
Learners Programming Language a Helping System for
Introductory Programming Courses

MUHAMMAD SHUMAIL NAVEED*, MUHAMMAD SARIM*, AND KAMRAN AHSAN*

RECEIVED ON 27.03.2015 ACCEPTED ON 16.09.2015

ABSTRACT

Programming is the core of computer science and due to this momentousness a special care is taken in
designing the curriculum of programming courses. A substantial work has been conducted on the
definition of programming courses, yet the introductory programming courses are still facing high
attrition, low retention and lack of motivation. This paper introduced a tiny pre-programming language
called LPL (Learners Programming Language) as a ZPL (Zeroth Programming Language) to illuminate
novice students about elementary concepts of introductory programming before introducing the first
imperative programming course. The overall objective and design philosophy of LPL is based on a
hypothesis that the soft introduction of a simple and paradigm specific textual programming can increase
the motivation level of novice students and reduce the congenital complexities and hardness of the first
programming course and eventually improve the retention rate and may be fruitful in reducing the
dropout/failure level. LPL also generates the equivalent high level programs from user source program
and eventually very fruitful in understanding the syntax of introductory programming languages. To
overcome the inherent complexities of unusual and rigid syntax of introductory programming languages,
the LPL provide elementary programming concepts in the form of algorithmic and plain natural language
based computational statements. The initial results obtained after the introduction of LPL are very
encouraging in motivating novice students and improving the retention rate.

Key Words: Programming, Introductory Programming Courses, Imperative Programming,
Student Dropouts.

* Department of Computer Science, Federal Urdu University of Arts, Science & Technology, Karachi.

The majority of students face difficulties in
comprehending the programming which results in high
failure and dropouts in introductory programming
courses. In [3-4], the failure/dropout rates of around 25%
are reported in introductory programming courses,
similarly 27.8% is reported in [5], and dropout of 40-60%
is reported in [6].

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
347

1. INTRODUCTION

Programming skill is an expected outcome of
computer science students [1]; however, it is hard
to learn programming as it fundamentally entails

to think and verbalize in a way that is unnatural and
usually queer for the beginner. In [2], Winslow claims
that approximately ten years are required to turn the
beginner into an expert.

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
348

Learners Programming Language a Helping System for Introductory Programming Courses

Akin to the impact of our native language on our cogitation
and apprehension, the first programming language has a
strong impact on our thoughts [7], and similarly the
programming language chosen for the introductory
programming course is an essential element in the
progress of students [8].

The paradigm of the first programming course is one of a
pivotal factor in its success. Among several programming
paradigms, the imperative (also called procedural)
paradigm is highly acknowledged for introductory
courses [9-12], yet its various features are quite hard for
novice students. For instance, in [13], the sequence,
assignment and iteration are cited as the difficult concepts.
Whereas in [14], the control structures, pointers, arrays
and recursion are classified as difficult concepts for
beginners. Gobil, et. al. argued that beginners face
problems in recognizing the valid selection structure for
the problems [15].

Virtually there is a series of factors for high attrition in
computer programming courses, but lack of previous
knowledge of programming is an important reason that
affects the completion of computer science degree
[16-18]. Conversely the novice students with previous
knowledge of programming have better performance
[19-20], and based on this thesis, it can be inferred that
basic concepts of the first programming course can
become easier if novice students have prior knowledge
of programming. In this paper we have introduced a LPL
which is based on a thesis that induction of small and
plain language before a first programming course can
appreciably increase retention levels of novice students
and decrease attrition rate by providing them elementary
acquaintance of imperative programming.

2. PREVIOUS WORK

The notion of pre-programming language as a precursor
of introductory programming courses is not very new;
several programming systems have been formalized to

support the first programming courses. McIver et al.
introduced a language called GRAIL and inducted before
the first course of programming [21]. GRAIL helps the
novice students in comprehending the imperative
programming concepts.

In [22], a course is introduced to help novice students
who have no prior programming knowledge. The course
covers the elementary topics like sequence, selection
structures, operators, arrays and functions.

In another landmark study [23], the effectiveness of CS0
with Scratch [24] is studied. The course encompasses
the sequence, variables, arrays, selection, repetition, and
basic objects. The course significantly reduced the
attrition rate.

In another study [25], a course called Computational
Thinking is described to help novice students and found
very effective in increasing the problem solving abilities
of beginners.

To trounce the difficulties of introductory programming
courses the MindStorms robots based course is
introduced to encourage the beginners to focus on
algorithmic problems solving before introducing the Java
[26].

Many other courses and pre-programming languages have
been developed to support introductory programming
courses. For instance [27-33] for more detail.

3. LEARNERS PROGRAMMING
LANGUAGE

The LPL is a tiny precursor programming language
designed to help the novice students by providing
elementary concepts which are helpful in comprehending
first introductory imperative programming course CS1
(Computer Science). The LPL is specifically designed to
support introductory imperative programming courses;

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
349

Learners Programming Language a Helping System for Introductory Programming Courses

however, the notion of LPL can be applied to support
introductory programming courses of other paradigms
[34-35]. The principal reason for the selection of the
imperative paradigm for the LPL is its wide application
usage. In the curriculum of CS undergraduate degree
programs the majority of introductory programming
courses (particularly the first programming course) are
typically based on imperative paradigm. The landmark
study [12] on introductory programming courses in the
universities of Australia and New Zealand report that
imperative paradigm is the preferred paradigm as
illustrated in Fig. 1.

In Pakistan there are 164 universities/degree awarding
institutions [36], and according to accessible information,
more than 100 institutions are offering the pure
undergraduate CS programs and nearly all are employing
imperative paradigm for a first programming course.

3.1 Design Theory and Motivation

The overriding theory of LPL is to facilitate the learning
of introductory programming in a way to help the novice
students in comprehending first imperative programming
course. Principally it is merely not developed to ease the
programming - if that was the objective; the graphical
tools would be ample to provide simple drag-and-drop
facilities to construct the programs. Fundamentally the
ZPL course and first programming course are radically

different, since the former is aimed is to introduce the
elementary programming concepts, whereas the later is
the actual platform to explore the actual concepts to
beginners and therefore LPL is primarily developed for
introducing elementary programming, rather than for
doing programming.

3.2 Prime Features

The LPL requires no explicit perquisite. The overall syntax
of LPL is extremely simple and only a small number of
features are included. Currently it includes primitive data
types (character, integer, float), string, literals, variable
declaration, I/O, linear array of primitive data types,
selection structure (single, double, multiple), control
structures (counter and logical pre-test) and single line
comments.

Several studies found that unfamiliar and unusual syntax
of programming languages makes it more confusing and
difficult [37]. The structure and denotation of LPL are
very simple and obvious. All the available features are
presented in algorithmic/natural language based
computational statements, and therefore, it is far simpler
to use LPL and understand the elementary concepts.

The LPL’s translator converts the input source into the
equivalent high level code in C and C++ and therefore
very helpful in understanding rigid syntax of the base
language of introductory programming course.

All the statements of LPL programs are enclosed in
functions. Like conventional imperative programming
languages the main function is the entry point of the
program. Declaration of main function may take several
forms. One of them is:

start of the main program

…

end of main programFIG. 1. TRENDS IN PARADIGM TAUGHT [12]

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
350

Learners Programming Language a Helping System for Introductory Programming Courses

The statements within a function are virtually divided
into two sections. The first section contains the
declaration of variables, whereas the second section
includes actual statements. The declaration of main
section/function in most of the imperative programming
languages like the C is extremely difficult and generally
requires the knowledge of return value and arguments;
however, at elementary level it is unjustifiable to introduce
these peculiarities.

The LPL allows the declaration of variables and all
variables are strongly typed and require proper
declaration. The declaration statement may take several
forms, however, each of the possible forms is prefixed
with the word “create” (or some equivalent):

declare a float type variable named fee

create an integer variable named grade

define float amount

At first glance, the general syntax for the declaration of
variables seems too verbose, however, in reality the
descriptive style of programming and variable declaration
help the novice students in understanding the
fundamental of programming. As a convenience and
flexibility the LPL also allows the declaration of variables
in a concise form, like “define float amount”.

The traditional symbol (=) is used for assignment, and
likely to add dot-equal notation for assignment.

The complex I/O is one of the reasons that make
programming language more hard and complex. The I/O
mechanism in most of the programming language is
extremely difficult, however, it should be simple and
straightforward [38].

Simple and straightforward statements are used in LPL
for console I/O. The input statement may take one of the
following forms:

input in name

take input in name

Similarly the output statement may take several forms:

print the value of grade

show grade

display age

According to Dale, the control structures are one of the
difficult topic for novice students [14], and due to this
reason a special care is taken while defining the control
structures. The iteration structure in LPL may take several
forms; however, each of the possible forms is prefixed by
the word “repeat” (or some equivalent):

repeat the statements 500 times

…

end of loop

or

repeat as long as age < 50

…

end of loop

A very comprehensive study, reported in [39], revealed
that students face difficulties in identifying the right
selection structure for the given problems. The selection
structure in LPL, may take the following forms, but each
of the possible forms is prefixed with the word “execute”
(or some equivalent):

execute if age > 50

…

end of if

or

 execute on the condition that number <> 100

…

end of condition

Single line comment stared with “#” is allowed in LPL,
whereas the references and pointers are not available in
LPL.

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
351

Learners Programming Language a Helping System for Introductory Programming Courses

In LPL each syntactic structure (other than the expression)
is started with the unique word, and this feature obviously
helps the novice students in understanding,
differentiating and implementing programs and their
pertinent components.

3.3 Language Design

The LPL is developed by using the universal notions of
the theory of automata and formal language. At definition
level, the LPL is divided into three sections: lexical
specification, structural specification and semantic
specification.

During the definition of lexical specification, the lexical
units (keywords, literals, identifiers, operators and
punctuators) are defined. The universally accepted
mathematical system called the regular expression [40] is
used for definition of lexical specification. The defined
lexical specification for the LPL is highly straightforward
and amenable.

Consider the regular expression for the ‘identifier’ LPL:

letter ’! A | B | C | … | Z | a | b | … | z
digit ’! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
identifier ’! letter (letter | digit)*

With the above regular expression, it is possible to create
any valid identifier in LPL.

As an illustration, consider the regular expression for
integer constant in LPL:

constantliteral ’! (+ | - | ε) digit digit*

digit ’! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The above regular expression can only define the integer
constant; however, its extended form can define the
floating value constant:

floatliteral ’! (+ | - | ε) digits . digits (e | E) (+ | - | ε) digits
digits ’! digit digit*

digit ’! 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The regular expressions for the other lexical units like
keywords and operators are highly straightforward and
defined by concatenating the relevant symbols in a specific
order.

After the specification of lexical units the structural
specification of LPL is defined by using the context free
grammar [41]. The context free grammar of LPL is somewhat
massive, and the reason behind this bigness is the
definition of several semantic specifications at the
structure level.

Consider a segment of the context free grammar for a
definition of the function header:

<header> ’! VERBSTART <mphrase>

<mphrase> ’! PREPOSITIONOF <article>

<fname> PROGRAMSYMBOL | ε

<article> ’! ARTICLEA | ARTICLETHE | ε

 <fname > ’! FUNCTIONNAME | ε

As an illustration consider the following segment of
context free of the output statement:

<statement> ’! VERBOUTPUT <article> <parameter>
 <article> ’! ARTICLETHE | ARTICLEA | | ε
<parameter>’! CONSTANT | IDENTIFIER | VALUE <trail>
< trail> ’! CONSTANT | PREPOSITION OF IDENTIFIER

The semantic specification is the last specification of the
LPL. During this level the type checking information is
defined by using the attribute grammar [42]. For definition
of attribute grammar the semantic attributes are attached
with the actual context free grammar.

After the definition of LPL a small development
environment as shown in Fig. 2 is developed to create,
edit and translate the LPL programs into the high level
codes of C and C++. The environment is developed in C#
3.0 by using the Visual Studio 2008.

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
352

Learners Programming Language a Helping System for Introductory Programming Courses

The development environment of LPL comprises of two
sections (code section and debug section) as shown in
Fig. 2.

The environment includes a comprehensive help
document that provides all the relevant information. The
help documentation is created with Dr. Explain. The
environment also includes the documentation about the
detail of the errors may encounter during the translation
of the program. The documentation about errors is also
created with Dr. Explain. For better error handling, a
unique number is assigned to each possible error in LPL.

The environment includes a tiny translator that analyzes
the LPL program and generates equivalent codes of C
and C++. The translator of LPL highly mimics the structure
of conventional compilers, and quite similar to transpilers.
The LPL translator comprises of four main phases and
the symbol table and the error handler are also the
important components of LPL’s translator.

Lexical analyzer is the first phase of translator and
responsible to recognize all lexical elements of the program
and identify their categories by generating the equivalent
tokens. The finite state automata [43] are developed from
the regular expressions for the recognition of lexemes.
The generated tokens are passed to syntax analyzer which
is the second phase of the translator. In LPL’s syntax
analyzer the recursive descent parsing is used [44]. In

recursive descent parser, a separate method (procedure)
is developed for every nonterminal of context free grammar.
To simplify the construction of recursive descent parsing
the actual context free grammar is initially transformed
into the EBNF (Extended Backus-Naur Form). For error
handling the panic mode recovery is used. The recursive
descent parser verifies the syntax of the program and
generates the implicit syntax tree. The implicit syntax is
used by the semantic analyzer which is a third phase of
translator that renovates the syntax tree by attaching and
evaluating semantic attributes described during the
specification of attribute grammar. The attribute are
evaluated with tree traversing algorithms. In this way the
semantic analyzer also performed the duty of intermediate
code generator, otherwise it is a separate phase of
conventional compilers. Once the parsing and successful
evaluation of attributes are performed the target code
generator which is a last phase of LPL’s translator is
invoked that translate the program into high level code in
C and C++ as shown in Fig 3.

The target code generator simply performs the ad-hoc
mapping by reading the syntactic structure of the input
program and generates the equivalent programs. Since

FIG. 2. LPL ENVIRONMENT FIG. 3. LPL ENVIRONMENT WITH OUTPUT

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
353

Learners Programming Language a Helping System for Introductory Programming Courses

the semantic analysis in LPL’s translator is quite simple
and no optimization is required during translation so the
recursive descent parser is defined as a main program
which call subprograms for semantic analysis and target
code generation at suitable points as suggested by
Wilhelm and Maurer [40].

4. PRELIMINARY ANALYSIS OF LPL

The LPL is an experimental language designed on a
hypothesis that the induction of a small, simple and
paradigm specific textual preprogramming language can
help the students in comprehending first imperative
programming course and resultantly increases the
retention level and may also reduce the failure/dropout
rates. In order to verify our theory a small study is
conducted. During study 96 students of the
undergraduate computer science program are randomly
selected and categorized in three groups (A, B, C). As a
part of our study the Python is selected as a ZPL for
group A, whereas the LPL is selected for group B,
however, no preprogramming is selected for group C.

For CS0 there are many popular languages. Fig. 4 illustrates
the popular languages choice used in CS0.

According to the statistics given in Fig. 4, the Alice is the
most popular language for CS0, whereas the Python and
VB are the second popular languages in CS0. However,

due to several genuine reasons the Alice is not selected
for comparing the effectiveness of LPL. The Alice is used
for teaching the object oriented programming [45-46],
whereas the LPL is developed for introductory imperative
programming courses.

During our study the same number of lectures was
designated for the both groups (A and B) for introducing
their respective ZPLs. After the induction of ZPL the
introductory programming course (CS1) with the C
language is offered to all the three groups.

After the completion of course, the students from every
group were interviewed and asked “whether they are
willing to take another programming course in the next
semester”. The feedback received from the students is
shown in Fig. 5.

The retention rate of the students in group A is quite
higher from the students in group C but lower than the
students in group B. The students from group A were
asked about the reason of their less retention in the next
programming course. Most of the students respond that
the language used in CS0 was very attractive, but they
faced problems when switching to the actual
programming language of CS1, however, one student A
plaint the shortage of time and the massiveness of
language used in CS0. The retention level of the students
in group B who studied the LPL as a ZPL is quite higher

FIG. 4. POPULAR LANGUAGES USED IN CS0 [39]
FIG. 5. STUDENTS WILLINGNESS IN THE NEXT

PROGRAMMING COURSE

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
354

Learners Programming Language a Helping System for Introductory Programming Courses

than the other class. The students from group B were
asked about the reason of retention in the next
programming course. Most of the students respond that
the simple and understandable statements help them in
understanding concepts, and with the feature of the high
level code generation, they easily understand the various
concepts and syntax of the actual programming language.
Two students from group B who were not willing in the
next programming course demand the detailed external
document for the LPL. While interviewing the students
of the group C, most of the students lament the hardness
of programming and express their difficulties in abstracting
and implementing the program ideas. Several students
also complained the rigid and unfamiliar syntax of the
programming language.

The students from all the groups are also being internally
evaluated with pen and paper exam. The summary is
shown in Fig. 6.

The use of LPL as a ZPL is also useful in improving the
failure rate. In fact the radical improvement of the failure /
drop rate is a complex subject and virtually based on
several parameters. The intervention of any ZPL should
not be considered as a complete panacea as it cannot
improve the failure rate in the exponential order.

The initial evaluation of LPL and the analysis of its design
philosophy signify that LPL can be a very helpful

precursor for introductory imperative programming
courses. There are tens of programming languages
available for preprogramming and most of them are
developed by multinational companies, but the majority
of them is developed as a blanket solution for introductory
programming courses whereas the LPL is a paradigm
specific tool and only aims to support the introductory
imperative programming courses. Almost all the popular
programming languages (like the Python and Visual Basic)
for CS0 require a complete course in a semester before
the first programming course, whereas few many lectures
of LPL are sufficient before commencing the first
programming course. Almost all the imperative languages
are primitively text oriented and LPL is also text oriented
so it is more effective for the imperative languages.

Alice is one of a powerful language and generally used
for teaching object oriented programming. In [47], Powers,
et. al. analyzed the advantages and disadvantages of
using Alice in CS0 and report that Alice increased the
retention and confidence, and the lack of syntax error
may increase the confidence of students, yet it can be
problematic when student switches to C++ or Java.
However, in LPL there is no issue of transition, since it is
already text oriented and the target languages are also
textual.

Blockly is a type of visual development kit that allows the
quick development of new block-based visual
programming languages [47]. Blockly is neither originated
as a ZPL nor it supports any specific programming
paradigm, however it permits the educational games for
comprehending the notion of condition and iteration
structures, yet the elementary concepts of imperative
programming like the data type and scope are almost
impossible to comprehend with Blockly. Basically the
Google Blockly is a web-oriented, visual graphical
programming editor that allows the development of
applications by joining the blocks without the knowledge
of programming [48], whereas the LPL is dedicatedlyFIG. 6. RESULT OF EVALUATION

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
355

Learners Programming Language a Helping System for Introductory Programming Courses

developed as a ZPL and supports the imperative
paradigm. Furthermore, it encourages and engages the
students to learn the programming from the very
beginning. The Blockly isolates the user from syntax
errors, whereas the LPL aims to provide a gentle system
for reducing the syntax error. Apparently it is not unfair
to affirm that Blockly simplify the hardness of
contemporary programming by providing the drag-and-
drop facility, whilst the LPL targets to simplify the
introductory programming by providing simple and
understandable notations.

Stencyl is a platform developed by StencylWorks for the
creation of video games [49]. It allows a graphical editor
to create games and port them to different formats. In
Stencyl the development of games is based on the
description of actors and scenes. The environment of
Stencyl is very innovative yet it requires algorithmic logic
and programming knowledge [50], however for ZPL no
previous knowledge of programming is principally
required, moreover no explicit feature of Stencyl is directly
supportive in comprehending the elementary concepts
of imperative programming and therefore due to these
reasons the Stencyl can’t be considered a viable option
for the effective precursor of introductory imperative
programming courses.

Scratch is an environment and a media-rich programming
language and developed by the Lifelong Kindergarten
group with the UCLA Graduate School of Education and
Information Studies [51]. It is generally used in the K-12
system. Scratch is usually used for teaching object
oriented programming where the LPL is developed for
imperative paradigm. Like other visual languages, it is
free from the distraction of syntax, and unlike the textual
languages, the use Scratch provides no explicit experience
of program debugging. The procedure and recursion,
which are the essential elements of imperative
programming are missing in Scratch and the support for
data structures is also weak [52].

Visual languages simplify the programming by providing
the drag-and-drop facilities and prevent the syntax errors,
but the students never confronted with program coding
and never gain any practical experience of coding and
debugging. In fact the visual languages are useful and
simple yet several studies indicate that graphical
languages are only useful for certain purposes [53]. In
[54], it is argued that constructs based on control flow
are linear (with some exceptions), and therefore, easily
symbolized with textual language, and the visual
languages are more suitable for representing the
constructs which are based on data flow. The graphical
representation was better than textual pseudo code when
the operation entails finding flow of control, but not for
identifying the high level associations [55], and as far as
the program comprehension is concerned the graphical
representations are not superior to textual representation
and sometimes seriously worse [56].

5. CONCLUSION

LPL is a ZPL that helps the novice students in
comprehending the introductory programming course. LPL
comprises of simple and understandable statements and
generates the equivalent C and C++ source program from
the user source programs. LPL is initially applied to a
small group of students and found very positive in
increasing the retention level and reducing the failure
rate. As a next step we are excogitating to apply LPL to a
large group of students with the aim of quantifying its
successfulness and efficacy in increasing the motivation
level, retention rate and decreasing the attrition rate.

ACKNOWLEDGEMENTS

The support provided by the Department of Computer
Science, Federal Urdu University of Arts, Science &
Technology, Karachi, Pakistan, is gratefully
acknowledged. Authors would also like to thank Abdul
Basit and Kashif Raffat, for their valuable criticisms on
learners programming language. In addition, authors
would like to thank all of the students who were willing to
share their time with us in our studies.

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
356

Learners Programming Language a Helping System for Introductory Programming Courses

REFERENCES

[1] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y.B., Laxer, C., Thomas, L., Utting
I., and Wilusz, T., “A Multi-National, Multi-Institutional
Study of Assessment of Programming Skills of First-
year CS Students”, ACM SIGCSE Bulletin, Volume 33,
No. 4, pp.125-180, 2001.

[2] Winslow, L.E., “Programming Pedagogy: A Psychological
Overview”, ACM SIGCSE Bulletin, Volume 28, No. 3,
pp. 17-22, 1996.

[3] Herrmann, N., Popyack, J.L., Char, B., Zoski, P., Cera,
C.D., Lass, R.N., and Nanjappa, A., “Redesigning
Introductory Computer Programming Using Multi-Level
Online Modules for a Mixed Audience”, ACM SIGCSE
Bulletin, Volume 35, No. 1, pp. 196-200, 2003.

[4] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang,
K., Miller, C., and Balik, S., “Improving the CS1
Experience with Pair Programming”, ACM SIGCSE
Bulletin, Volume 35, No. 1, pp. 359-362, 2003.

[5] Rich, L., Perry, H., and Guzdial, M., “A CS1 Course
Designed to Address Interests of Women”, ACM SIGCSE
Bulletin, Volume 36, No. 1, pp. 190-194, 2004.

[6] Sloan, R.H., and Troy, P., “CS 0.5: A Better Approach to
Introductory Computer Science for Majors”, ACM
SIGCSE Bulletin, Volume 40, No. 1, pp. 271-275, 2008.

[7] Wexelblat, R.L., “The Consequences of One’s First
Programming Language”, Proceedings of 3rd ACM
SIGSMALL Symposium and the First SIGPC Symposium
on Small Systems, pp. 52-55, USA, 1980.

[8] Luker, P.A., “Never Mind the Language, What About
the Paradigm?”, ACM SIGCSE Bulletin, Volume 21,
No. 1, pp. 252-256, 1989.

[9] deRaadt, M., Watson, R., and Toleman, M., “Language
Trends in Introductory Programming Courses”,
Proceedings of Informing Science and IT Education
Conference, pp. 329-337, Ireland, 2002.

[10] deRaadt, M., Watson, R., and Toleman, M., “Introductory
Programming: What’s Happening Today and Will There
be Any Students to Teach Tomorrow?”, Proceedings of
6th Australasian Conference on Computing Education,
Volume 30, pp. 277-282, New Zealand, 2004.

[11] Mason, R., Cooper, G., and deRaadt, M., “Trends in
Introductory Programming Courses in Australian
Universities: Languages, Environments and Pedagogy”,
Proceedings of 14th Australasian Conference on
Computing Education, Volume 123, pp. 33-42, Australia,
2012.

[12] Mason, R., and Cooper, G., “Introductory Programming
Courses in Australia and New Zealand in 2013 - Trends
and Reasons”, Proceedings of 16th Australasian
Conference on Computing Education, pp. 139-147,
New Zealand, 2014.

[13] Vujoševic-Janicic, M., and Tošic, D., “The Role of
Programming Paradigm in the First Programming
Courses”, The Teaching of Mathematics, Volume XI,
No. 2. pp. 63-83, 2008.

[14] Dale, N.B., “Most Difficult Topics in CS1: Results of an
Online Survey of Educators”, ACM SIGCSE Bulletin,
Volume 38, No. 2, pp. 49-53, 2006.

[15] Gobil, A., Shukor, Z., and Mohtar, I.A., “Novice
Difficulties in Selection Structure”, International
Conference on Electrical Engineering and Informatics,
Volume 2, pp. 351-356, Malaysia, 2009.

[16] Davy, J.R., Audin, K., Barkham, M., and Joyner, C.,
“Student Well-being in a Computing Department”, ACM
SIGCSE Bulletin, Volume 32, No. 3, pp. 136-139, 2000.

[17] Hagan, D., and Markham, S., “Does It Help to Have
Some Programming Experience Before Beginning a
Computing Degree Program?”, ACM SIGCSE Bulletin,
Volume 32, No. 3, pp. 25-28, 2000.

[18] Morrison, M., and Newman, T.S., “A Study of the Impact
of Student Background and Preparedness on Outcomes
in CS I”, ACM SIGCSE Bulletin, Volume 33, No. 1,
pp. 179-183, 2001.

[19] Holden, E., and Weeden, E., “The Impact of Prior
Experience in an Information Technology Programming
Course Sequence”, Proceedings of 4th Conference on
Information Technology Curriculum, pp. 41-46, USA,
2003.

[20] Tafliovich, A., Campbell, J., and Petersen, A., “A Student
Perspective on Prior Experience in CS1”, Proceeding of
44th ACM Technical Symposium on Computer Science
Education, pp. 239-244, USA, 2013.

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
357

Learners Programming Language a Helping System for Introductory Programming Courses

[21] McIver, L., Linda, M., and Conway, D., “GRAIL: A
Zeroth Programming Language”, Proceedings of 7th

International Conference on Computing in Education,
pp. 43-50, The Netherlands, 1999.

[22] Panitz, M., Sung, K., and Rosenberg, R., “Game
Programming in CS0: A Scaûolded Approach”, Journal
of Computing Sciences in Colleges, Volume 26, No. 1,
pp. 126-132, 2010.

[23] Rizvi, M., Humphries, T., Major, D., Lauzun, H., and
Jones, M., “A new CS0 Course for At-Risk Majors”, 24th

IEEE-CS Conference on Software Engineering Education
and Training, pp. 314-323, Hawaii, 2011.

[24] Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M.,
“Learning Computer Science Concepts with Scratch”,
Computer Science Education, Volume 23, No. 3,
pp. 239-264, 2013.

[25] Van Dyne, M., and Braun, J., “Effectiveness of a
Computational Thinking (CS0) Course on Student
Analytical Skills”, Proceedings of 45th ACM Technical
Symposium on Computer Science Education,
pp. 133-138, USA, 2014.

[26] Ernest, J.C., Bowser, A.S., Ghule, S., Sudireddy, S., Porter,
J.P., Talbert, D.A., and Kosa, M.J., “Weathering
MindStorms with Drizzle and DIODE in CS0”, ACM
SIGCSE Bulletin, Volume 37, No. 3, pp. 353-353, 2005.

[27] Dierbach, C., Taylor, B., Zhou, H., and Zimand, I.,
“Experiences with a CS0 Course Targeted for CS1
Success”, ACM SIGCSE Bulletin, Volume 37, No. 1,
pp. 317-320, 2005.

[28] Moskal, B., Lurie, D., and Cooper, S., “Evaluating the
Effectiveness of a New Instructional Approach”, ACM
SIGCSE Bulletin, Volume 36, No. 1, pp. 75-79, 2004.

[29] Cooper, S., Dann, W., and Pausch, R., “Alice: A 3D Tool
for Introductory Programming Concepts”, Journal of
Computing Sciences in Colleges”, Volume 15, No, 5,
pp. 107-116, 2000.

[30] Powers, K., Ecott, S., and Hirshfield, L.M., “Through
the Looking Glass: Teaching CS0 with Alice”, ACM
SIGCSE Bulletin, Volume 39, No. 1, pp. 213-217, 2007.

[31] Agarwal, K.K., and Agarwal, A., “Simply Python for
CS0”, Journal of Computing Sciences in Colleges,
Volume 21, No. 4, pp. 162-170, 2006.

[32] Agarwal, K.K., Agarwal, A., and Celebi, M.E., “Python
Puts a Squeeze on Java for CS0 and Beyond”, Journal of
Computing Sciences in Colleges, Volume 23, No. 6,
pp. 49-57, 2008.

[33] Agarwal, K.K., Agarwal, A., and Fife, L., “Python and
Visual Logic: A Good Combination for CS0”, Journal of
Computing Sciences in Colleges, Volume 27, No. 4,
pp. 22-27, 2012.

[34] Sebesta, R.W., “Concepts of Programming Languages”,
Addison- Wesley, 10th Edition, USA, 2012.

[35] Louden, K.C., and Lambert, K.A., “Programming
Languages: Principles and Practice”, Cengage Learning,
3rd Edition, USA, 2011.

[36] http://www.hec.gov.pk/Ourinstitutes/pages/Default.aspx
(last accessed: 2nd April 2015).

[37] Petrov, P.T., “New Evaluation of the Language C for
Educational, Engineering and Scientific Purposes”,
International Scientific Conference, pp. 353-361,
Bulgaria, 2010.

[38] McIver, L., “The Effect of Programming Language on
Error Rates of Novice Programmers”, Annual Workshop
of the Psychology of Programming Interest Group,
pp. 181-192, Italy, 2000.

[39] Davies, S., Polack-Wahl, J.A., and Anewalt, K., “A
Snapshot of Current Practices in Teaching the
Introductory Programming Sequence”, 42nd ACM
Technical Symposium on Computer Science Education,
pp. 625-630, USA, 2011.

[40] Wilhelm, R., and Maurer, D., “Compiler Design”, Addison
Wesley, England, 1995.

[41] Martin, J.C., “Introduction to Languages and The Theory
of Computation”, The McGraw-Hill Companies, 4th

Edition, USA, 2010.

[42] Louden, K.C., “Compiler Construction: Principles and
Practice”, PWS Publishing Company, USA, 1997.

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 3, July, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
358

Learners Programming Language a Helping System for Introductory Programming Courses

[43] Linz, P., “An Introduction to Formal Languages and
Automata”, Jones & Bartlett Publishers, 3rd Edition, USA,
2000.

[44] Aho, V.A, Lam, M.S., Sethi, R., and Ullman, J.D.,
“Compilers: Principles, Techniques, and Tools”, Addison
Wesley, Boston, 2nd Edition, USA, 2006.

[45] Cooper, S., Dann, W., and Pausch, R., “Alice: A 3D Tool
for Introductory Programming Concepts”, Journal of
Computing Sciences in Colleges, Volume 15, No. 5,
pp. 107-116, 2000.

[46] Jeanette, S.R., “From Alice to Blue: A Transition to
Java”, Master Thesis, Robert Gordon University, 2009.

[47] Trower, J., and Gray, J., “Creating New Languages in
Blockly: Two Case Studies in Media Computation and
Robotics”, Proceedings of 46th ACM Technical
Symposium on Computer Science Education, pp. 677-
77, USA, 2015.

[48] Yuanhong X., “Using Blockly to Create Simple Sensor
& Actuator Based Applications on the Sensible Things
Platform”, Degree Project, Mid Sweden University, 2014.

[49] Stencyl, L., “Stencyl: Design Once, Play Anywhere”,
Available: http://www.stencyl.com/

[50] Valdez, E.R.N., Martínez, Ó.S., Bustelo, B.C.P.G., Lovelle,
J.M.C., and Hernandez, G.I., “Gade4all: Developing Multi-
platform Videogames based on Domain Specific
Languages and Model Driven Engineering”, International
Journal of Artificial Intelligence and Interactive
Multimedia, Volume 2, No. 2, pp. 33-42. 2013.

[51] Rizvi, M., Humphries, T., Major, D., Jones, M., and

Lauzun, H., “A CS0 Course Using Scratch”, Journal of

Computing Sciences in Colleges, Volume 26, No. 3,

pp. 19-27, 2011.

[52] Harvey, B., and Mönig, J., “Bringing ‘No Ceiling’ to

Scratch: Can One Language Serve Kids and Computer

Scientists?”, Constructionism, pp. 1-10, 2010.

[53] Gilmore, D.J., and Smith, H.T., “An Investigation of

the Utility of Flowcharts During Computer Program

Debugging”, International Journal of Man-Machine

Studies, Volume 20, No. 4, pp. 357-372, 1984.

[54] Green, T.R., Petre, M., and Bellamy, R.K.E.,

“Comprehensibility of Visual and Textual Programs: A

Test of Superlativism Against the ‘Match-Mismatch’

Conjecture”, Empirical Studies of Programming, 4th

Workshop, Ablex Publishing Corporation, pp. 121-146,

Canada, 1991.

[55] Curtis, B., Sheppard, S.B., Kruesi-Bailey, E., Bailey, J.,

and Boehm-Davis, D.A., “Experimental Evaluation of

Software Documentation Formats”, Journal of Systems

and Software, Volume 9, No. 2, pp. 167-207, 1989.

[56] Moher, T.G., Mak, D.C., Blumenthal, B., and Levanthal,

L.M., “Comparing the Comprehensibility of Textual

and Graphical Programs”, 5th Workshop on Empirical

Studies of Programmers, pp.137-161, USA, 1993.

