Just-in-Time Compilation-Inspired Methodology for
Parallelization of Compute Intensive Java Code

GHULAM MUSTAFA*, WAQAR MAHMOOD**, AND MUHAMMAD USMAN GHANI*
RECEIVED ON 02.09.2015 ACCEPTED ON 14.12.2015

ABSTRACT

Compute intensive programs generally consume significant fraction of execution time in a small amount
of repetitive code. Such repetitive code is commonly known as hotspot code. We observed that compute
intensive hotspots often possess exploitable loop level parallelism. A JIT (Just-in-Time) compiler profiles
arunning program to identify its hotspots. Hotspots are then translated into native code, for efficient
execution. Using similar approach, we propose a methodology to identify hotspots and exploit their
parallelization potential on multicore systems. Proposed methodology selects and parallelizes each
DOALL loop that is either contained in a hotspot method or calls a hotspot method. The methodology
could be integrated in front-end of a JIT compiler to parallelize sequential code, just before native
translation. However, compilation to native code is out of scope of this work. As a case study, we analyze
eighteen JGF (Java Grande Forum) benchmarks to determine parallelization potential of hotspots. Eight
benchmarks demonstrate a speedup of up to 7.6x on an 8-core system.

Key Words: Just-in-Time Compilation, Loop Level Parallelization, Multicore System, Runtime

Analysis, Java Virtual Machine.

1. INTRODUCTION

ultiple cores are typically exploited by

parallelizing computer applications in a

variety of ways. In case of writing a new
application, a convenient approach is to design a parallel
algorithm explicitly [1-3]. However, algorithmic re-
structuring for existing sequential applications is an on
trivial manual effort. Automated parallelization techniques
often rely on parallelizing compilers and runtime
information. For example, auto-parallelizing compiler
Parafrase-2 [4] detects and exploits implicit parallelism
using a symbolic analysis framework [5]. Auto-
parallelizing compilers typically use heuristics [6] and

profiler feedback to analyze and parallelize code by

re-compiling [7]. A drawback of static auto-parallelizing
compilers is that dynamic execution state of application
is not available during compilation. On the other hand,
dynamic compilers and run time systems could exploit
characteristics of running code in parallelization process.

Runtime systems parallelize applications either
speculatively [8-11] or non-speculatively [12-15]. In
speculative parallelization, potential parallel tasks are
assumed to have no dependences and run using either
TLS (Thread Level Speculation) [16] or transactional
memory [17]. Results are not committed if the system

detects dependence violation(s). Runtime system ensures

* Department of Computer Science & Engineering, University of Engineering & Technology, Lahore.
ok Al-Khwarizmi Institute of Computer Science, University of Engineering & Technology, Lahore.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

the resolution of dependences by squashing and re-
running some of parallel tasks. This is a best effort
approach that exploit parallelism if possible, otherwise
code is run sequentially. In non-speculative parallelization
paradigms, dependences are analyzed first and code is
usually transformed to expose hidden parallelism. Parallel
tasks are synchronized properly to preserve sequential
semantic, and avoid dead/live locks and data races.

However, both cases have their own challenges.

JIT systems are typically used to facilitate dynamic
compilation of binary code during execution [19-21]. In
case of Java, inefficiency of interpreted Java code
stimulated the renaissance of JIT technologies [19]. Java
(source code) compiler converts source code into
bytecode which is stored in class file format. Classes are
loaded in JVM (Java Virtual Machine) on-demand and
bytecode instructions are interpreted by JVM. For JIT
compilation, JVM profiles running applications to select
most frequently called and/or most time consuming code
regions as hotspots. JIT compiler dynamically compiles
hotspots to potentially optimized native code. Since JIT
compilers can exploit runtime characteristics of
applications, it is plausible to use JIT compilation

infrastructure for parallelization.

Typically, majority of computer applications spend large
amount of their runtime in the hotspots [22-23]. We
observed that compute intensive hotspots have huge
parallelization potential [22]. This work focus on a single
goal: achieve whatever parallelism can be realized from
sequential code without any effort on the part of exploring
hidden parallelism. Being a best effort approach, it may
improve scalability where it can exploit parallelism
potential but in other cases it may not modify even a
single loop. Using profiler feedback, compute intensive
DOALL loops are selected from Java bytecode just as
JIT compiler selects frequently executing code for native
translation. We have two reasons for considering loop
level parallelization in this context. First, we observed

that by setting a threshold on application’s execution

time, we are left with only a few most time consuming
methods [22]. For example, setting 90% threshold in JGF
Crypt benchmark revealed that a single method consumed
90% time of the application [24]. Such cases are not
suitable for method level parallelization even on dual core
system. Similarly, JIT compilation infrastructure selects
only few methods as hotspots. Method level
parallelization determines potential parallelism by doing
inter-procedural analysis of complete application. During
inter-procedural analysis, if some non-hotspot method is
found as a caller of hotspot(s), modifications will also be
needed in the non-hotspot method. Eventually, we will
be dealing with entire application and taking almost no
advantage of JIT compilation infrastructure. In contrast,
modifications applied at loop level remains local to the
hotspot only. JIT compiler could produce parallel native
code transparently.

The paper is organized in following sections: Section 2
presents related work. Problem statement is formulated in
Section 3 along with qualitative and quantitative features.
Overall methodology is proposed in Section 4.
Parallelization steps and implementation details are given
in Section 5. Case studies and results are discussed in

Section 6. Paper is concluded in Section 7.
2. RELATED WORK

Bytecode level parallelization has been tried since the
inception of Java language [18]. However, due to lack of
instrumentation and on-the-fly class modification APIs,
the effort relied on static modifications of single class at
a time without considering profiler feedback. Now-a-
days, JIT parallelization is being revisited, thanks to the
proliferation of multicore/manycore systems and
advancements in virtualization technologies [25-28,30].
Osterlund and Léwe exploit JVM’s garbage collector to
support JIT parallelization [26-28]. A merger of DBP
(Dynamic Binary Parallelization) and TLS is presented
to emphasize the limitations of DBP and difficulties

involved in JIT parallelization [29]. Leung et. al. proposed

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

68

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

auto-parallelizing extensions for Java JIT compiler so
that the compiler could find potentially parallelizable
code and compile it for parallel execution on multicore
CPU and GPGPU (General Purpose Graphic Processing
Unit) [30]. However, code generation depends on
RapidMind and GPU hardware [31]. Majority of other
efforts on runtime parallelization focus on speculative
execution and/or exploit method level parallelism [32-
38].

3. PROBLEM FORMULATION

Let an application calls N_ methods during execution
and each method m, consists of k loops, where j > 1 and
k > 0. Starting from main() method, j-1 other methods are
typically called in hierarchical manner and inter-
procedural relationships are represented as a call graph.
Call graph is a directed graph G = <V, E>, where V is a
finite set of vertices and E is a finite set of edges. Each
vertex ve V represents a method invocation and each edge
ee E between a vertex pair (u,v) represents one or more
invocations of v by u (i.e. u—v). Static call graph is
constructed by source code browsing whereas dynamic
call graph is obtained by profiling the running application.
Sorted flat profile F is a list representation of dynamic call

graph, where |[F|=N_. Typically, F also contains runtime

804

704

B Nm B Nh (Ipc=90%

Method Count

information like calls count, time consumption and
percentage time consumption of each method. Percentage
time consumption of a method is actually PC (Percentage
Contribution) of method toward total execution time of

application, where PC is defined as:

Net Time Consumed by the Method
PC = %100

" Total Time Consumed by the Appliction

3.1 Percentage Contribution Threshold

T,. (Percentage contribution threshold) is the part of
application run time (< 100%) that we want to be
parallelized [22]. For example, setting T, = 80% for an
application means that we are interested in parallelizing
only most time consuming methods (i.e. hotspots) that
collectively consume 80% time of the application. Fig. 1
shows the effect of setting T,. = 90% for eighteen JGF
application benchmarks [24], where N, is the number of
hotspots. It is obvious from Fig. 1 that majority of
methods are shunt out because they collectively consume
<10% time of the application. Analyzing and modifying
these methods is likely to increase runtime overhead and
may result in performance degradation compared to

sequential code.

Effect of Percentage Contribution Threshold

Heap Sort
Sparse Mat
Mult
Ray Tracer
AB Search

Application

FIG. 1. SELECTION OF HOTSPOTS USING T, = 90%

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

T, facilitates the selection of hotspot methods. Next, we
need to determine various characteristics of hotspot
methods. We enumerate these characteristics in catalogs
of qualitative and quantitative features of methods, as

shown in Tables 1-2, respectively.

3.2 Qualitative Features of Methods

Qualitative features are binary variables to represent
different characteristics of the method. Each qualitative
feature indicates the presence (or absence) of a specific
characteristic of a method, as described in Table 1. For
example, LOOPY=0 means that the method does not
contain loops. The idea of qualitative features is inspired
by Nano-patterns that were proposed to characterize and
classify Java methods [39]. Catalog of qualitative features
is constructed by extended catalog of Nano-patterns from
17 to 32, and giving them compact and descriptive names.
Previously, we used qualitative features to analyze thread
level speculative parallelization potential at runtime [22].
We showed that binary features are very important
decisive factors for runtime qualitative analysis of
parallelization potential of methods. Qualitative features
are generic in nature and could be used in any software
reverse engineering and reengineering activity. We used

some relevant features in this work.

33 Quantitative Features of Methods

Presence of a particular characteristic of method
potentially necessitates the quantification of that
characteristic. For example, if a method contains loops
(i.e. LOOPY=1), we need to determine the number of single
and nested loops. For this, we will observe the quantitative
features f,_ and f,, in Table 2. In Table 2, 15 quantitative
features are cataloged to represent static and dynamic
characteristics of a method. Static and dynamic
characteristics are gathered by parsing classes at load
time and profiling the running application, respectively.

Qualitative and quantitative features abstract the general

purpose code characteristics to help in runtime code
comprehension. In this work, we used only those features
that are helpful in loop level parallelization. Each feature
is determined by using a specific algorithm. For the sake
of brevity, only two algorithms, related to determination
of f_and f

L are presented in section 4.2.

TABLE 1. QUALITATIVE FEATURES OF METHODS

D Feature If True then the Method...

£ NO_ARGS Takes no arguments

f VALUE*OI;LY*ARG- Takes only pass-by-value arguments
f, | REF_ONLY_ARGS | Takes only pass-by-reference arguments
f, MIXED ARGS Takes mixed any arguments

f, ARRAY_ARGS Takes one or more array arguments
f; NO_RET Returns void

f; VALUE_RET Returns primitive value

f REF_RET Returns reference value

£ STATIC is static

£ RECUR is recursive

£, LOOPY contains at least one loop

f, | NESTED_LOOPY contains at least one nested loops
f, EXCEPT throws exception

f, LEAF Has no callee method

f, OBJ_C creates new objects

fis FIELD R reads class field(s)

£ FIELD W writes class field(s)

£, TYPE M uses type casting

fq NO_BR has straight line code

f, LOCAL R reads local variable(s)

£, LOCAL W writes local variable(s)

£, ARRAY C creates new array(s)

- MDARRAY C creates new multi-D array(s)

£, ARRAY R reads array value(s)

£, ARRAY W writes array value(s)

£ THIS R reads field value(s) of 'this' object
£ THIS W writes field value(s) of 'this" object
f, OTHER R reads field value(s) of other object(s)
e OTHER_W writes field value(s) of other object(s)
o SFIELD R reads static field value(s)

£, SFIELD W writes static field value(s)

£, SAMENAME calls overloaded method(s)

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

70

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

4. PROPOSED METHODOLOGY

Proposed methodology transforms Java classes at load
time and works in three phases. Overall work flow is shown
in Fig. 2. In profiling phase, an application is test-run to
get profiling data. Profiler output is fed back to JVM during
actual run. Using a value of T, . (i.e. 90% in this paper),

TABLE 2. QUANTITATIVE FEATURES OF METHODS

ID Feature Description

£, FIELDs #Non-static fields accessed in method body
£, SFIELDs #Static fields accessed in method body
£, CALLs #Method calls in the method

£ JUMPS #Jumps (jump instructions) in the method

£, | BRANCHES
£, | SINGLELOOPS
£, | NESTEDLOOPS

#Forward jumps (branches) in the method
#Single loops in the method

#Nested loops in the method

£, ICOUNT #Instructions in the method

£, LOOPICOUNT #Instructions in the loop bodies

£, STACKMAX Maximum stack slots (i.e. stack size)
f, LOCALMAX #Local variables (including arguments)
f, ARGS #Arguments of the method

f, TIME Time consumed by the method

£, PC Percentage Contribution of the method
£, cc Call Count of the ethod

top N, hotspot methods are selected form the flat profile
F which is sorted by PC in descending order. JVM class
loader is hooked so that classes could be parsed and
transformed at load time [22]. Each class is parsed and
modified just before it is loaded by the JVM. In parsing
phase, list of methods L of a class i is acquired to
determine if it contains a hotspot. If a method m, is
hotspot, it is parsed to generate (1) list of qualitative
features (2) list of quantitative features (3) list of backward
jumps L, (4) IR tuples, and (5) instruction patterns. A list
of nested loop L, is then generated using the loops of
L, . In modification phase, a heuristic on call count (CC
i.e. feature f) of m, is used to determine the potential
location of parallelizable loop(s). If CC<N and m, is
LOOPY then potentially parallelizable loop(s) lies within
m, otherwise lies within some caller of m,. This heuristic
implies that if CC is significantly large, the time
consumption of m, is not due to the loops in it but
(potentially) it has been called within a loop of its parent
method. In later case, parent of m, becomes a hotspot
provided that it is LOOPY. In any case, we get a loop lijk. If
lijk is DOALL, it is marked to be modified for parallel
execution using the operations mentioned in modification

phase of Fig. 2 and threading framework of section 4.4.

Modification Phase
Generate and load Declare empty
Managergand [rung(...)method in
Workery, classes current class
Define rung(...) to Get List of local
contain loop "":"':“:‘
for parallel) prologi
| J{ used in loop body
| Profile Info
v
UseTycto select top N,
hotspot methods from sorted
flat profile F

Get next method
NO
Hotspot? Get Simple/Nested
loop lists (Lg & Ly)
Parse method for YES
1. Qualitative Features
2. Quantitative Features Determine Simple &
3. Backward Jumps Nested Loops (if any) | Determine calling
4. Intermediate Rep. (IR}
5. Instruction Patterns | Parsing Pt

FIG. 2. WORKFLOW OF PROPOSED PARALLELIZATION METHODOLOGY

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

n

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

4.1 Parallelization Criteria

There are two criteria for best effort parallelization of a
loop.

Criterion-1: Hotspot Selection: Set T, . =90% and select
most time consuming methods that collectively consume

90% time of application, as hotspots.

Criterion-2: Loop Selection: If a hotspot has significantly
high CC value (e.g. >N), then go to its calling method(s).
In (any of) calling method, if the hotspot is called in a
loop and the loop is DOALL, transform it for parallel

execution.

@ Otherwise, if the hotspot itself contains DOALL

loop(s), transform it (them) for parallel execution.

(i) In case of invalidation of (I) and (II), run

unmodified sequential application.

4.2 Loop Profiling

Loop profiling is used to determine the features like
SIMPLELOOPS and NESTEDLOOPS. In each hotspot,
loops are detected by recording the backward jumps. Each
backward jump is represented as quadruple <Offset,
Target, Index, Stride>, where Offset is the offset of
backward jump, Target is offset of the target label of
backward jump, Index is the variable acting as loop index
and Stride is the step size of loop iterations. All backward
jumps are recorded during parsing phase. Each backward
jump is a potential single loop. A backward jump is one
whose target has already been visited [39], either in terms
of labels or memory addresses. Labels are used in
bytecode because exact memory addresses are not known
in intermediate code. By constructing basic block level
CGF (Control Flow Graph), we can classify a backward
jump as a loop if its Target lies in one of the dominator
blocks of the block that contains its Offset. A block d
dominates a block b (i.e. d DOM b), if all paths from entry

block to bincluded. Also, DOM (b) denotes a set of all
nodes that dominate b (including b itself).

Nested loops are determined by observing the
organization of simple loops. If a loop lies exactly within
another loop then we come up with a loop nest. For two
simple loops 1. and 1j if Offseti>0ffsetj AND Target <Target,
then 1). lies within 1. So, there exist a 2-level nested loop
instead of two single loops. In real world code, inner loops
in a loop nest may appear in a variety of ways, as shown
in Fig. 3. A loop nest could be represented as a loop tree
to accommodate all possible organizations of inner loops.
Root of tree represents the outer most loop and other
nodes represent inner loops of root. The data associated
with each node is the loop quadruple, a reference to its
parent node and a list of references to its children nodes.
Traversing nodes of a loop tree, we can represent nested
loops as a 5-tuple <Offset, Target, Nest-Level, {Index-
Vector}, {Stride-Vector}> where Offset is the offset of
outer most loop, Target is offset of target label of outer

most loop, Nest-Level is the height of loop tree, Index-

Loopl
{

) Loop2 { }
Loop3

: &

Loopd |} T

o

(a) TRANSFORM_INTERNAL() METHOD OF JGF FFT
BENCHMARK

Loopl
{

Loopl {
Loopd {
Loopd {
LoopS {
Loop€ {

Q.
; TTOOO

(b) RUNITERS() METHOD OF JGF MOLDYN BENCHMARK.
A LOOP FOREST IS IN

Loopl
{
Loop2 { }

Loopd { ¥ : :.\\

Loop4

| ® ®
LoopS { }

(c) MATGEN() METHOD OF LUFACT BENCHMARK

©

FIG.. 3. LOOP TREES IN

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

12

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

Vector is a list of indices of all loops in loop nest and
Stride-Vector is a list of step sizes of all loop in loop nest.
Generally, a loop forest containing single and/or multi-

node tree(s), is constructed against each hotspot.

4.2.1 Algorithm for Identification of Single
Loops

Single loop detection algorithm is shown in Table 3. Let S, be
the instruction stream of a method. During interpretation in
a test run, each visited label 1 is added to a list of visited
labels L . For each branch instruction b, if the branch’s target
label 1, has already been visited then b represents a backward
jump. Let Block, and Block , are two basic blocks (as nodes)
in CFG. If be block,and 1,e block,and block,e DOM
(block,), then b is a loop conditional. Prepare quadruple
<Offset, Target, Index, Stride> against b and add to a list of

single loops Lo
4.2.2 Algorithm for Loop Forest Construction

Once we geta list of single loops L, _ - using the algorithm
shown in Figure 4, we can determine nested loops by using
algorithm shown in Table 4. Considering each single loop
leL, , asanode, loop tree T, is constructed against each
nested loop and added to a loop forest F,. Depending upon
the availability of loops, F, could possibly be (1) empty (2)

TABLE 3. ALGORITHM TO IDENTIFY SINGLE LOOPS

Input: S,

Output: L

FOR EACH instruction i

IF i =1 THEN

Addlto L,

ENDIF

IFi=—Db AND | € L THEN
Backward Jump found.
IF be block, AND

l.e block, AND

block, € DOM (block,)

THEN
Prepare Quadruple <Offset, Target, index, stride>
Add <Offset, Target, index, stride> to L]00p

END IF

END IF

END FOR

containing single-node tree(s) only (3) containing multi-
node tree(s), or (4) containing a mixture of single-node and
multi-node trees. At start the loop forest F, is empty and a
tree T, is constructed using the first loop of L, as root
node. Subsequent loops from Lloop are either added to an
existing tree or cause the generation of new tree(s). An
existing tree is re-adjusted if an outer loop comes after
some inner loop(s) so that outer most loop is always the

root node.

4.3 Loop Classification

Using feature f,_and f,

Lo We can iterate on all loops to classify

them. As we are only interested in parallelization of compute
intensive DOALL loops (having arbitrary stride size), we
select DOALL loops by observing potential inter-iteration
data dependences. Data dependences are analyzed by
recognizing instruction patterns corresponding to read/write
of local variables, arrays elements, and class members of
primitive and user-defined data types. Ina DOALL loop, all
memory access (instruction) patterns operate on
independent memory locations in each iteration. As number
of instruction patterns depends on instruction set size, we
define an intermediate representation to reduce the
(instruction) pattern processing cost.

TABLE 4. ALGORITHM TO CONSTRUCT LOOP FOREST.

MULTI-NODE TREES IN THE FOREST REPRESENT
NESTED LOOPS

Input: L]OOp
Output: F,
FOR EACH IEL,
IF F,is empty THEN

Create a new tree rooted at 1, in F,
ELSE Identify an existing T, in F,
IF T, found THEN
IF 1 is inner loop of root of T, THEN

Insert 1 to T, at appropriate place
ELSE reorder T, to make 1_ its root
END IF-ELSE
ELSE create a new tree rooted at I, in F,
END IF-ELSE

END IF-ELSE
END FOR

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

73

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

4.3.1 Intermediate Representation of
Bytecode Instructions

IR (Intermediate Representation) of bytecode instructions
is defined to reduce instruction pattern count and potential
pattern processing effort. If an instruction set contains n
instructions. We might have to look for (n)? combinations to
recognize an instruction pattern of length p. These
combinations could be reduced if we reduce n by
symbolically representing n instructions with m symbols,
where m<n. Forexample, a subset of bytecode instructions
{IADD, LADD, FADD, DADDY} is used to perform arithmetic
addition of two {integer, long-integer, floating—point, double-
precision-floating-point} numbers, respectively. A high level
IR symbol ADD could suffice to recognize any of these four
instructions. Similarly, we can recognize entire instruction
setusing a smaller set of IR symbols. By defining IR symbols,
we could represent ~200 bytecode instructions (i.e. n=200)
with 42 symbols (i.e. m=42), as shown in Table 5. Labels are
typically induced by compiler to facilitate control flow and
demarcation of basic blocks. We consider LBL as part of IR
symbols because labels are integral part of compiled code.
As elaborated in next sub-section, presentation of instruction
patterns in terms of IR symbols increases the occurrence
frequency of instruction patterns. Using IR symbols, we
have about five times (i.e. [/m]) fewer choices at each

position in instruction pattern.
4.3.2 Recognition of Instructions Patterns

Compilers typically generate an instruction pattern against
each source code statement. Java source compiler generates
a stream of bytecode instructions which is interpreted by
JVM. We recognize bytecode instruction patterns to
distinguish memory accesses. The idea starts with the
preparation of a catalog of ISA-specific fundamental
instruction patterns. Each fundamental pattern consists of
at least two instructions in a specific order and performs a
smallest indivisible source level task e.g. “variable
initialization”. Some instructions like INC or LV (Table 5)

could independently perform an indivisible source level task

e.g. “j++;”. We enumerate such instructions as independent
instructions. A pattern is an arrangement of two or more
independent instructions. Figure 6 shows an inner loop from
SORrun(...) method of JGF SOR benchmark [24], to elaborate
instruction pattern recognition.

Source code and bytecode of the loop is shown in Fig. 4(a-
b), respectively. Fig. 4(b) also shows the IR tuple <Symbol,
Opcode, [Argument(s)]> against each instruction, where
Symbol is IR symbol (defined in Table 5), Opcode is the
opcode of encountered instruction and optional Argument(s)
represents zero or more arguments of the instruction. IR
tuple of a label does not contain any opcode and its Argument
contains string representation of actual label. For compact
representation, IR symbols of an instruction pattern are
concatenated, as shown in Table 4. For example, read
operation on Gim1[j] in Fig. 4(a) was translated into bytecode
instructions at line 10, 11, 12 of Fig. 4(b). Using IR symbols,
we can represent this instruction pattern as LR-LV-LVA. In
Fig. 4 (b), all occurrences of LR-LV-LVA pattern are encircled
with dashed lines. LR-LV-LVA is a fundamental pattern
because it is composed of instructions only and indivisible
into sub-patterns. All fundamental patterns and partial
pattern components are recognized and assigned unique
1Ds ny and ny, respectively, as shown in Table 6, where
each ny (or ny) represents a pattern (or pattern component)
y having x level composition. Composition level of
fundamental patterns is zero. Using IDs of fundamental
patterns and pattern components, and independent
instructions, parse tree of bytecode, shown in Fig. 4(b), is
shown in Fig. 5. It is constructed in reverse direction taking
leaves at level 0. First level composite patterns do not contain
any other composite pattern. Second level composition
contains at least one first level composite pattern, third level
contains at least one 2nd level composite pattern, and so on.
Each leaf is either an ID of fundamental pattern or pattern
component, or an independent instruction, as shown in Fig.
5.Each non-leaf node represents a composite pattern and its
composition depends on the level blow it. A composite

pattern may consist of independent instructions,

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

14

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

TABLE 5. INTERMEDIATE REPRESENTATION OF BYTECODE INSTRUCTIONS

Symbol Description Bytecode Instructions
_ Do Nothing NOP
ACONST NULL, ICONST M1, ICONST 0, ICONST 1, ICONST 2, ICONST 3,
LC Load Constant ICONST 4, ICONST_5, LCONST 0, LCONST 1, FCONST 0, FCONST 1,
FCONST 2, DCONST 0, DCONST 1, BIPUSH, SIPUSH, LDC, LDC_W, LDC2 W
LV Load Value ILOAD, LLOAD, FLOAD, DLOAD
LR Load Reference ALOAD
LVA Load Value from Array TALOAD, LALOAD, FALOAD, DALOAD, BALOAD, CALOAD, SALOAD
LRA Load Reference Array Value AALOAD
SV Store Value ISTORE, LSTORE, FSTORE, DSTORE
SR Store Reference ASTORE
SVA Store primitive Array Value IASTORE, LASTORE, FASTORE, DASTORE, BASTORE, CASTORE, SASTORE
SRA Store Reference Array Value AASTORE
PP Pop POP, POP2
DP Duplicate DUP, DUP_X1, DUP_X2, DUP2, DUP2_XI1, DUP2_X2
SP SWAP SWAP
AO Arithmetic Operation TADD, LADD, FADD, DADD, ISUB, LSUB, FSUB, DSUB, IMUL, LMUL, FMUL, DMUL,
IDIV, LDIV, FDIV, DDIV, IREM, LREM, FREM, DREM
LO Logical Operation INEG, LNEG, FNEG, DNEG, ISHL, LSHL, ISHR, LSHR, IUSHR, LUSHR, IAND, LAND,
IOR, LOR, IXOR, LXOR
INC Increment IINC
P2P Primitive-Primitive Casting I2L, I2F, 12D, L21, L2F, L2D, F2I, F2L, F2D, D2I, D2L, D2F, I2B, 12C, 12S
CMP Compare LCMP, FCMPL, FCMPG, DCMPL, DCMPG
IF1 1-Value IF Statement IFEQ, IFNE, IFLT, IFGE, IFGT, IFLE
2 9-Values IF Statement IF_ICMPEQ, IFJCMPNEiFIF;‘ICCI\I\fIFég: Illlsszé\/ll\igﬁigIFJCMPGT’ IF_ICMPLE,
GIR Unconditional Jump GOTO, JSR, RET
SwW Switch Statement TABLESWITCH, LOOKUPSWITCH
RV Return Value IRETURN, LRETURN, FRETURN, DRETURN
RR Return Reference ARETURN
VD Void RETURN
LSF Load Static Field GETSTATIC
SSF Store Static Field PUTSTATIC
LF Load Class Field GETFIELD
SF Store Class Field PUTFIELD
INV Invoke a2 Method INVOKEVIRTUAL, INVOKESPECIAL, INVOKESTATIC, INVOKEINTERFACE,
INVOKEDYNAMIC
NwW Create New Object NEW
NVA Create New Value Array NEWARRAY
NRA Create New Array of Objects ANEWARRAY
@ Array Length ARRAYLENGTH
XCP Throw Exception ATHROW
CCH Check Cast CHECKCAST
IOF Instance of INSTANCEOF
ME Monitor Enter MONITORENTER
MX Monitor Exit MONITOREXIT
NMA Create New n-D Array MULTIANEWARRAY
IFN If Statement (Compares Null) TFNULL, IFNONNULL
LBL Label Induced by Compiler

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

75

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

fundamental patterns and its children composite patterns
(Table 6). The root of the tree represents top level composite
pattern that is entire bytecode region shown in Fig. 4(b).
for (int j=1; j<Nml; j++) {

Gi[j] = omega_over four *

(Giml[j] + Gipl[3j] + Gi[j-1] + Gi[j+11)
+ one_minus_omega * Gi[j];

FIG. 4(a). SOURCE CODE OF A LOOP TAKEN FROM
SORRUN(...) METHOD OF JGF SOR BENCHMARK

Bytecode IR tuple
1 L16 <LBL, L16>
2 ICONST_1 <LC, 4>
3 ISTORE 17 <5V, 54, 17>
4 L17 <LBL, L17>
5 GOTO Li2 <GIR, 167, L18>
6 L19 <LBL, L19>
7 ALOAD 14 <LR, 25, 14>
a8 ILOAD 17 <LV, 21, 17>
9 DLOAD 6 <LV, 24, 6>
10 ALOAD 15 <LR, 25, 15>
11 ILOAD 17 <LV, 21, 17>
12 DALOAD <LVA, 49>
13 ALOAD 16 <LR, 25, 16>
14 ILOAD 17 <LV, 21, 17>
15 DALOAD <LVA, 49>
16 DADD <AD, 99>
17 ALOAD 14 <LR, 25, 14>
18 ILOAD 17 <LV, 21, 17>
19 ICONST_1 <LC, 4>
20 ISUB <AOD, 100>
21 DALOAD <lVA, 49>
22 DADD <AD, 99>
23 L20 <LBL, L20>
24 ALOAD 14 <LR, 25, 14>
25 ILOAD 17 <LV, 21, 17>
26 ICONST_1 <lLC, 4, 1>
27 |ADD <AQ, 96>
28 DALOAD <LVA, 49>
29 DADD <AQ, 99>
30 DMUL <AD, 107>
31 DLOAD B8 <LV, 24, &>
32 ALOAD 14 <LR, 25, 14>
33 ILOAD 17 <LV, 21, 17>
34 DALOAD <LVA, 49>
35 DMUL <AQ, 107>
36 DADD <AD, 99>
37 L21 <LBL, L21>
38 DASTORE <SVA, 82>
39 L22 <LBL, L22>
40 IINC 17 <INC, 132, 17>
41 L18 <LBL, L18>
42 ILOAD 17 <LV, 21, 17>
43 ILOAD 11 <LV, 21, 11>
44 IF_ICMPLT L18 <|F2, 162, L19>

FIG. 4(b.) BYTECODE AND ITS IR TUPLES

4.3.3 Inter-Iteration Data Dependence

DOALL loops could be identified by making sure that loop
iterations either does not contain any instruction patterns
corresponding to memory access or they access independent
memory locations. We need to identify instruction patterns
that are used to read/write local variables, arrays elements
and class members (i.e. fields) of both primitive and user-

defined types. If a loop does not contain any instruction

TABLE 6. INSTRUCTION PATTERNS IN EXAMPLE LOOP.

1D Instruction Pattern Composition

P, LBL-LC-SV

P, LBL-GJR

P, LR-LV-LVA

P, LR-LV-LC-AO-LVA Fundamental Patterns

P, LBL-LR-LV-LC-AO-LVA

Py LBL-INC

Py LBL-LV-LV-IF2

Cy LBL-LR-LV Pattern

c, LBL-SVA Components

P, LR-LV-LVA-LR-LV-LVA-AO P02-P02-A0

P, LV-LR-LV-LVA-AO LV-P02-A0
LR-LV-LVA-LR-LV-LVA-AO-L-

Py R-LV-LC-AO-LVA-AO P10-P03-A0
LR-LV-LVA-LR-LV-LVA-AO-L-

P, R-LV-LC-AO-LVA-AO-LBL-L- P20-P04-AO

R-LV-LC-AO-LVA-AO

LV-LR-LV-LVA-LR-LV-LVA-A-

P O-LR-LV-LC-AO-LVA-AO-L20-- LV-P30-A0

LR-LV-LC-AO-LVA-AO-AO
LV-LR-LV-LVA-LR-LV-LVA-A-
O-LR-LV-LC-AO-LVA-AO-LB-
P | L-LR-LV-LC-AO-LVA-AO-AO-- P40-P1I-AO
LV-LR-LV-LVA-AO-AO
LBL-LR-LV-LV-LR-LV-LVA-LR--
LV-LVA-AO-LR-LV-LC-AO-LV-
P, | A-AO-LBL-LR-LV-LC-AO-LV-
A-AO-AO-LV-LR-LV-LVA-AO--
AO-LBL-SVA
LBL-LC-SV-LBL-GJR-LBL-LR--
LV-LV-LR-LV-LVA-LR-LV-LVA--
AO-LR-LV-LC-AOQ-LVA-AO-L-
P, | BL-LR-LV-LC-AO-LVA-AO-A- POO'Pm'ggO'POS'P'
O-LV-LR-LV-LVA-AO-AO-LB-
L-SVA-LBL-INC-LBL-LV-LV-I-
F2

C00-P50-CO1

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

76

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

pattern corresponding to inter-iteration data dependences,
it is DOALL loop because of independent iterations. Let’s
analyze the loop given in Fig. 4 to determine if it is DOALL or
not. Source code and Bytecode of the loop (Fig. 4) reveals
that the only variables involved are local because compiled
code does not contain any bytecode instruction related to
class members (Fig. 4(b)). Table 7 shows the types and
compiler-assigned indices of variables used by bytecode
instructions. For example, loop index j is indexed at 17 and
could be determined from IINC instruction. In Table 6, we
can see that only one write operation, represented by P, is
performed in each iteration. This pattern has sixth level
composition and its first component C , contains information
about the variable involved. The IR tuples of C are <LBL,
L19>,<LR, 25, 14>,<LV, 21, 17> atline 6-8. It shows that the
variable is indexed at 14 which is “double[] Gi”. Hence, we
are concerned about the read/write patterns of array
elements. Write operation of Gi depends on three read
operations of Gi, one of which is performed in the same
iteration and is harmless. Other two reads in an iteration j are

performed in immediately previous iteration j-1 and next

YNIESEIHRS 'O

(k.9

iteration j+1, which causes inter-iteration data dependences.
The patterns of reading Gi[j-1] and Gi[j+1] are P , atline 17-21
and P, at line 23-28, respectively. Hence, the loop in Figure
6isnot DOALL so could not be parallelized without resolving

dependences.
4.4 Threading Framework

A threading mechanism is required by JIT compiler to
modify selected loops for parallelization execution. We
designed a Java threading framework to be generated

directly in bytecode according to the characteristics of

TABLE 7. VARIABLES USED IN EXAMPLE LOOP

Variable Name Type Index
J int 17
Nml int 11
Gi doublef[] 14
Local omega_over_four double 6
Giml doublef[] 15
Gipl double[] 16
one_minus_omega Double 8

(e,

)) G @)) o) @) Co) () Co)) @) (o)

FIG. 5. PARSE TREE OF EXAMPLE LOOP’S BYTECODE IN TERMS OF INSTRUCTION PATTERN IDS, PATTERN COMPONENT IDS
AND INDEPENDENT INSTRUCTIONS

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

workload. We adapted the idea of source code level JAVAR
framework [40]. Our framework consists of only two
classes, Workerijk and Manager,,, that are dynamically
generated for each candidate loop lijk. We used ASM [41]
for generation of framework classes (in bytecode) as
dynamic part of classes would not be available at compile
time [41]. Workerijk encapsulates the entire implementation
of parallel task whereas Managerijk is responsible for
creation and orchestration of workers. Manager,,
contains only one static method work(...) and each
candidate loop 1ijk is replaced with just a single call to
Managerijk.work(. ..). Fig. 6 shows the interaction of
threading framework with Class, that contain loop lijkin its
method m,. Fora loop lijk, asingle Manager,, manages life
cycle of n Worker,, threads. Each Worker,, calls run,, ()
method that is defined in Class,. The loop lijk is replaced
with a call to Manager,, . work(...). Class, makes jxk calls
for k DOALL loops in j methods of this class. Fig. 6 shows
a cyclic dependency that could be removed by declaring
runijk() before generating Workerijk and providing its
definition after the generation of Managerijk. Actual usage
of framework is elaborated in Section 5 using the code in
Fig. 8.

4.5 Motivational Example

To demonstrate the step-by-step working of proposed
methodology, we identify and parallelize the most suitable
loop of JGF Series benchmark [24]. This benchmark
manipulates various transcendental and trigonometric
functions to calculate Fourier coefficients of function f(x)
= (x+1)*. About 10,000 coefficients are computed with an
interval of 0.2. Methodology starts with profiling phase
in which we found that the application calls 28 methods
i.e. N =28. By setting T, . = 90%, we found 2 potential
hotspots. For a potential hotspot, top-ranking value of
PC is either due to its high CC (Call Count) or due to
having compute intensive loops indicated by f , f, , f,.,
f,, features. The reason is that PC is based on the self-
time consumed by a method i.e. time consumption of its
callee methods is excluded. Looking at Table 8, we come
to know that CC value of both methods is significantly
high but only TrapezoidIntegrate() method contains one
single loop. Hence, high time consumption (i.e. 99.9%
collectively) of these methods is due to high call count
and not due to the loops in their own code. To determine

the immediate caller methods, we have to look at the

Worker,,

> + id: Integer
D1 + ncores: Integer

Call run,,()

Manager,,
Manages Threads Life Cycle
1
+ Work (...)
LY
Class,
Calls Work() .
)
1. jxk == 1
hotspot; (...)
runy, (...)

FIG. 6. CLASS DIAGRAM SHOWING THE ASSOCIATION OF THREADING FRAMEWORK CLASSES WITH THE CLASS CONTAINING
HOTSPOT METHOD

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

78

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

relevant portion of application call graph shown in Fig. 7.
It shows that Do()method calls TrapezoidIntegrate() and
TrapezoidIntegrate() calls thefunction(). In Table 9,
qualitative features show that Do() method is (1) non-
static (2) contains single loop(s) only (3) calls other
methods (not leaf in call graph) (4) does not create any
objectand 1-D or n-D array (5) reads/writes array elements
and local variables (6) only reads non-static class fields,
and (7) does not read/write static class fields. Quantitative
features say that Do() methodis (1) called only once (2)
contains one single loop (3) reads two non-static class
fields (4) has five call sites, and (5) reads/writes up to four
local variables. Although self-time consumption of Do()
method is 0.1%, it calls two most time consuming methods
in a single loop and itself is called once. Hence, the loop
in it is exploitable for parallelize execution.

TABLE 8. FEATURES OF POTENTIAL HOTSPOTS IN JGF

SERIES
Trapezoid The
Type Name Integrate Function
STATIC 0 0
LOOPY 1 0
NESTED LOOPY 0 0
LEAF 0 0
PC 60.70% 39.20%
Qualitative
CcC 19999 19999000
CALLs 3 5
SINGLELOOPS 1
NESTEDLOOPS 0 0
LOCALMAX 15 6
|===|=== JGFkernel ()V
|===|===|=== Do () V
===|===|===|=== startTimer (Ljava/lang/String;)V
=|=== start(}Vv
= TrapezoidIntegrate(DDIDI)D
=|=== thefunction(DDI)D

|
| ===|===Math.pow (DD}
stopTimer (Ljava/lang/String;)V
stop()V
JGFvalidate()V

Tr UM
mwmmuwun
(LI (A | | A 1 |
mwnmuwn

1| A
wwwmmwunn

1| A I
LI L A | | A I |
1 1}

1 (I [

FIG. 7. RELEVANT PORTION OF CALL GRAPH OF SERIES
BENCHMARK. IT SHOWS THAT TRAPEZOIDINTEGRATE()
CALLS THEFUNCTION() AND ITSELF CALLED BY DO().
INTER-PROCEDURAL RELATIONSHIPS ARE PRESENTED
USING BAR-TAB “|==="" E.G. JGFKERNEL() IS IMMEDIATE
PARENT OF DO() BUT SIBLING OF JGFVALIDATE()

S. IMPLEMENTATION DETAILS

Implementation details include the steps taken to
parallelize a candidate loop and a short note on proof of
concept. All modifications are done on bytecode, as
elaborated in section 4.

5.1 Parallelization Steps

Modifications steps are explained here in terms of Java
source code. Bytecode level implementations details are

given in section 5.2.

Loop Extraction: The loop is shown at line 7-10 of
Fig. 8(a) in source code of Do() method. Bytecode of this
loop is extracted from the method and represented as IR
tuples to recognize instruction patterns for data

dependence analysis.

Data Dependence Analysis: Bytecode of Do() method
contains instruction patterns of local variable read/write.

Besides loop index i, one local variable omega is defined

TABLE 9. RELEVANT FEATURES OF DO() METHOD OF

JGF SERIES
Qualitative Features Quantitative Features
Feature Value Feature Value
STATIC 0 PC 0.10%
LOOPY 1 CC 1
NESTED LOOPY 0 FIELDs 2
LEAF 0 SFIELDs 0
OBJ_C 0 CALLs 5
FIELD R 1 SINGLELOOPS 1
FIELD W 0 NESTEDLOOPS 0
LOCAL R 1 LOCALMAX 4
LOCAL W 1
ARRAY C 0
MDARRAY_C 0
ARRAY R 1
ARRAY W 1
SFIELD R 0
SFIELD W 0

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

79

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

before the loop body and used in loop body. Local
variables omega and i are not written in the loop body so
there is no inter-iteration data dependence due to local
variables. Table 9 shows that no static field is read/written
and non-static fields are read but not written. However,
arrays are read/written but source code does not show
any array read. The bytecode reveals that in TestArray[][]
write, TestArray[] is first loaded on stack and then its
TestArray[][i] element is written. There is no data
dependence due to TestArray[][i] because it is
independently written in each iteration and without
involving a read. Hence, the loop is DOALL and we can

parallelize it.

Declaration of Runijk() Method: A method run,, is
declared in the class of Do() method, as shown in Fig.
8(b), where a, b, ¢ are <start, end, step> tuple for a worker
thread. We cannot define run,, yet because <start, end,
step> is calculated in dynamically generated
partitionLoop() method of Workerijk class. We just declare

run,, here so that a call in Workerijk could not pop error.

Generation of Workerijk and Manager,, Classes: Next
step is to generate and load Workerijk and Manager,,
classes. We observed that all classes have to be loaded
by the same class loader as that of the application. Against
the source code shown in Fig. 8(c-d), bytecode is
generated using ASM [41].

Definition of Runijk() Method: Due to cyclic dependency
shown in Fig. 6, we define runijk() after code generation
for Workerijk and Managerijkclasses. Fig. 8(b) shows this
definition, where calculation of a, b, ¢ depends on the
number of workers created in Manger,, i.e. kept equal to

number of CPU cores as shown in Fig. 8(d).

Loop Replacement in Hotspot: Finally, the loop in Do()
method is replaced with a single call to Managerijk.work()
method as shown on line 7 of Fig. 8(e). Original loop and
its replacement is encircled by dotted line to highlight in

Fig. 8 (a) and Fig. 8(e), respectively.

5.2 Proof of Concept

As a proof of concept, we implemented a research
prototype by extending SeekBin [22]. As a Java agent, it
hooks JVM’s class loader, captures classes loading into
JVM, and manipulates bytecode just before loading.
SeekBin reads sorted flat profile F to determine the classes
to be manipulated. Classes are parsed, transformed and
generated (i.e. Manager, , Worker,) using ASM bytecode
engineering library and loaded using java.lang.instrument
API. The tool can profile and parse any sequential
application to generate qualitative and quantitative
features, IR tuples, instruction patterns, loop profiling,

class generation and loading etc.
6. CASE STUDIES

Data is collected by profiling and parsing eighteen
benchmark applications [24] to analyze their parallelization
potential. Data is analyzed for code comprehension

regarding exploitable parallelism.
6.1 Code Comprehension

The purpose of code comprehension is twofold: first, we
want to explore the parallelization potential of the
application at hand. To avoid additional runtime overhead,
it is crucial to estimate the feasibility of applying proposed
methodology. We also need to decide the locality and
extent of transformations needed as we want to transform
bare minimum amount of most promising code. Table 10
represents an estimate of parallelization potential of 18
benchmarks in terms of method level features.
Parallelization potential of an application depends on the
number of methods called during execution (N_),
frequency of method calls, number of loops, number of
instructions in loop bodies, and dependencies among
loop iterations. However, not all methods and loops are
potentially feasible for parallelization and we need to filter
them out by setting suitable T, value i.e. T,. = 90% in
this case. As a result, we converge to only few methods

as potential hotspots.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

80

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

1 void Do() {

2 double omega;

3 JGFInstrumentor.startTimer(“Section2:Series:Kernel”);

4 TestArray[0][0] = TrapezoidIntegrate((double)0.0, (double)2.0, 1000,(double)0.0,0)/(double)2.0;

5 omega = (double) 3.1415926535897932;

6

7 for (inti = 1; i<array_rows; i++) {

8 TestArray[0][i] = Trapezoidlntegrate((double)0.0,(double)2.0,1000,omega * (double)i,1);
9 TestArray[1][i] = Trapezoidlntegrate((double)0.0,(double)2.0,1000,omega * (double)i,2);
10 }

11

12 JGFInstrumentor.stopTimer(“Section2:Series:Kernel”);

13 }

(a) SOURCE CODE OF DO() METHOD OF SERIES BENCHMARK

void runijk(int a, int b, int ¢, double omega){
for (inti = a; i< b; i = i+c) {

TestArray[0][i] = Trapezoidlntegrate((double)0.0,(double)2.0,1000,omega * (double)i,1);
TestArray[1][i] = Trapezoidlntegrate((double)0.0,(double)2.0,1000,omega * (double)i,2);

(b) DEFINITION OF RUN,,

public class Workerijk implements Runnable{
int ID, ncores, a, b, c, fr, to, step;
SeriesTesttc;

double 11;
Workerijk(SeriesTest cls, int aa,
int bb, int cc, intnc, int id, double v1){

tc=cls; ID =id; ncores = nc;

a = aa; b=bb; c=cc;

11 = vl;

}

private void partitionLoop() {
step = ¢;
intblk = (b + ncores-1)/ncores;
fr = ID*blk;
if(ID == 0) fr = ID*blk+1;

to = (ID+1)*blk;
if (fto>b)to="b;
} public void run() {
partitionLoop();
tc.runijk(fr,to,step, 11);

public class Workerijk implements Runnable{
int ID, ncores, a, b, c, fT, to, step;
SeriesTesttc;

double 11;
Workerijk(SeriesTest cls, int aa,
int bb, int cc, intne, int id, double v1){

tc =cls; ID =id, ncores = nc;

a = aa; b=bb; c=cc;

11 = vl;

}

private void partitionLoop(){
step = ¢;
intblk = (b + ncores-1)/ncores;
fr = ID*blk;
if(ID == 0) fr = ID*blk+1;

to = (ID+1)*blk;
if (to >b) to =b;
} public void run() {
partitionLoop();
tc.runijk(fr,to,step, 11);

} }
(c) DEFINITION OF WORKER,, CLASS (d) DEFINITION OF MANAGER;, CLASS
1 void Do() {
2 double omega;
3 JGFInstrumentor.startTimer(“Section2:Series:Kernel”);
4 TestArray[0][0]=TrapezoidIntegrate((double)0.0, (double)2.0, 1000,(double)0.0,0)/(double)2.0;
5 omega = (double) 3.1415926535897932;
6
7 Managerii—k.work(this, 1, array_rows, 1, omega);
8
9 JGFInstrumentor.stopTimer(“Section2:Series:Kernel”);
10 }

() LOOP REPLACEMENT IN DO() METHOD

FIG. 8. STEPS OF JUST-IN-TIME PARALLELIZATION

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN

81

1 2413-7219]

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

6.2 Parallelization of JGF Benchmarks

Thirteen benchmark applications are explicitly transformed
and eight benchmarks showed a reasonable speedup, as
shown in Fig. 9. Instead of exposing hidden parallelism in
other benchmarks, proposed best effort approach prefers
to restore sequential versions of applications that do not
show speedup. To demonstrate the scalability of
transformed applications, we passed ‘“number of workers”
as command line argument, instead of getting it from target
system as mentioned in Fig. 8(d). Transformed
applications are run on an 8-core system comprising 2 X
Quad Core Intel® Xeon® E5405, 1333 MHz FSB, CPU
Speed 2.0 GHz, L1 D Cache 32 KB, L11Cache 32 KB, L2
Cache 2x(2x6) =24 MB and 8 GB DRAM. In order to
assess the scalability, data is organized in two sets; long
running and short running applications, as shown in Fig.

9(a-b).
6.2.1 Long Running JGF Benchmarks

Four long running benchmarks that demonstrated
speedup are Series, Arith, Math and Method, as shown
in Fig. 9(a). Parallelization of JGF Series benchmark has
been described in section 4.5. Series benchmark
demonstrated a speedup of 6.9x, which is comparable to
HP (Hand Parallelized) version of Series, shown in Fig.
10(d). Outer loops contain instructions related to getting
system time. They cannot be multithreaded without
generating additional code for thread-local time
management (which is out of scope of this work). Speedup
observed in Arith, Math and Method benchmarks is 2.7x,
1.6x and 1.4x, respectively. Although speedup of Math
and Method is not quite significant on an 8-core system,
the point is that changes are not permanent. In case of
unsatisfactory speedup, we can restore to sequential
execution anytime because transformations are applied

at runtime and code on disk is intact.

6.2.2 Short Running JGF Benchmarks

Short running benchmarks that showed speedup are
Crypt, LUFact, SparseMatMult and Cast, as shown in
Fig. 9(b). In Crypt, out of 30 methods, only one method
cipher_idea() consumes 90% time when called twice in
the application, as shown in Table 10. In cipher_idea(),
there is no single loop and one 2-level nested loop. Nested

loop is DOALL and its outer loop is parallelized.

Crypt demonstrated a speedup of 5.8x and perfectly scale
with the increasing number of threads, as shown in
Fig. 9(b). HP version of JGF Crypt, when run on the same
system, demonstrated 7x speedup and resembling
scalability, as shown in Fig. 10(c). The result is quite

encouraging because proposed methodology is

800+ Long Running Applications (JGF Benchmarks)
700+
~ 600
b
< 5004
£
= 400+ —e— Arith
Fia 300 —— Math
o
= —&— Method
= 200 —e&— Secries
1001 g : . X X N
T35 T3 T 5 T 5T ¢ 77T g1
No. of Threads
(a) LONG RUNNING
20 7 Short Running Applications (JGF Benchmarks)
18 1
16
S 14
2 127 —— Crypt == LUFact
= 10 7 —8— Cast —e— Sparse Mat Mult
=l
2 81
g
6
4 -
2 -
0 |

No. of Threads
(b) SHORT RUNNING BENCHMARKS

FIG. 9. RESULTS OF APPLYING BEST EFFORT JIT
PARALLELIZATION. SCALABILITY OF JGF

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

transforming code on-the-fly. In LUFact, only 4 out of 32
methods consume 90.8% time. LUFact contains 15 single
and 4 nested loops. However, selected 4 methods contain
4 single and 1 nested loops (collectively), as shown in
Table 10. Most time consuming method dgefa() is called
once and contains one 2-level nested loop. Method
daxpy() and idamax() are called in inner and outer loops
of dgefa()’s nested loop, respectively. Outer loop is
parallelized to achieve a speedup of 1.2x on 8-core system.
On the same system, the speedup is not encouraging as
compared to 4x speedup of HP JGF LUFact, as shown in
Fig. 10(a). Looking at the code of HP version, we observed
that this version achieved speedup by using barrier
construct at four locations to synchronize the threads.

This type of flexibility is not supported yet in our

approach.
107 JGF LUFact Benchmark
z & N HP WBE
2 o]
2
T 41
&
kol
m 27
0 -

1 2 3 4 5 6 7 8
No. of Threads

(a) LUFACT BENCHMARK

JGF Crypt Benchmarks
451 B HP WBE

Elapsed Time (sec.)
N
i
1

1 2 3 4 5 6 7 8
No. of Threads
(c) CRYPT BENCHMARK

SparseMatMult calls 27 unique methods but only two
methods consumed 90.1% time in a single call each, as
shown in Table 10. Most time consuming method test()
contains one single and one 2-level nested loop and
second method JGFinitialise() contains one single loop.
There is no harmful data dependences in all 3 loops,
however, single loops contain trivial amount of
computation. On parallelizing all 3 loops, we observed
performance degradation as compared to sequential
version. By parallelizing only nested loop of test(), we
observed the scalability shown in Fig. 9(b), with a speedup
of 1.4x. Running HP version on the same system, we
observed a speedup of 4.1x. Scalability comparison of
both versions is given in Fig. 10(b). HP version achieves
this speed up by restructuring the implemented algorithm.

For proper load balancing, signature of hotspot test() is

207 JGF Sparse Matmult Benchmark
= B HP MBE
2 157
Py
g
=107
=
4
g 59
o
0T T T3 Ty TS T T Ty
No. of Threads
(b) SPARSEMATMULT BENCHMARK
100 7

JGF Series Benchmarks

Elapsed Time (sec.)

No. of Threads

(d) SERIES BENCHMARK. HP MIGHT OCCASIONALLY
INVOLVE ALGORITHM RESTRUCTURING

FIG. 10. COMPARISON OF BEST EFFORT (BE) RESULTS WITH THAT OF HAND PARALLELIZED VERSIONS OF JGF

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

changed to control the nested loop partitioning from
outside the hotspot. Due to the reasons mentioned in
section 1, proposed methodology works locally (i.e. within
a hotspot only) without altering the interface (i.e.

signature) of hotspot methods

Cast benchmark called 19 methods and by setting T . =
90%, we converged to 6 methods that collectively consume
91.7% time of application (Table 10). Starting from most
time consuming method JGFrun(), we found 4 nested
loops here and this method is called once. Only a single
loop is found in one of other 5 methods i.¢., in printperf().
In nested loops, compute intensive code was found in
inner loops that were parallelized. Outer loops contain
timing routines and cannot be parallelized due to the

reason mentioned in section 6.2.1. JGF Cast demonstrated

highest speedup of 7.6x. Overall, the observed speedup
isin the range 1.2 - 7.6x.

7. CONCLUSIONS

This work emphasizes that best effort JIT compiler inspired
parallelization has great potential of parallelizing
executable code at runtime. Loops in compute-intensive
applications exhibit greater parallelization potential, which
makes it a worthwhile option. Although it may not be able
to parallelize each and every application, it is plausible to
exploit parallelism without programmer intervention. Best
effort exploits parallelism wherever possible and there is
no harm because transformations are not made permanent.
In case of failure, sequential execution could be restored.
However, in case of success, transformations could be
made permanent at any time. The main contributions of

this paper include: (1) catalogs of qualitative and

TABLE 10. PARALLELIZATION POTENTIAL OF JGF BENCHMARK APPLICATIONS

TPC =100% TPC = 90%
Benchmark

Nmo |6 | & |6 |6 RN
Arith 19 1805 1 12 2843 1929 1 1 0 12 2249 1913
Assign 21 1597 1 10 2802 1916 1 1 0 10 2114 1900
Cast 19 641 1 4 1458 776 6 146 1 4 1033 776
Create 29 1E+08 1 15 3119 2155 2 2E+07 0 15 2455 2139
Loop 19 482 1 3 819 186 7 161 1 3 427 186
Math 19 3875 1 30 5308 3904 1 1 0 30 4714 3888
Method 33 9E+07 1 8 1749 927 7 6E+07 0 8 1106 911
Serial 25 2E+06 9 4 1738 708 1 1 8 4 1142 692
Crypt 30 48 8 1 1966 798 1 2 0 1 390 374
FFT 30 37 5 2 1663 563 2 3 1 1 472 399
HeapSort 28 2E+06 4 1 1079 230 2 1E+06 2 1 156 131
LUFact 32 3E+05 15 4 2169 820 4 3E+05 4 1 482 284
Series 28 2E+07 2 1 1144 158 2 2E+07 1 0 115 22
SOR 26 26 0 3 1058 147 2 2 0 3 218 147
SparseMatMult 27 27 3 1 1080 124 2 2 2 1 187 107
MolDyn 35 4E+05 12 3 3196 1349 4 3E+05 1 1 878 591
RayTracer 68 4E+08 4 2 3092 525 4 4E+08 1 0 260 61
ABSearch 39 TE+07 18 2 3241 782 5 SE+07 4 2 816 354

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

84

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

qualitative features for runtime code comprehension; (2)
compact intermediate representation of ISA and
instruction pattern recognition for dependence analysis;
(3) threading framework; and (4) a set of algorithms to
profile and parallelize DOALL loops.

With increasing number of cores per chip, it is now
possible to use at least part of this compute power to
analyze the runtime characteristics of an application with
minimal impact on expected performance. Such information
can be exploited to improve the application performance.
Such approaches are particularly beneficial for complex
long-running applications, which may not be simple to
analyze manually. Loops are one of the simplest constructs
that can be extracted from any type of code. Our work is
an effort to demonstrate the feasibility of this approach.
In past efforts, success criteria of an automated or semi-
automated parallelization approach has been based on
achievable speedup. When compared with manually
parallelized applications, these approaches do not fare
well because one parallelization technique may work for a
few parts of the code but degrades others. Restricting to
hotspots and ability to reverse parallelization transforms
at runtime enhances the possibilities of parallelizing long
running compute-intensive applications. By relaxing the
speedup requirements, it is possible to try multiple
techniques for different parts of application code at runtime

to achieve optimal performance with no user input.
8. FUTURE WORK

This work proposes a best effort parallelization
methodology that could be used within the front end of
JIT (i.e. dynamic) compiler. Integration of this
methodology in an actual dynamic compiler is the obvious
next step. We have designed a development project to

integrate this methodology in an open source JIT compiler.
ACKNOWLEDGEMENT

This research was conducted during Ph.D. study of first
author, at University of Engineering & Technology,

Lahore, Pakistan.

REFERENCES

[1]

(2]

(3]

[4]

(51

(6]

[7]

(8]

[9]

[10]

[11]

[12]

Zhang, T.Y., and Suen, C.Y., “A Fast Parallel Algorithm
for Thinning Digital Patterns”, Communications of the
ACM, Volume 27, No. 3, pp. 236-239, 1984.

Alfredo Buttaria, J.L., Kurzaka, J., and Dongarra, J., “A
Class of Parallel Tiled Linear Algebra Algorithms for
Multicore Architectures”, Parallel Computing Volume
35, No. 1, pp. 38-53, 2009.

Wang, Y., Fan, J., Liu, W., and Han, Y., “A Parallel
Algorithm to Construct BISTs on Parity Cubes”, IEE
Proceedings of 2nd International Conference on
Information Science and Control Engineering,
pp. 54-58, 2015.

Polychronopoulos, C.D., Girkar, M., Haghighat, M.R.,
Lee, C.L., Leung, B., and Schouten, D., “Parafrase-2:
An Environment for Parallelizing, Partitioning,
Synchronizing, and Scheduling Programs on
Multiprocessors”, International Journal of High Speed
Computing, Volume 1, No. 1, pp. 45-72, 1989.

Haghighat, M., and Polychronopoulos, C., “Symbolic
Program Analysis and Optimization for Parallelizing
Compilers”, Springer Berlin Heidelberg, pp. 538-562,
1993.

Whaley, J., and Kozyrakis, C., “Heuristics for Profile-
Driven Method-Level Speculative Parallelization”,
Proceedings of International Conference on Parallel
Processing, pp. 147-156, 2005.

Tournavitis, G., Wang, Z., Franke, B., and O’Boyle,
M.F.P., “Towards a Holistic Approach to Auto-
Parallelization: Integrating Profile-Driven Parallelism
Detection and Machine-Learning Based Mapping”, ACM
SIGPLAN Notices, Volume 44, No. 6, pp. 177-187,
2009.

Jang, H., Kim, C., and Lee, J.W., “Practical Speculative
Parallelization of Variable-Length Decompression
Algorithms”, ACM SIGPLAN Notices, Volume 48,
pp. 55-64, 2013.

Jimborean, A., Clauss, P., Martinez, J.M., and Sukumaran-
Rajam, A., “Online Dynamic Dependence Analysis for
Speculative Polyhedral Parallelization”, Euro-Par,
Parallel Processing, pp. 191-202, 2013.

Liu, B., Zhao, Y., Li, Y., Sun, Y., and Feng, B., “A Thread
Partitioning Approach for Speculative Multithreading”,
The Journal of Supercomputing, Volume 67, No. 3,
pp. 778-805, 2014.

Yiapanis, P., Rosas-Ham, D., Brown, G., and Lujan, M.,
“Optimizing Software Runtime Systems for Speculative
Parallelization”, ACM Transactions on Architecture and
Code Optimization, Volume 9 No. 4, 2013.

Alle, M., Morvan, A., and Derrien, S., “Runtime
Dependency Analysis for Loop Pipelining in High-Level
Synthesis”, Proceedings of 50th Conference on Annual
Design Automation, pp. 51:1-51:10, ACM, 2013.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

85

Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Aumage, O., Barthou, D., Haine, C., and Meunier, T.,
“Detecting Simdization Opportunities through Static/
Dynamic Dependence Analysis”, Euro-Par: Parallel
Processing Workshops, Lecture Notes in Computer
Science, Volume 8374, pp. 637-646, 2014.

Tzenakis, G., Papatriantafyllou, A., Vandierendonck, H.,
Pratikakis, P., and Nikolopoulos, D., “BDDT: Block-
Level Dynamic Dependence Analysis for Task-Based
Parallelism”, Advanced Parallel Processing Technologies,
Lecture Notes in Computer Science, Volume 8299,
pp. 17-31, 2013.

Verdoolaege, S., Carlos Juega, J., and Cohen, A.,
“Polyhedral Parallel Code Generation for CUDA”, ACM
Transactions on Architure Code Optimum, Volume 9
No. 4, pp. 54:1-54:23, 2013.

Steffan, J.G.,, Colohan, C.B., Zhai, A., and Mowry, T.C.,
“A Scalable Approach to Thread-Level Speculation”,
ACM, Volume 28, No. 2, pp. 1-12, 2000.

Harris, T., Cristal, A., Unsal, O.S., Ayguade, E., Gagliardi,
F., Smith, B., and Valero, M., “Transactional Memory:
An Overview”, IEEE Micro, Volume 27, No. 3,
pp- 8-29, 2007.

Bik, A.J., and Gannon, D., “A Prototype Bytecode
Parallelization Tool”, Concurrency - Practice and
Experience, Volume 10, Nos.11-13, pp. 879-885, 1998.

Aycock, J., “A Brief History of Just-in-Time”, ACM
Computing Surveys, Volume 35, No. 2, pp. 97-113,
2003.

Pemberton, S., and Daniels, M., “Pascal Implementation:
The P4 Compiler and Interpreter”, Ellis Horwood, 1982.

Ierusalimschy, R., DeFigueiredo, L.H., and Celes, W.,
“The Implementation of Lua 5.0, Journal of Universal
Computer Science, Volume 11, No. 7, pp. 1159-1176,
2005.

Mustafa, G., Waheed, A., and Mahmood, W., “SeekBin:
An Automated Tool for Analyzing Thread Level
Speculative Parallelization Potential”, Proceedings of
7th IEEE International Conference on Emerging
Technologies, pp. 1-6, 2011.

Knuth, D.E., “An Empirical Study of FORTRAN
Programs”, Software: Practice and Experience,
Volume 1, No. 2, pp. 105-133, 1971.

Mathew, J. A., Coddington, P. D., and Ha-wick, K. A.,
“Analysis and development of Java Grande benchmarks,”
Proc. 1999 conference on Java Grande, USA, ACM,
pp. 72-80, 1999.

Hinsen, K., “A Glimpse of the Future of Scientific
Programming”, Computing in Science & Engineering,
Volume 15, No. 1, pp. 84-88, 2013.

Osterlund, E., “Garbage Collection Supporting Automatic
JIT Parallelization in JVM”, LNU, 2012.

Osterlund, E., and Lowe, W., “Analysis of Pure Methods
Using Garbage Collection”, Proceedings of ACM
SIGPLAN Workshop on Memory Systems Performance
and Correctness, pp. 48-57, Beijing, China, 2012.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Osterlund, E., “Automatic Memory Management System
for Automatic Parallelization”, LNU, 2011.

Koch, T.J.K.E.V,, and Bjorn, F., “Limits of Region-Based
Dynamic Binary Parallelization”, SIGPLAN Notices,
Volume 48, No. 7, pp. 13-22, 2013.

Leung, A., Lhotak, O., and Lashari, G., “Automatic
Parallelization for Graphics Processing units”,
Proceedings of 7th International Conference on
Principles and Practice of Programming in Java, Calgary,
pp- 91-100, Alberta, Canada, 2009.

Monteyne, M., “Rapidmind Multi-Core Development
Platform”, RapidMind Inc., Waterloo, Canada, February,
2008.

Hammacher, C., Streit, K., Hack, S., and Zeller, A.,
“Profiling Java Programs for Parallelism”, Proceedings
of ICSE Workshop on Multicore Software Engineering,
pp. 49-55, 2009.

Christopher, J.F.P., Clark, V., and Allan, K., “LIBSPMT:
A Library for Speculative Multithreading”, Sable
Technical Report, 2007.

Pickett, C.J.F., and Verbrugge, C., “SableSpMT: A
Software Framework for Analysing Speculative
Multithreading in Java”, Proceedings 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, pp. 59-66, Portugal, 2005.

Carlstrom, B.D., Chung, J., Chafi, H., McDonald, A.,
Minh, C.C., Hammond, L., Kozyrakis, C., and Olukotun,
K., “Transactional Execution of Java Programs”,
OOPSLA Workshop on Synchronization and
Concurrency in Object-Oriented Languages, 2005.

Chen, M.K., and Olukotun, K., “The JRPM System for
Dynamically Parallelizing Sequential Java Programs”,
IEEE Micro, Volume 23, No. 6, pp. 26-35, 2003.

Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan,
G., Bala, K., and Chew, L.P., “Optimistic Parallelism
Requires Abstractions”, Communication ACM,
Volume 52, No. 9, pp. 89-97, 2009.

Chan, B., and Abdelrahman, T.S., “Run-Time Support
for the Automatic Parallelization of Java Programs”,
Journal Supercomputer, Volume 28, No. 1, pp. 91-117,
2004.

Singer, J., Brown, G., Lujan, M., Pocock, A., and
Yiapanis, P., “Fundamental Nano-Patterns to
Characterize and Classify Java Methods”, Electronic
Notes in Theoretical Computer Science, Volume 253,
No. 7, pp. 191-204, 2010.

Bik A. J. C., and Gannon D. B., “Automatically exploiting
implicit parallelism in Java,” Concurrency: Practice and
Experience, vol. 9, no. 6, pp. 579-619, 1997.

Bruneton, E., Lenglet, R., and Coupaye, T., “ASM: A
Code Manipulation Tool to Implement Adaptable
Systems”, Technical Report, France Telecom R&D,
2002.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 1, January, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

86

