”, Software, Quality Journal, Volume 24, No. 3,
pp. 635-673, 2016.

Corea, C., and Delfmann, P., “Detecting Compliance
with Business Rules in Ontology-Based Process
Modeling”, Proceedings of 13" Internationale Tagung
Wirtschaftsinformatik, pp. 226-240, 2017.

Liao, Y., Panetto, H., Simédo, J.M., and Stadzisz, P.C.,
Model-Driven

Notification-Oriented

“Ontology-Based Patterns  for

Data-Intensive  Enterprise
Information Systems”, Proceedings of 7th International
Social

Conference Information

pp. 148-153, 2017.

Technology,

He, H., Wang, Z., Dong, Q., Zhang, W., and Zhu, W.,
“Ontology-Based Semantic Verification For UML
Behavioral Models”, International Journal of Software
Engineering and Knowledge Engineering Volume 23,
No. 2, pp. 117-145, World Scientific, 2013.

Dilo, A., Zlatanova, S., and Oosterom P.V., “Modeling
Emergency Response Processes: Comparative Study on
OWL and UML”, Joint ISCRAM-China and GI4DM
Conference, 2008.

Bahaj, M., and Bakkas, J., “Automatic Conversion
Method of Class Diagrams to Ontologies Maintaining
Their Semantic Features”, International Journal of Soft

Computing and Engineering, Volume 2, No. 6, 2013.

Belghiat, A., and Bourahla, M., “UML Class Diagrams
to OWL Ontologies: A Graph Transformation Based
Journal

Approach”, International

Applications, Volume 41, No. 3, pp. 41-46, 2012.

of Computer

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Parreiras, F.S., and Staab, S., “Using Ontologies with
UML Class-Based Modeling: The TwoUse Approach”,
Data & Knowledge Engineering, Volume 69, No. 11,
pp. 1194-1207, Elsevier, 2009.

France, R., Evans, A., and Lano, K., “The UML as a
Formal Modeling Notation”,International Conference
on UMLBeyond the LNCS 1618,
pp. 325-334, Berlin, Germany, 1998.

Notation

Kim, S.K., and Carrington, D., “A Formal Mapping
between UML Models and Object-Z Specifications”,
International Conference on Formal Specification and
Development in Z and B, Volume 1878, pp. 2-21, UK,
2000.

Truong, N.T., and Souquieres, J., “An Approach for the
Verification of UML Models Using B”, 11th IEEE
International Conference and Workshop on the
Engineering of Computer-Based Systems, pp. 195-202,
Czech Republic, 2004.

Cabot, J., and Teniente, E., “Incremental Integrity
Checking of UMLOCL Conceptual Schemas”, Journal
of Systems and Software, Volume 82, No. 9,
pp. 1459-1478, Elsevier, Spain, 2009.

Maoz, S., Ringert, J.O., and Rumpe, B., “CD2Alloy Class
Diagrams Analysis Using Alloy Revisited Model Driven
Engineering Languages and Systems”, Lecture Notes in
Computer Science Volume 6981, pp. 592-607, Springer,
New Zealand, 2011

Shaikh, A., and Wiil, U.K., “Evaluation of Tools and
Slicing Techniques for EfficientVerification of UMLOCL
Class”, Advances in Software Engineering Archive,
pp. 1-18, Hindawi New York, USA, 2011.

Gogolla, M., Buuttner, F., and Cabot, J., “Initiating a
Benchmark for UML and OCL Analysis Tools”, Tests
and Proofs Lecture Notes in Computer Science,
Volume 7942, pp. 115-132, Hungry, 2013.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 4, October, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

534


http://www.foxitsoftware.com/shopping

