
Just-in-Time Compilation-Inspired Methodology for
Parallelization of Compute Intensive Java Code

GHULAM MUSTAFA*, WAQAR MAHMOOD**, AND MUHAMMAD USMAN GHANI*

RECEIVED ON 02.09.2015 ACCEPTED ON 14.12.2015

ABSTRACT

Compute intensive programs generally consume significant fraction of execution time in a small amount

of repetitive code. Such repetitive code is commonly known as hotspot code. We observed that compute

intensive hotspots often possess exploitable loop level parallelism. A JIT (Just-in-Time) compiler profiles

a running program to identify its hotspots. Hotspots are then translated into native code, for efficient

execution. Using similar approach, we propose a methodology to identify hotspots and exploit their

parallelization potential on multicore systems. Proposed methodology selects and parallelizes each

DOALL loop that is either contained in a hotspot method or calls a hotspot method. The methodology

could be integrated in front-end of a JIT compiler to parallelize sequential code, just before native

translation. However, compilation to native code is out of scope of this work. As a case study, we analyze

eighteen JGF (Java Grande Forum) benchmarks to determine parallelization potential of hotspots. Eight

benchmarks demonstrate a speedup of up to 7.6x on an 8-core system.

Key Words: Just-in-Time Compilation, Loop Level Parallelization, Multicore System, Runtime

Analysis, Java Virtual Machine.

* Department of Computer Science & Engineering, University of Engineering & Technology, Lahore.
** Al-Khwarizmi Institute of Computer Science, University of Engineering & Technology, Lahore.

re-compiling [7]. A drawback of static auto-parallelizing

compilers is that dynamic execution state of application

is not available during compilation. On the other hand,

dynamic compilers and run time systems could exploit

characteristics of running code in parallelization process.

Runtime systems parallelize applications either

speculatively [8-11] or non-speculatively [12-15]. In

speculative parallelization, potential parallel tasks are

assumed to have no dependences and run using either

TLS (Thread Level Speculation) [16] or transactional

memory [17]. Results are not committed if the system

detects dependence violation(s). Runtime system ensures

1. INTRODUCTION

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
67

Multiple cores are typically exploited by

parallelizing computer applications in a

variety of ways. In case of writing a new

application, a convenient approach is to design a parallel

algorithm explicitly [1-3]. However, algorithmic re-

structuring for existing sequential applications is an on

trivial manual effort. Automated parallelization techniques

often rely on parallelizing compilers and runtime

information. For example, auto-parallelizing compiler

Parafrase-2 [4] detects and exploits implicit parallelism

using a symbolic analysis framework [5]. Auto-

parallelizing compilers typically use heuristics [6] and

profiler feedback to analyze and parallelize code by



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
68

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

the resolution of dependences by squashing and re-

running some of parallel tasks. This is a best effort

approach that exploit parallelism if possible, otherwise

code is run sequentially. In non-speculative parallelization

paradigms, dependences are analyzed first and code is

usually transformed to expose hidden parallelism. Parallel

tasks are synchronized properly to preserve sequential

semantic, and avoid dead/live locks and data races.

However, both cases have their own challenges.

JIT systems are typically used to facilitate dynamic

compilation of binary code during execution [19-21]. In

case of Java, inefficiency of interpreted Java code

stimulated the renaissance of JIT technologies [19]. Java

(source code) compiler converts source code into

bytecode which is stored in class file format. Classes are

loaded in JVM (Java Virtual Machine) on-demand and

bytecode instructions are interpreted by JVM. For JIT

compilation, JVM profiles running applications to select

most frequently called and/or most time consuming code

regions as hotspots. JIT compiler dynamically compiles

hotspots to potentially optimized native code. Since JIT

compilers can exploit runtime characteristics of

applications, it is plausible to use JIT compilation

infrastructure for parallelization.

Typically, majority of computer applications spend large

amount of their runtime in the hotspots [22-23]. We

observed that compute intensive hotspots have huge

parallelization potential [22]. This work focus on a single

goal: achieve whatever parallelism can be realized from

sequential code without any effort on the part of exploring

hidden parallelism. Being a best effort approach, it may

improve scalability where it can exploit parallelism

potential but in other cases it may not modify even a

single loop. Using profiler feedback, compute intensive

DOALL loops are selected from Java bytecode just as

JIT compiler selects frequently executing code for native

translation. We have two reasons for considering loop

level parallelization in this context. First, we observed

that by setting a threshold on application’s execution

time, we are left with only a few most time consuming

methods [22]. For example, setting 90% threshold in JGF

Crypt benchmark revealed that a single method consumed

90% time of the application [24]. Such cases are not

suitable for method level parallelization even on dual core

system. Similarly, JIT compilation infrastructure selects

only few methods as hotspots. Method level

parallelization determines potential parallelism by doing

inter-procedural analysis of complete application. During

inter-procedural analysis, if some non-hotspot method is

found as a caller of hotspot(s), modifications will also be

needed in the non-hotspot method. Eventually, we will

be dealing with entire application and taking almost no

advantage of JIT compilation infrastructure. In contrast,

modifications applied at loop level remains local to the

hotspot only. JIT compiler could produce parallel native

code transparently.

The paper is organized in following sections: Section 2

presents related work. Problem statement is formulated in

Section 3 along with qualitative and quantitative features.

Overall methodology is proposed in Section 4.

Parallelization steps and implementation details are given

in Section 5. Case studies and results are discussed in

Section 6. Paper is concluded in Section 7.

2. RELATED WORK

Bytecode level parallelization has been tried since the

inception of Java language [18]. However, due to lack of

instrumentation and on-the-fly class modification APIs,

the effort relied on static modifications of single class at

a time without considering profiler feedback. Now-a-

days, JIT parallelization is being revisited, thanks to the

proliferation of multicore/manycore systems and

advancements in virtualization technologies [25-28,30].

Österlund and Löwe exploit JVM’s garbage collector to

support JIT parallelization [26-28]. A merger of DBP

(Dynamic Binary Parallelization) and TLS is presented

to emphasize the limitations of DBP and difficulties

involved in JIT parallelization [29]. Leung et. al. proposed



Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
69

auto-parallelizing extensions for Java JIT compiler so

that the compiler could find potentially parallelizable

code and compile it for parallel execution on multicore

CPU and GPGPU (General Purpose Graphic Processing

Unit) [30]. However, code generation depends on

RapidMind and GPU hardware [31]. Majority of other

efforts on runtime parallelization focus on speculative

execution and/or exploit method level parallelism [32-

38].

3. PROBLEM FORMULATION

Let an application calls N
m
 methods during execution

and each method m
j
 consists of k loops, where j > 1 and

k > 0. Starting from main() method, j-1 other methods are

typically called in hierarchical manner and inter-

procedural relationships are represented as a call graph.

Call graph is a directed graph G = <V, E>, where V is a

finite set of vertices and E is a finite set of edges. Each

vertex v∈V represents a method invocation and each edge

e∈E between a vertex pair (u,v) represents one or more

invocations of v by u (i.e. u→v). Static call graph is

constructed by source code browsing whereas dynamic

call graph is obtained by profiling the running application.

Sorted flat profile F is a list representation of dynamic call

graph, where |F| = N
m
. Typically, F also contains runtime

information like calls count, time consumption and

percentage time consumption of each method. Percentage

time consumption of a method is actually PC (Percentage

Contribution) of method toward total execution time of

application, where PC is defined as:

100
Appliction by the Consumed Time Total

Method by the Consumed TimeNet 
PC 

3.1 Percentage Contribution Threshold

T
PC

 (Percentage contribution threshold) is the part of

application run time (< 100%) that we want to be

parallelized [22]. For example, setting T
PC

 = 80% for an

application means that we are interested in parallelizing

only  most time consuming methods (i.e. hotspots) that

collectively consume 80% time of the application. Fig. 1

shows the effect of setting T
PC

 = 90% for eighteen JGF

application benchmarks [24], where N
h
 is the number of

hotspots. It is obvious from Fig. 1 that majority of

methods are shunt out because they collectively consume

<10% time of the application. Analyzing and modifying

these methods is likely to increase runtime overhead and

may result in performance degradation compared to

sequential code.

FIG. 1. SELECTION OF HOTSPOTS USING T
PC

 = 90%



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
70

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

T
PC

 facilitates the selection of hotspot methods. Next, we

need to determine various characteristics of hotspot

methods. We enumerate these characteristics in catalogs

of qualitative and quantitative features of methods, as

shown in Tables 1-2, respectively.

3.2 Qualitative Features of Methods

Qualitative features are binary variables to represent

different characteristics of the method. Each qualitative

feature indicates the presence (or absence) of a specific

characteristic of a method, as described in Table 1. For

example, LOOPY=0 means that the method does not

contain loops. The idea of qualitative features is inspired

by Nano-patterns that were proposed to characterize and

classify Java methods [39]. Catalog of qualitative features

is constructed by extended catalog of Nano-patterns from

17 to 32, and giving them compact and descriptive names.

Previously, we used qualitative features to analyze thread

level speculative parallelization potential at runtime [22].

We showed that binary features are very important

decisive factors for runtime qualitative analysis of

parallelization potential of methods. Qualitative features

are generic in nature and could be used in any software

reverse engineering and reengineering activity. We used

some relevant features in this work.

3.3 Quantitative Features of Methods

Presence of a particular characteristic of method

potentially necessitates the quantification of that

characteristic. For example, if a method contains loops

(i.e. LOOPY=1), we need to determine the number of single

and nested loops. For this, we will observe the quantitative

features f
37

 and f
38

 in Table 2. In Table 2, 15 quantitative

features are cataloged to represent static and dynamic

characteristics of a method. Static and dynamic

characteristics are gathered by parsing classes at load

time and profiling the running application, respectively.

Qualitative and quantitative features abstract the general

purpose code characteristics to help in runtime code

comprehension. In this work, we used only those features

that are helpful in loop level parallelization. Each feature

is determined by using a specific algorithm. For the sake

of brevity, only two algorithms, related to determination

of f
37

 and f
38

, are presented in section 4.2.

DI erutaeF …dohteMehtnehteurTfI

f
0

SGRA_ON stnemugraonsekaT

f
1

-GRA_YLNO_EULAV
S

stnemugraeulav-yb-ssapylnosekaT

f
2

SGRA_YLNO_FER stnemugraecnerefer-yb-ssapylnosekaT

f
3

SGRA_DEXIM stnemugraynadeximsekaT

f
4

SGRA_YARRA stnemugrayarraeromroenosekaT

f
5

TER_ON diovsnruteR

f
6

TER_EULAV eulavevitimirpsnruteR

f
7

TER_FER eulavecnerefersnruteR

f
8

CITATS citatssi

f
9

RUCER evisrucersi

f
01

YPOOL poolenotsaeltasniatnoc

f
11

YPOOL_DETSEN spooldetsenenotsaeltasniatnoc

f
21

TPECXE noitpecxesworht

f
31

FAEL dohtemeellaconsaH

f
41

C_JBO stcejbowensetaerc

f
51

R_DLEIF )s(dleifssalcsdaer

f
61

W_DLEIF )s(dleifssalcsetirw

f
71

M_EPYT gnitsacepytsesu

f
81

RB_ON edocenilthgiartssah

f
91

R_LACOL )s(elbairavlacolsdaer

f
02

W_LACOL )s(elbairavlacolsetirw

f
12

C_YARRA )s(yarrawensetaerc

f
22

C_YARRADM )s(yarraD-itlumwensetaerc

f
32

R_YARRA )s(eulavyarrasdaer

f
42

W_YARRA )s(eulavyarrasetirw

f
52

R_SIHT tcejbo'siht'fo)s(eulavdleifsdaer

f
62

W_SIHT tcejbo'siht'fo)s(eulavdleifsetirw

f
72

R_REHTO )s(tcejborehtofo)s(eulavdleifsdaer

f
82

W_REHTO )s(tcejborehtofo)s(eulavdleifsetirw

f
92

R_DLEIFS )s(eulavdleifcitatssdaer

f
03

W_DLEIFS )s(eulavdleifcitatssetirw

f
13

EMANEMAS )s(dohtemdedaolrevosllac

TABLE 1. QUALITATIVE FEATURES OF METHODS



Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
71

4. PROPOSED METHODOLOGY

Proposed methodology transforms Java classes at load

time and works in three phases. Overall work flow is shown

in Fig. 2. In profiling phase, an application is test-run to

get profiling data. Profiler output is fed back to JVM during

actual run. Using a value of T
PC

 (i.e. 90% in this paper),

top N
h
 hotspot methods are selected form the flat profile

F which is sorted by PC in descending order. JVM class

loader is hooked so that classes could be parsed and

transformed at load time [22]. Each class is parsed and

modified just before it is loaded by the JVM. In parsing

phase, list of methods L
m
 of a class i is acquired to

determine if it contains a hotspot. If a method m
ij
 is

hotspot, it is parsed to generate (1) list of qualitative

features (2) list of quantitative features (3) list of backward

jumps L
SL

 (4) IR tuples, and (5) instruction patterns. A list

of nested loop L
NL

 is then generated using the loops of

L
SL

. In modification phase, a heuristic on call count (CC

i.e. feature f
46

) of m
ij
 is used to determine the potential

location of parallelizable loop(s). If CC<N
m
 and m

ij
 is

LOOPY then potentially parallelizable loop(s) lies within

m
ij
 otherwise lies within some caller of m

ij
. This heuristic

implies that if CC is significantly large, the time

consumption of m
ij
 is not due to the loops in it but

(potentially) it has been called within a loop of its parent

method. In later case, parent of m
ij
 becomes a hotspot

provided that it is LOOPY. In any case, we get a loop l
ijk

. If

l
ijk

 is DOALL, it is marked to be modified for parallel

execution using the operations mentioned in modification

phase of Fig. 2 and threading framework of section 4.4.

DI erutaeF noitpircseD

f
23

sDLEIF ydobdohtemnidesseccasdleifcitats-noN#

f
33

sDLEIFS ydobdohtemnidesseccasdleifcitatS#

f
43

sLLAC dohtemehtnisllacdohteM#

f
53

SPMUJ dohtemehtni)snoitcurtsnipmuj(spmuJ#

f
63

SEHCNARB dohtemehtni)sehcnarb(spmujdrawroF#

f
73

SPOOLELGNIS dohtemehtnispoolelgniS#

f
83

SPOOLDETSEN dohtemehtnispooldetseN#

f
93

TNUOCI dohtemehtnisnoitcurtsnI#

f
04

TNUOCIPOOL seidobpoolehtnisnoitcurtsnI#

f
14

XAMKCATS )eziskcats.e.i(stolskcatsmumixaM

f
24

XAMLACOL )stnemugragnidulcni(selbairavlacoL#

f
34

SGRA dohtemehtfostnemugrA#

f
44

EMIT dohtemehtybdemusnocemiT

f
54

CP dohtemehtfonoitubirtnoCegatnecreP

f
64

CC dohteehtfotnuoCllaC

TABLE 2. QUANTITATIVE FEATURES OF METHODS

FIG. 2. WORKFLOW OF PROPOSED PARALLELIZATION METHODOLOGY



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
72

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

4.1 Parallelization Criteria

There are two criteria for best effort parallelization of a

loop.

Criterion-1: Hotspot Selection: Set T
PC

 = 90% and select

most time consuming methods that collectively consume

90% time of application, as hotspots.

Criterion-2: Loop Selection: If a hotspot has significantly

high CC value (e.g. > N
m
), then go to its calling method(s).

In (any of) calling method, if the hotspot is called in a

loop and the loop is DOALL, transform it for parallel

execution.

(i) Otherwise, if the hotspot itself contains DOALL

loop(s), transform it (them) for parallel execution.

(ii) In case of invalidation of (I) and (II), run

unmodified sequential application.

4.2 Loop Profiling

Loop profiling is used to determine the features like

SIMPLELOOPS and NESTEDLOOPS.  In each hotspot,

loops are detected by recording the backward jumps. Each

backward jump is represented as quadruple <Offset,

Target, Index, Stride>, where Offset is the offset of

backward jump, Target is offset of the target label of

backward jump, Index is the variable acting as loop index

and Stride is the step size of loop iterations. All backward

jumps are recorded during parsing phase. Each backward

jump is a potential single loop. A backward jump is one

whose target has already been visited [39], either in terms

of labels or memory addresses. Labels are used in

bytecode because exact memory addresses are not known

in intermediate code. By constructing basic block level

CGF (Control Flow Graph), we can classify a backward

jump as a loop if its Target lies in one of the dominator

blocks of the block that contains its Offset. A block d

dominates a block b (i.e. d DOM b), if all paths from entry

block to bincluded. Also, DOM (b) denotes a set of all

nodes that dominate b (including b itself).

Nested loops are determined by observing the

organization of simple loops. If a loop lies exactly within

another loop then we come up with a loop nest. For two

simple loops l
i
 and l

j
 if Offset

i
>Offset

j
 AND Target

i
<Target

j

then l
j
 lies within l

i
. So, there exist a 2-level nested loop

instead of two single loops. In real world code, inner loops

in a loop nest may appear in a variety of ways, as shown

in Fig. 3. A loop nest could be represented as a loop tree

to accommodate all possible organizations of inner loops.

Root of tree represents the outer most loop and other

nodes represent inner loops of root. The data associated

with each node is the loop quadruple, a reference to its

parent node and a list of references to its children nodes.

Traversing nodes of a loop tree, we can represent nested

loops as a 5-tuple <Offset, Target, Nest-Level, {Index-

Vector}, {Stride-Vector}> where Offset is the offset of

outer most loop, Target is offset of target label of outer

most loop, Nest-Level is the height of loop tree, Index-

  

(a) TRANSFORM_INTERNAL() METHOD OF JGF FFT
BENCHMARK

(b) RUNITERS() METHOD OF JGF MOLDYN BENCHMARK.
A LOOP FOREST IS IN

(c) MATGEN() METHOD OF LUFACT BENCHMARK

FIG.. 3. LOOP TREES IN



Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
73

Vector is a list of indices of all loops in loop nest and

Stride-Vector is a list of step sizes of all loop in loop nest.

Generally, a loop forest containing single and/or multi-

node tree(s), is constructed against each hotspot.

4.2.1 Algorithm for Identification of Single
Loops

Single loop detection algorithm is shown in Table 3. Let S
i
 be

the instruction stream of a method. During interpretation in

a test run, each visited label l is added to a list of visited

labels L
v
. For each branch instruction b, if the branch’s target

label l
b
 has already been visited then b represents a backward

jump. Let Block
A
 and Block

B
 are two basic blocks (as nodes)

in CFG. If b∈block
A
and l

b
∈block

B
and block

B
∈ DOM

(block
A
), then b is a loop conditional. Prepare quadruple

<Offset, Target, Index, Stride> against b and add to a list of

single loops L
loop

.

4.2.2 Algorithm for Loop Forest Construction

Once we get a list of single loops L
loop

- using the algorithm

shown in Figure 4, we can determine nested loops by using

algorithm shown in Table 4. Considering each single loop

l
s
∈L

loop
 as a node, loop tree T

l
 is constructed against each

nested loop and added to a loop forest F
l
. Depending upon

the availability of loops, F
l
 could possibly be (1) empty (2)

containing single-node tree(s) only (3) containing multi-

node tree(s), or (4) containing a mixture of single-node and

multi-node trees. At start the loop forest F
l 
 is empty and a

tree T
l
 is constructed using the first loop of L

loop
 as root

node. Subsequent loops from L
loop

 are either added to an

existing tree or cause the generation of new tree(s). An

existing tree is re-adjusted if an outer loop comes after

some inner loop(s) so that outer most loop is always the

root node.

4.3 Loop Classification

Using feature f
37

 and f
38

, we can iterate on all loops to classify

them. As we are only interested in parallelization of compute

intensive DOALL loops (having arbitrary stride size), we

select DOALL loops by observing potential inter-iteration

data dependences. Data dependences are analyzed by

recognizing instruction patterns corresponding to read/write

of local variables, arrays elements, and class members of

primitive and user-defined data types. In a DOALL loop, all

memory access (instruction) patterns operate on

independent memory locations in each iteration. As number

of instruction patterns depends on instruction set size, we

define an intermediate representation to reduce the

(instruction) pattern processing cost.

Input: S
i

Output: L
loop

FOR EACH instruction i
IF i == l THEN

Add l to L
v

END IF

IF i == b AND l
b
∈L

v 
THEN

            Backward Jump found.
            IF b∈ block

A 
AND

l
b
∈ block

B 
AND

block
B 
∈ DOM (block

A
)

THEN
                  Prepare Quadruple <Offset, Target, index, stride>
                  Add <Offset, Target, index, stride> to L

loop

END IF
END IF
END FOR

Input: L
loop

  

Output: F
l

FOR EACH l
s
∈L

loop

IF F
l 
is empty THEN

            Create a new tree rooted at l
s
, in F

l

ELSE Identify an existing T
l
 in F

l

IF T
l
 found THEN

IF l
s
 is inner loop of root of T

l 
THEN

             Insert l
s  

to T
l
 at appropriate place

ELSE reorder T
l
 to make l

s
 its root

                  END IF-ELSE

ELSE create a new tree rooted at l
s
, in F

l

            END IF-ELSE

END IF-ELSE

END FOR

TABLE 3. ALGORITHM TO IDENTIFY SINGLE LOOPS

TABLE 4. ALGORITHM TO CONSTRUCT LOOP FOREST.
MULTI-NODE TREES IN THE FOREST REPRESENT

NESTED LOOPS



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
74

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

4.3.1 Intermediate Representation of
Bytecode Instructions

IR (Intermediate Representation) of bytecode instructions

is defined to reduce instruction pattern count and potential

pattern processing effort. If an instruction set contains n

instructions. We might have to look for (n)p combinations to

recognize an instruction pattern of length p. These

combinations could be reduced if we reduce n by

symbolically representing n instructions with m symbols,

where m<n.   For example, a subset of bytecode instructions

{IADD, LADD, FADD, DADD} is used to perform arithmetic

addition of two {integer, long-integer, floating–point, double-

precision-floating-point} numbers, respectively. A high level

IR symbol ADD could suffice to recognize any of these four

instructions. Similarly, we can recognize entire instruction

set using a smaller set of IR symbols. By defining IR symbols,

we could represent ~200 bytecode instructions (i.e. n ≈ 200)

with 42 symbols (i.e. m = 42), as shown in Table 5. Labels are

typically induced by compiler to facilitate control flow and

demarcation of basic blocks. We consider LBL as part of IR

symbols because labels are integral part of compiled code.

As elaborated in next sub-section, presentation of instruction

patterns in terms of IR symbols increases the occurrence

frequency of instruction patterns. Using IR symbols, we

have about five times (i.e.  ⎡n/m⎤) fewer choices at each

position in instruction pattern.

4.3.2 Recognition of Instructions Patterns

Compilers typically generate an instruction pattern against

each source code statement. Java source compiler generates

a stream of bytecode instructions which is interpreted by

JVM. We recognize bytecode instruction patterns to

distinguish memory accesses. The idea starts with the

preparation of a catalog of ISA-specific fundamental

instruction patterns. Each fundamental pattern consists of

at least two instructions in a specific order and performs a

smallest indivisible source level task e.g. “variable

initialization”. Some instructions like INC or LV (Table 5)

could independently perform an indivisible source level task

e.g. “j++;”. We enumerate such instructions as independent

instructions. A pattern is an arrangement of two or more

independent instructions. Figure 6 shows an inner loop from

SORrun(…) method of JGF SOR benchmark [24], to elaborate

instruction pattern recognition.

Source code and bytecode of the loop is shown in Fig. 4(a-

b), respectively. Fig. 4(b) also shows the IR tuple <Symbol,

Opcode, [Argument(s)]> against each instruction, where

Symbol is IR symbol (defined in Table 5), Opcode is the

opcode of encountered instruction and optional Argument(s)

represents zero or more arguments of the instruction. IR

tuple of a label does not contain any opcode and its Argument

contains string representation of actual label. For compact

representation, IR symbols of an instruction pattern are

concatenated, as shown in Table 4. For example, read

operation on Gim1[j] in Fig. 4(a) was translated into bytecode

instructions at line 10, 11, 12 of Fig. 4(b). Using IR symbols,

we can represent this instruction pattern as LR-LV-LVA. In

Fig. 4 (b), all occurrences of LR-LV-LVA pattern are encircled

with dashed lines. LR-LV-LVA is a fundamental pattern

because it is composed of instructions only and indivisible

into sub-patterns. All fundamental patterns and partial

pattern components are recognized and assigned unique

IDs P
xy

 and C
xy

, respectively, as shown in Table 6, where

each P
xy

 (or C
xy

) represents a pattern (or pattern component)

y having x level composition. Composition level of

fundamental patterns is zero. Using IDs of fundamental

patterns and pattern components, and independent

instructions, parse tree of bytecode, shown in Fig. 4(b), is

shown in Fig. 5. It is constructed in reverse direction taking

leaves at level 0. First level composite patterns do not contain

any other composite pattern. Second level composition

contains at least one first level composite pattern, third level

contains at least one 2nd level composite pattern, and so on.

Each leaf is either an ID of fundamental pattern or pattern

component, or an independent instruction, as shown in Fig.

5.Each non-leaf node represents a composite pattern and its

composition depends on the level blow it. A composite

pattern may consist of independent instructions,



Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
75

lobmyS noitpircseD snoitcurtsnIedocetyB

_ gnihtoNoD PON

CL tnatsnoCdaoL
,3_TSNOCI,2_TSNOCI,1_TSNOCI,0_TSNOCI,1M_TSNOCI,LLUN_TSNOCA

,1_TSNOCF,0_TSNOCF,1_TSNOCL,0_TSNOCL,5_TSNOCI,4_TSNOCI
W_2CDL,W_CDL,CDL,HSUPIS,HSUPIB,1_TSNOCD,0_TSNOCD,2_TSNOCF

VL eulaVdaoL DAOLD,DAOLF,DAOLL,DAOLI

RL ecnerefeRdaoL DAOLA

AVL yarrAmorfeulaVdaoL DAOLAS,DAOLAC,DAOLAB,DAOLAD,DAOLAF,DAOLAL,DAOLAI

ARL eulaVyarrAecnerefeRdaoL DAOLAA

VS eulaVerotS EROTSD,EROTSF,EROTSL,EROTSI

RS ecnerefeRerotS EROTSA

AVS eulaVyarrAevitimirperotS EROTSAS,EROTSAC,EROTSAB,EROTSAD,EROTSAF,EROTSAL,EROTSAI

ARS eulaVyarrAecnerefeRerotS EROTSAA

PP poP 2POP,POP

PD etacilpuD 2X_2PUD,1X_2PUD,2PUD,2X_PUD,1X_PUD,PUD

PS PAWS PAWS

OA noitarepOcitemhtirA
,LUMD,LUMF,LUML,LUMI,BUSD,BUSF,BUSL,BUSI,DDAD,DDAF,DDAL,DDAI

MERD,MERF,MERL,MERI,VIDD,VIDF,VIDL,VIDI

OL noitarepOlacigoL
,DNAL,DNAI,RHSUL,RHSUI,RHSL,RHSI,LHSL,LHSI,GEND,GENF,GENL,GENI

ROXL,ROXI,ROL,ROI

CNI tnemercnI CNII

P2P gnitsaCevitimirP-evitimirP S2I,C2I,B2I,F2D,L2D,I2D,D2F,L2F,I2F,D2L,F2L,I2L,D2I,F2I,L2I

PMC erapmoC GPMCD,LPMCD,GPMCF,LPMCF,PMCL

1FI tnemetatSFIeulaV-1 ELFI,TGFI,EGFI,TLFI,ENFI,QEFI

2FI tnemetatSFIseulaV-2
,ELPMCI_FI,TGPMCI_FI,EGPMCI_FI,TLPMCI_FI,ENPMCI_FI,QEPMCI_FI

ENPMCA_FI,QEPMCA_FI

RJG pmuJlanoitidnocnU TER,RSJ,OTOG

WS tnemetatShctiwS HCTIWSPUKOOL,HCTIWSELBAT

VR eulaVnruteR NRUTERD,NRUTERF,NRUTERL,NRUTERI

RR ecnerefeRnruteR NRUTERA

DV dioV NRUTER

FSL dleiFcitatSdaoL CITATSTEG

FSS dleiFcitatSerotS CITATSTUP

FL dleiFssalCdaoL DLEIFTEG

FS dleiFssalCerotS DLEIFTUP

VNI dohteMaekovnI
,ECAFRETNIEKOVNI,CITATSEKOVNI,LAICEPSEKOVNI,LAUTRIVEKOVNI

CIMANYDEKOVNI

WN tcejbOweNetaerC WEN

AVN yarrAeulaVweNetaerC YARRAWEN

ARN stcejbOfoyarrAweNetaerC YARRAWENA

@ htgneLyarrA HTGNELYARRA

PCX noitpecxEworhT WORHTA

HCC tsaCkcehC TSACKCEHC

FOI foecnatsnI FOECNATSNI

EM retnErotinoM RETNEROTINOM

XM tixErotinoM TIXEROTINOM

AMN yarrAD-nweNetaerC YARRAWENAITLUM

NFI )lluNserapmoC(tnemetatSfI LLUNNONFI,LLUNFI

LBL relipmoCybdecudnIlebaL

TABLE 5. INTERMEDIATE REPRESENTATION OF BYTECODE INSTRUCTIONS



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
76

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

fundamental patterns and its children composite patterns

(Table 6). The root of the tree represents top level composite

pattern that is entire bytecode region shown in Fig. 4(b).

FIG. 4(a). SOURCE CODE OF A LOOP TAKEN FROM
SORRUN(…) METHOD OF JGF SOR BENCHMARK

FIG. 4(b.) BYTECODE AND ITS IR TUPLES

4.3.3 Inter-Iteration Data Dependence

DOALL loops could be identified by making sure that loop

iterations either does not contain any instruction patterns

corresponding to memory access or they access independent

memory locations. We need to identify instruction patterns

that are used to read/write local variables, arrays elements

and class members (i.e. fields) of both primitive and user-

defined types. If a loop does not contain any instruction

DI nrettaPnoitcurtsnI noitisopmoC

P
00

VS-CL-LBL

snrettaPlatnemadnuF

P
10

RJG-LBL

P
20

AVL-VL-RL

P
30

AVL-OA-CL-VL-RL

P
40

AVL-OA-CL-VL-RL-LBL

P
50

CNI-LBL

P
60

2FI-VL-VL-LBL

C
00

VL-RL-LBL nrettaP
stnenopmoCC

10
AVS-LBL

P
01

OA-AVL-VL-RL-AVL-VL-RL OA-20P-20P

P
11

OA-AVL-VL-RL-VL OA-20P-VL

P
02

-L-OA-AVL-VL-RL-AVL-VL-RL
OA-AVL-OA-CL-VL-R

OA-30P-01P

P
03

-L-OA-AVL-VL-RL-AVL-VL-RL
-L-LBL-OA-AVL-OA-CL-VL-R

OA-AVL-OA-CL-VL-R
OA-40P-02P

P
04

-A-AVL-VL-RL-AVL-VL-RL-VL
--02L-OA-AVL-OA-CL-VL-RL-O

OA-OA-AVL-OA-CL-VL-RL
OA-03P-VL

P
05

-A-AVL-VL-RL-AVL-VL-RL-VL
-BL-OA-AVL-OA-CL-VL-RL-O
--OA-OA-AVL-OA-CL-VL-RL-L

OA-OA-AVL-VL-RL-VL

OA-11P-04P

P
06

--RL-AVL-VL-RL-VL-VL-RL-LBL
-VL-OA-CL-VL-RL-OA-AVL-VL
-VL-OA-CL-VL-RL-LBL-OA-A
--OA-AVL-VL-RL-VL-OA-OA-A

AVS-LBL-OA

10C-05P-00C

P
07

--RL-LBL-RJG-LBL-VS-CL-LBL
--AVL-VL-RL-AVL-VL-RL-VL-VL

-L-OA-AVL-OA-CL-VL-RL-OA
-A-OA-AVL-OA-CL-VL-RL-LB
-BL-OA-OA-AVL-VL-RL-VL-O
-I-VL-VL-LBL-CNI-LBL-AVS-L

2F

-P-50P-06P-10P-00P
60

TABLE 6. INSTRUCTION PATTERNS IN EXAMPLE LOOP.



Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
77

pattern corresponding to inter-iteration data dependences,

it is DOALL loop because of independent iterations. Let’s

analyze the loop given in Fig. 4 to determine if it is DOALL or

not. Source code and Bytecode of the loop (Fig. 4) reveals

that the only variables involved are local because compiled

code does not contain any bytecode instruction related to

class members (Fig. 4(b)). Table 7 shows the types and

compiler-assigned indices of variables used by bytecode

instructions. For example, loop index j is indexed at 17 and

could be determined from IINC instruction. In Table 6, we

can see that only one write operation, represented by P
60

, is

performed in each iteration. This pattern has sixth level

composition and its first component C
00

 contains information

about the variable involved. The IR tuples of C
00

 are <LBL,

L19>, <LR, 25, 14>, <LV, 21, 17> at line 6-8. It shows that the

variable is indexed at 14 which is “double[] Gi”. Hence, we

are concerned about the read/write patterns of array

elements. Write operation of Gi depends on three read

operations of Gi, one of which is performed in the same

iteration and is harmless. Other two reads in an iteration j are

performed in immediately previous iteration j-1 and next

iteration j+1, which causes inter-iteration data dependences.

The patterns of reading Gi[j-1] and Gi[j+1] are P
03

 at line 17-21

and P
04

 at line 23-28, respectively. Hence, the loop in Figure

6 is not DOALL so could not be parallelized without resolving

dependences.

4.4 Threading Framework

A threading mechanism is required by JIT compiler to

modify selected loops for parallelization execution. We

designed a Java threading framework to be generated

directly in bytecode according to the characteristics of

elbairaV emaN epyT xednI

lacoL

J tni 71

1mN tni 11

iG ][elbuod 41

ruof_revo_agemo elbuod 6

1miG ][elbuod 51

1piG ][elbuod 61

agemo_sunim_eno elbuoD 8

TABLE 7. VARIABLES USED IN EXAMPLE LOOP

FIG. 5. PARSE TREE OF EXAMPLE LOOP’S BYTECODE IN TERMS OF INSTRUCTION PATTERN IDS, PATTERN COMPONENT IDS
AND INDEPENDENT INSTRUCTIONS



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
78

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

workload. We adapted the idea of source code level JAVAR

framework [40]. Our framework consists of only two

classes, Worker
ijk

 and Manager
ijk

, that are dynamically

generated for each candidate loop l
ijk

. We used ASM [41]

for generation of framework classes (in bytecode) as

dynamic part of classes would not be available at compile

time [41]. Worker
ijk

 encapsulates the entire implementation

of parallel task whereas Manager
ijk

 is responsible for

creation and orchestration of workers. Manager
ijk

contains only one static method work(…) and each

candidate loop l
ijk

 is replaced with just a single call to

Manager
ijk

.work(…). Fig. 6 shows the interaction of

threading framework with Class
i 
 that contain loop l

ijk
in its

method m
ij
. For a loop l

ijk
, a single Manager

ijk
 manages life

cycle of n Worker
ijk

 threads. Each Worker
ijk

 calls run
ijk

()

method that is defined in Class
i
. The loop l

ijk
 is replaced

with a call to Manager
ijk

. work(...). Class
i  
makes  jxk calls

for k DOALL loops in j methods of this class. Fig. 6 shows

a cyclic dependency that could be removed by declaring

run
ijk

() before generating Worker
ijk

 and providing its

definition  after the generation of Manager
ijk

. Actual usage

of framework is elaborated in Section 5 using the code in

Fig. 8.

4.5 Motivational Example

To demonstrate the step-by-step working of proposed

methodology, we identify and parallelize the most suitable

loop of JGF Series benchmark [24]. This benchmark

manipulates various transcendental and trigonometric

functions to calculate Fourier coefficients of function f(x)

= (x+1)x. About 10,000 coefficients are computed with an

interval of 0.2. Methodology starts with profiling phase

in which we found that the application calls 28 methods

i.e. N
m
 = 28. By setting T

PC
 = 90%, we found 2 potential

hotspots. For a potential hotspot, top-ranking value of

PC is either due to its high CC (Call Count) or due to

having compute intensive loops indicated by f
10

, f
11 

, f
37

,

f
38 

features. The reason is that PC is based on the self-

time consumed by a method i.e. time consumption of its

callee methods is excluded. Looking at Table 8, we come

to know that CC value of both methods is significantly

high but only TrapezoidIntegrate()  method contains  one

single loop. Hence, high time consumption (i.e. 99.9%

collectively) of these methods is due to high call count

and not due to the loops in their own code. To determine

the immediate caller methods, we have to look at the

Managerijk Workerijk

+ Work (...)

1 

1 

n

n1

Manages Threads Life Cycle
+ id: Integer
+ ncores: Integer

Calls Work() Call run ()ijk

1... jxk

Classi

...

...

...

...

hotspot  (...)j

run  (...)ijk

...

FIG. 6. CLASS DIAGRAM SHOWING THE ASSOCIATION OF THREADING FRAMEWORK CLASSES WITH THE CLASS CONTAINING
HOTSPOT METHOD



Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
79

relevant portion of application call graph shown in Fig. 7.

It shows that Do()method calls TrapezoidIntegrate() and

TrapezoidIntegrate() calls thefunction(). In Table 9,

qualitative features show that Do() method is (1) non-

static (2) contains single loop(s) only (3) calls other

methods (not leaf in call graph) (4) does not create any

object and 1-D or n-D array (5) reads/writes array elements

and local variables (6) only reads non-static class fields,

and (7) does not read/write static class fields. Quantitative

features say that Do() methodis (1)  called only once (2)

contains one single loop (3) reads two non-static class

fields (4) has five call sites, and (5) reads/writes up to four

local variables. Although self-time consumption of Do()

method is 0.1%, it calls two most time consuming methods

in a single loop and itself is called once. Hence, the loop

in it is exploitable for parallelize execution.

5. IMPLEMENTATION DETAILS

Implementation details include the steps taken to

parallelize a candidate loop and a short note on proof of

concept. All modifications are done on bytecode, as

elaborated in section 4.

5.1 Parallelization Steps

Modifications steps are explained here in terms of Java

source code. Bytecode level implementations details are

given in section 5.2.

Loop Extraction: The loop is shown at line 7-10 of

Fig. 8(a) in source code of Do() method. Bytecode of this

loop is extracted from the method and represented as IR

tuples to recognize instruction patterns for data

dependence analysis.

Data Dependence Analysis: Bytecode of Do() method

contains instruction patterns of local variable read/write.

Besides loop index i, one local variable omega is defined

epyT emaN
diozeparT
etargetnI

ehT
noitcnuF

evitatilauQ

CITATS 0 0

YPOOL 1 0

YPOOL_DETSEN 0 0

FAEL 0 0

CP %07.06 %02.93

CC 99991 00099991

sLLAC 3 5

SPOOLELGNIS 1 0

SPOOLDETSEN 0 0

XAMLACOL 51 6

TABLE 8. FEATURES OF POTENTIAL HOTSPOTS IN JGF
SERIES

 
 

FIG. 7. RELEVANT PORTION OF CALL GRAPH OF SERIES
BENCHMARK. IT SHOWS THAT TRAPEZOIDINTEGRATE()
CALLS THEFUNCTION() AND ITSELF CALLED BY DO().

INTER-PROCEDURAL RELATIONSHIPS ARE PRESENTED
USING BAR-TAB “|===” E.G. JGFKERNEL() IS IMMEDIATE

PARENT OF DO() BUT SIBLING OF JGFVALIDATE()

serutaeFevitatilauQ serutaeFevitatitnauQ

erutaeF eulaV erutaeF eulaV

CITATS 0 CP %01.0

YPOOL 1 CC 1

YPOOL_DETSEN 0 sDLEIF 2

FAEL 0 sDLEIFS 0

C_JBO 0 sLLAC 5

R_DLEIF 1 SPOOLELGNIS 1

W_DLEIF 0 SPOOLDETSEN 0

R_LACOL 1 XAMLACOL 4

W_LACOL 1

C_YARRA 0

C_YARRADM 0

R_YARRA 1

W_YARRA 1

R_DLEIFS 0

W_DLEIFS 0

TABLE 9. RELEVANT FEATURES OF DO() METHOD OF
JGF SERIES



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
80

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

before the loop body and used in loop body. Local

variables omega and i are not written in the loop body so

there is no inter-iteration data dependence due to local

variables. Table 9 shows that no static field is read/written

and non-static fields are read but not written. However,

arrays are read/written but source code does not show

any array read. The bytecode reveals that in TestArray[][]

write, TestArray[] is first loaded on stack and then its

TestArray[][i] element is written. There is no data

dependence due to TestArray[][i] because it is

independently written in each iteration and without

involving a read. Hence, the loop is DOALL and we can

parallelize it.

Declaration of Run
ijk

() Method: A method run
ijk  

is

declared in the class of Do() method, as shown in Fig.

8(b), where a, b, c are <start, end, step> tuple for a worker

thread. We cannot define run
ijk

 yet because <start, end,

step> is calculated in dynamically generated

partitionLoop() method of Worker
ijk

 class. We just declare

run
ijk 

here so that a call in Worker
ijk 

could not pop error.

Generation of Worker
ijk

 and Manager
ijk

 Classes: Next

step is to generate and load Worker
ijk

 and Manager
ijk

classes. We observed that all classes have to be loaded

by the same class loader as that of the application. Against

the source code shown in Fig. 8(c-d), bytecode is

generated using ASM [41].

Definition of Run
ijk

() Method: Due to cyclic dependency

shown in Fig. 6, we define run
ijk

() after code generation

for Worker
ijk 

and Manager
ijk 

classes. Fig. 8(b) shows this

definition, where calculation of a, b, c depends on the

number of workers created in Manger
ijk

 i.e. kept equal to

number of CPU  cores as shown in Fig. 8(d).

Loop Replacement in Hotspot: Finally, the loop in Do()

method is replaced with a single call to Manager
ijk

.work()

method as shown on line 7 of Fig. 8(e). Original loop and

its replacement is encircled by dotted line to highlight in

Fig. 8 (a) and Fig. 8(e), respectively.

5.2 Proof of Concept

As a proof of concept, we implemented a research

prototype by extending SeekBin [22]. As a Java agent, it

hooks JVM’s class loader, captures classes loading into

JVM, and manipulates bytecode just before loading.

SeekBin reads sorted flat profile F to determine the classes

to be manipulated. Classes are parsed, transformed and

generated (i.e. Manager
ijk

, Worker
ijk

) using ASM bytecode

engineering library and loaded using java.lang.instrument

API. The tool can profile and parse any sequential

application to generate qualitative and quantitative

features, IR tuples, instruction patterns, loop profiling,

class generation and loading etc.

6. CASE STUDIES

Data is collected by profiling and parsing eighteen

benchmark applications [24] to analyze their parallelization

potential. Data is analyzed for code comprehension

regarding exploitable parallelism.

6.1 Code Comprehension

The purpose of code comprehension is twofold: first, we

want to explore the parallelization potential of the

application at hand. To avoid additional runtime overhead,

it is crucial to estimate the feasibility of applying proposed

methodology. We also need to decide the locality and

extent of transformations needed as we want to transform

bare minimum amount of most promising code. Table 10

represents an estimate of parallelization potential of 18

benchmarks in terms of method level features.

Parallelization potential of an application depends on the

number of methods called during execution (N
m
),

frequency of method calls, number of loops, number of

instructions in loop bodies, and dependencies among

loop iterations. However, not all methods and loops are

potentially feasible for parallelization and we need to filter

them out by setting suitable T
PC 

value i.e. T
PC

 = 90% in

this case. As a result, we converge to only few methods

as potential hotspots.



Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
81

1  void Do() {
2 double omega;
3 JGFInstrumentor.startTimer(“Section2:Series:Kernel”);
4 TestArray[0][0] = TrapezoidIntegrate((double)0.0, (double)2.0, 1000,(double)0.0,0)/(double)2.0;
5 omega = (double) 3.1415926535897932;
6

7 for (inti = 1; i<array_rows; i++) {
8 TestArray[0][i] = TrapezoidIntegrate((double)0.0,(double)2.0,1000,omega * (double)i,1);
9 TestArray[1][i] = TrapezoidIntegrate((double)0.0,(double)2.0,1000,omega * (double)i,2);
10 }

11
12 JGFInstrumentor.stopTimer(“Section2:Series:Kernel”);
13  }

(a) SOURCE CODE OF DO() METHOD OF SERIES BENCHMARK

void run
ijk

(int a, int b, int c, double omega){
for (inti = a; i< b; i = i+c) {

TestArray[0][i] = TrapezoidIntegrate((double)0.0,(double)2.0,1000,omega * (double)i,1);
TestArray[1][i] = TrapezoidIntegrate((double)0.0,(double)2.0,1000,omega * (double)i,2);

    }
}

(b) DEFINITION OF RUN
ijk

public class Worker
ijk

 implements Runnable{
int ID, ncores, a, b, c, fr, to, step;
SeriesTesttc;

double l1;
Worker

ijk
(SeriesTest cls, int aa,

int bb, int cc, intnc, int id, double v1){
tc = cls;   ID = id;        ncores = nc;

a = aa;      b = bb;     c = cc;
l1 = v1;
}

      private void partitionLoop(){
step = c;
intblk = (b + ncores-1)/ncores;
fr = ID*blk;
if(ID == 0) fr = ID*blk+1;
to = (ID+1)*blk;
if (to > b ) to = b;

}    public void run() {
partitionLoop();

tc.run
ijk

(fr,to,step, l1);
}

}

public class Worker
ijk

 implements Runnable{
int ID, ncores, a, b, c, fr, to, step;
SeriesTesttc;

double l1;
Worker

ijk
(SeriesTest cls, int aa,

int bb, int cc, intnc, int id, double v1){
tc = cls;   ID = id;        ncores = nc;

a = aa;      b = bb;     c = cc;
l1 = v1;
}

      private void partitionLoop(){
step = c;
intblk = (b + ncores-1)/ncores;
fr = ID*blk;
if(ID == 0) fr = ID*blk+1;
to = (ID+1)*blk;
if (to > b ) to = b;

}    public void run() {
partitionLoop();

tc.run
ijk

(fr,to,step, l1);
}

}

(c) DEFINITION OF WORKER
ijk

 CLASS (d) DEFINITION OF MANAGER
ijk

 CLASS

1  void Do() {
2 double omega;
3 JGFInstrumentor.startTimer(“Section2:Series:Kernel”);
4 TestArray[0][0]=TrapezoidIntegrate((double)0.0, (double)2.0, 1000,(double)0.0,0)/(double)2.0;
5 omega = (double) 3.1415926535897932;
6
7 Manager

ijk
.work(this, 1, array_rows, 1, omega);

8
9 JGFInstrumentor.stopTimer(“Section2:Series:Kernel”);
10 }

(e) LOOP REPLACEMENT IN DO() METHOD

FIG. 8. STEPS OF JUST-IN-TIME PARALLELIZATION



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
82

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

6.2 Parallelization of JGF Benchmarks

Thirteen benchmark applications are explicitly transformed

and eight benchmarks showed a reasonable speedup, as

shown in Fig. 9. Instead of exposing hidden parallelism in

other benchmarks, proposed best effort approach prefers

to restore sequential versions of applications that do not

show speedup. To demonstrate the scalability of

transformed applications, we passed “number of workers”

as command line argument, instead of getting it from target

system as mentioned in Fig. 8(d). Transformed

applications are run on an 8-core system comprising 2 x

Quad Core Intel® Xeon® E5405, 1333 MHz FSB, CPU

Speed  2.0 GHz, L1 D Cache  32 KB, L1 I Cache  32 KB, L2

Cache  2x(2x6 ) = 24 MB and 8 GB DRAM. In order to

assess the scalability, data is organized in two sets; long

running and short running applications, as shown in Fig.

9(a-b).

6.2.1 Long Running JGF Benchmarks

Four long running benchmarks that demonstrated

speedup are Series, Arith, Math and Method, as shown

in Fig. 9(a). Parallelization of JGF Series benchmark has

been described in section 4.5. Series benchmark

demonstrated a speedup of 6.9x, which is comparable to

HP (Hand Parallelized) version of Series, shown in Fig.

10(d). Outer loops contain instructions related to getting

system time. They cannot be multithreaded without

generating additional code for thread-local time

management (which is out of scope of this work). Speedup

observed in Arith, Math and Method benchmarks is 2.7x,

1.6x and 1.4x, respectively. Although speedup of Math

and Method is not quite significant on an 8-core system,

the point is that changes are not permanent. In case of

unsatisfactory speedup, we can restore to sequential

execution anytime because transformations are applied

at runtime and code on disk is intact.

6.2.2 Short Running JGF Benchmarks

Short running benchmarks that showed speedup are

Crypt, LUFact, SparseMatMult and Cast, as shown in

Fig. 9(b). In Crypt, out of 30 methods, only one method

cipher_idea() consumes 90% time when called twice in

the application, as shown in Table 10. In cipher_idea(),

there is no single loop and one 2-level nested loop. Nested

loop is DOALL and its outer loop is parallelized.

Crypt demonstrated a speedup of 5.8x and perfectly scale

with the increasing number of threads, as shown in

Fig. 9(b). HP version of JGF Crypt, when run on the same

system, demonstrated 7x speedup and resembling

scalability, as shown in Fig. 10(c). The result is quite

encouraging because proposed methodology is

(a) LONG RUNNING

(b) SHORT RUNNING BENCHMARKS

FIG. 9. RESULTS OF APPLYING BEST EFFORT JIT
PARALLELIZATION. SCALABILITY OF JGF



Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
83

transforming code on-the-fly. In LUFact, only 4 out of 32

methods consume 90.8% time. LUFact contains 15 single

and 4 nested loops. However, selected 4 methods contain

4 single and 1 nested loops (collectively), as shown in

Table 10. Most time consuming method dgefa() is called

once and contains one 2-level nested loop. Method

daxpy() and idamax() are called in inner and outer loops

of dgefa()’s nested loop, respectively. Outer loop is

parallelized to achieve a speedup of 1.2x on 8-core system.

On the same system, the speedup is not encouraging as

compared to 4x speedup of HP JGF LUFact, as shown in

Fig. 10(a). Looking at the code of HP version, we observed

that this version achieved speedup by using barrier

construct at four locations to synchronize the threads.

This type of flexibility is not supported yet in our

approach.

SparseMatMult calls 27 unique methods but only two

methods consumed 90.1% time in a single call each, as

shown in Table 10. Most time consuming method test()

contains one single and one 2-level nested loop and

second method JGFinitialise() contains one single loop.

There is no harmful data dependences in all 3 loops,

however, single loops contain trivial amount of

computation. On parallelizing all 3 loops, we observed

performance degradation as compared to sequential

version. By parallelizing only nested loop of test(), we

observed the scalability shown in Fig. 9(b), with a speedup

of 1.4x. Running HP version on the same system, we

observed a speedup of 4.1x. Scalability comparison of

both versions is given in Fig. 10(b). HP version achieves

this speed up by restructuring the implemented algorithm.

For proper load balancing, signature of hotspot test() is

(a) LUFACT BENCHMARK (b) SPARSEMATMULT BENCHMARK

 (c) CRYPT BENCHMARK (d) SERIES BENCHMARK. HP MIGHT OCCASIONALLY
INVOLVE ALGORITHM RESTRUCTURING

FIG. 10. COMPARISON OF BEST EFFORT (BE) RESULTS WITH THAT OF HAND PARALLELIZED VERSIONS OF JGF



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
84

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

changed to control the nested loop partitioning from

outside the hotspot. Due to the reasons mentioned in

section 1, proposed methodology works locally (i.e. within

a hotspot only) without altering the interface (i.e.

signature) of hotspot methods

Cast benchmark called 19 methods and by setting T
PC

 =

90%, we converged to 6 methods that collectively consume

91.7% time of application (Table 10). Starting from most

time consuming method JGFrun(), we found 4 nested

loops here and this method is called once. Only a single

loop is found in one of other 5 methods i.e., in printperf().

In nested loops, compute intensive code was found in

inner loops that were parallelized. Outer loops contain

timing routines and cannot be parallelized due to the

reason mentioned in section 6.2.1. JGF Cast demonstrated

highest speedup of 7.6x.  Overall, the observed speedup

is in the range 1.2 - 7.6x.

7. CONCLUSIONS

This work emphasizes that best effort JIT compiler inspired

parallelization has great potential of parallelizing

executable code at runtime. Loops in compute-intensive

applications exhibit greater parallelization potential, which

makes it a worthwhile option. Although it may not be able

to parallelize each and every application, it is plausible to

exploit parallelism without programmer intervention. Best

effort exploits parallelism wherever possible and there is

no harm because transformations are not made permanent.

In case of failure, sequential execution could be restored.

However, in case of success, transformations could be

made permanent at any time. The main contributions of

this paper include: (1) catalogs of qualitative and

kramhcneB
%001=CPT %09=CPT

mN f
64

f
73

f
83

f
93

f
04

hN f
64

f
73

f
83

f
93

f
04

htirA 91 5081 1 21 3482 9291 1 1 0 21 9422 3191

ngissA 12 7951 1 01 2082 6191 1 1 0 01 4112 0091

tsaC 91 146 1 4 8541 677 6 641 1 4 3301 677

etaerC 92 80+E1 1 51 9113 5512 2 70+E2 0 51 5542 9312

pooL 91 284 1 3 918 681 7 161 1 3 724 681

htaM 91 5783 1 03 8035 4093 1 1 0 03 4174 8883

dohteM 33 70+E9 1 8 9471 729 7 70+E6 0 8 6011 119

laireS 52 60+E2 9 4 8371 807 1 1 8 4 2411 296

tpyrC 03 84 8 1 6691 897 1 2 0 1 093 473

TFF 03 73 5 2 3661 365 2 3 1 1 274 993

troSpaeH 82 60+E2 4 1 9701 032 2 60+E1 2 1 651 131

tcaFUL 23 50+E3 51 4 9612 028 4 50+E3 4 1 284 482

seireS 82 70+E2 2 1 4411 851 2 70+E2 1 0 511 22

ROS 62 62 0 3 8501 741 2 2 0 3 812 741

tluMtaMesrapS 72 72 3 1 0801 421 2 2 2 1 781 701

nyDloM 53 50+E4 21 3 6913 9431 4 50+E3 1 1 878 195

recarTyaR 86 80+E4 4 2 2903 525 4 80+E4 1 0 062 16

hcraeSBA 93 70+E7 81 2 1423 287 5 70+E5 4 2 618 453

TABLE 10. PARALLELIZATION POTENTIAL OF JGF BENCHMARK APPLICATIONS



Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
85

qualitative features for runtime code comprehension; (2)

compact intermediate representation of ISA and

instruction pattern recognition for dependence analysis;

(3) threading framework; and (4) a set of algorithms to

profile and parallelize DOALL loops.

With increasing number of cores per chip, it is now

possible to use at least part of this compute power to

analyze the runtime characteristics of an application with

minimal impact on expected performance. Such information

can be exploited to improve the application performance.

Such approaches are particularly beneficial for complex

long-running applications, which may not be simple to

analyze manually. Loops are one of the simplest constructs

that can be extracted from any type of code. Our work is

an effort to demonstrate the feasibility of this approach.

In past efforts, success criteria of an automated or semi-

automated parallelization approach has been based on

achievable speedup. When compared with manually

parallelized applications, these approaches do not fare

well because one parallelization technique may work for a

few parts of the code but degrades others. Restricting to

hotspots and ability to reverse parallelization transforms

at runtime enhances the possibilities of parallelizing long

running compute-intensive applications. By relaxing the

speedup requirements, it is possible to try multiple

techniques for different parts of application code at runtime

to achieve optimal performance with no user input.

8. FUTURE WORK

This work proposes a best effort parallelization

methodology that could be used within the front end of

JIT (i.e. dynamic) compiler. Integration of this

methodology in an actual dynamic compiler is the obvious

next step. We have designed a development project to

integrate this methodology in an open source JIT compiler.

ACKNOWLEDGEMENT

This research was conducted during Ph.D. study of first

author, at University of Engineering & Technology,

Lahore, Pakistan.

REFERENCES

[1] Zhang, T.Y., and Suen, C.Y., “A Fast Parallel Algorithm
for Thinning Digital Patterns”, Communications of the
ACM, Volume 27, No. 3, pp. 236-239, 1984.

[2] Alfredo Buttaria, J.L., Kurzaka, J., and Dongarra, J., “A
Class of Parallel Tiled Linear Algebra Algorithms for
Multicore Architectures”, Parallel Computing Volume
35, No. 1, pp. 38-53, 2009.

[3] Wang, Y., Fan, J., Liu, W., and Han, Y., “A Parallel
Algorithm to Construct BISTs on Parity Cubes”, IEE
Proceedings of 2nd International Conference on
Information Science and Control Engineering,
pp. 54-58, 2015.

[4] Polychronopoulos, C.D., Girkar, M., Haghighat, M.R.,
Lee, C.L., Leung, B., and Schouten, D., “Parafrase-2:
An Environment for Parallelizing, Partitioning,
Synchronizing, and Scheduling Programs on
Multiprocessors”, International Journal of High Speed
Computing, Volume 1, No. 1, pp. 45-72, 1989.

[5] Haghighat, M., and Polychronopoulos, C., “Symbolic
Program Analysis and Optimization for Parallelizing
Compilers”, Springer Berlin Heidelberg, pp. 538-562,
1993.

[6] Whaley, J., and Kozyrakis, C., “Heuristics for Profile-
Driven Method-Level Speculative Parallelization”,
Proceedings of International Conference on Parallel
Processing, pp. 147-156, 2005.

[7] Tournavitis, G., Wang, Z., Franke, B., and O’Boyle,
M.F.P., “Towards a Holistic Approach to Auto-
Parallelization: Integrating Profile-Driven Parallelism
Detection and Machine-Learning Based Mapping”, ACM
SIGPLAN Notices, Volume 44, No. 6, pp. 177-187,
2009.

[8] Jang, H., Kim, C., and Lee, J.W., “Practical Speculative
Parallelization of Variable-Length Decompression
Algorithms”, ACM SIGPLAN Notices, Volume 48,
pp. 55-64, 2013.

[9] Jimborean, A., Clauss, P., Martinez, J.M., and Sukumaran-
Rajam, A., “Online Dynamic Dependence Analysis for
Speculative Polyhedral Parallelization”, Euro-Par,
Parallel Processing, pp. 191-202, 2013.

[10] Liu, B., Zhao, Y., Li, Y., Sun, Y., and Feng, B., “A Thread
Partitioning Approach for Speculative Multithreading”,
The Journal of Supercomputing, Volume 67, No. 3,
pp. 778-805, 2014.

[11] Yiapanis, P., Rosas-Ham, D., Brown, G., and Lujan, M.,
“Optimizing Software Runtime Systems for Speculative
Parallelization”, ACM Transactions on Architecture and
Code Optimization, Volume 9 No. 4, 2013.

[12] Alle, M., Morvan, A., and Derrien, S., “Runtime
Dependency Analysis for Loop Pipelining in High-Level
Synthesis”, Proceedings of 50th Conference on Annual
Design Automation, pp. 51:1-51:10, ACM, 2013.



Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
86

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

[13] Aumage, O., Barthou, D., Haine, C., and Meunier, T.,
“Detecting Simdization Opportunities through Static/
Dynamic Dependence Analysis”, Euro-Par: Parallel
Processing Workshops, Lecture Notes in Computer
Science, Volume 8374, pp. 637-646, 2014.

[14] Tzenakis, G., Papatriantafyllou, A., Vandierendonck, H.,
Pratikakis, P., and Nikolopoulos, D., “BDDT: Block-
Level Dynamic Dependence Analysis for Task-Based
Parallelism”, Advanced Parallel Processing Technologies,
Lecture  Notes in Computer Science, Volume 8299,
pp. 17-31, 2013.

[15] Verdoolaege, S., Carlos Juega, J., and Cohen, A.,
“Polyhedral Parallel Code Generation for CUDA”, ACM
Transactions on Architure Code Optimum, Volume 9
No. 4, pp. 54:1-54:23, 2013.

[16] Steffan, J.G., Colohan, C.B., Zhai, A., and Mowry, T.C.,
“A Scalable Approach to Thread-Level Speculation”,
ACM, Volume 28, No. 2, pp. 1-12, 2000.

[17] Harris, T., Cristal, A., Unsal, O.S., Ayguade, E., Gagliardi,
F., Smith, B., and Valero, M., “Transactional Memory:
An Overview”, IEEE Micro, Volume 27, No. 3,
pp. 8-29, 2007.

[18] Bik, A.J., and Gannon, D., “A Prototype Bytecode
Parallelization Tool”, Concurrency - Practice and
Experience, Volume 10, Nos.11-13, pp. 879-885, 1998.

[19] Aycock, J., “A Brief History of Just-in-Time”, ACM
Computing Surveys, Volume 35, No. 2, pp. 97-113,
2003.

[20] Pemberton, S., and Daniels, M., “Pascal Implementation:
The P4 Compiler and Interpreter”, Ellis Horwood, 1982.

[21] Ierusalimschy, R., DeFigueiredo, L.H., and Celes, W.,
“The Implementation of Lua 5.0”, Journal of Universal
Computer Science, Volume 11, No. 7, pp. 1159-1176,
2005.

[22] Mustafa, G., Waheed, A., and Mahmood, W., “SeekBin:
An Automated Tool for Analyzing Thread Level
Speculative Parallelization Potential”, Proceedings of
7th IEEE International Conference on Emerging
Technologies, pp. 1-6, 2011.

[23] Knuth, D.E., “An Empirical Study of FORTRAN
Programs”, Software: Practice and Experience,
Volume 1, No. 2, pp. 105-133, 1971.

[24] Mathew, J. A., Coddington, P. D., and Ha-wick, K. A.,
“Analysis and development of Java Grande benchmarks,”
Proc. 1999 conference on Java Grande, USA, ACM,
pp. 72-80, 1999.

[25] Hinsen, K., “A Glimpse of the Future of Scientific
Programming”, Computing in Science & Engineering,
Volume 15, No. 1, pp. 84-88, 2013.

[26] Österlund, E., “Garbage Collection Supporting Automatic
JIT Parallelization in JVM”, LNU, 2012.

[27] Österlund, E., and Löwe, W., “Analysis of Pure Methods
Using Garbage Collection”, Proceedings of ACM
SIGPLAN Workshop on Memory Systems Performance
and Correctness, pp. 48-57, Beijing, China, 2012.

[28] Österlund, E., “Automatic Memory Management System
for Automatic Parallelization”, LNU, 2011.

[29] Koch, T.J.K.E.V., and Björn, F., “Limits of Region-Based
Dynamic Binary Parallelization”, SIGPLAN Notices,
Volume 48, No. 7, pp. 13-22, 2013.

[30] Leung, A., Lhotak, O., and Lashari, G., “Automatic
Parallelization for Graphics Processing units”,
Proceedings of 7th International Conference on
Principles and Practice of Programming in Java, Calgary,
pp. 91-100, Alberta, Canada, 2009.

[31] Monteyne, M., “Rapidmind Multi-Core Development
Platform”, RapidMind Inc., Waterloo, Canada, February,
2008.

[32] Hammacher, C., Streit, K., Hack, S., and Zeller, A.,
“Profiling Java Programs for Parallelism”, Proceedings
of ICSE Workshop on Multicore Software Engineering,
pp. 49-55, 2009.

[33] Christopher, J.F.P., Clark, V., and Allan, K., “LIBSPMT:
A Library for Speculative Multithreading”, Sable
Technical Report, 2007.

[34] Pickett, C.J.F., and Verbrugge, C., “SableSpMT: A
Software Framework for Analysing Speculative
Multithreading in Java”, Proceedings 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, pp. 59-66, Portugal, 2005.

[35] Carlstrom, B.D., Chung, J., Chafi, H., McDonald, A.,
Minh, C.C., Hammond, L.,  Kozyrakis, C., and Olukotun,
K., “Transactional Execution of Java Programs”,
OOPSLA Workshop on Synchronization and
Concurrency in Object-Oriented Languages, 2005.

[36] Chen, M.K., and Olukotun, K., “The JRPM System for
Dynamically Parallelizing Sequential Java Programs”,
IEEE Micro, Volume 23, No. 6, pp. 26-35, 2003.

[37] Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan,
G., Bala, K., and Chew, L.P., “Optimistic Parallelism
Requires Abstractions”, Communication ACM,
Volume 52, No. 9, pp. 89-97, 2009.

[38] Chan, B., and Abdelrahman, T.S., “Run-Time Support
for the Automatic Parallelization of Java Programs”,
Journal Supercomputer, Volume 28, No. 1, pp. 91-117,
2004.

[39] Singer, J., Brown, G., Luján, M.,  Pocock, A.,  and
Yiapanis, P., “Fundamental Nano-Patterns to
Characterize and Classify Java Methods”, Electronic
Notes in Theoretical Computer Science, Volume 253,
No. 7, pp. 191-204, 2010.

[40] Bik A. J. C., and Gannon D. B., “Automatically exploiting
implicit parallelism in Java,” Concurrency: Practice and
Experience, vol. 9, no. 6, pp. 579–619, 1997.

[41] Bruneton, E., Lenglet, R., and Coupaye, T., “ASM: A
Code Manipulation Tool to Implement Adaptable
Systems”, Technical Report, France Telecom R&D,
2002.


