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 This study investigates shovel excavation performance across various rockmass 

conditions by integrating real-time performance assessments, rockmass property 

analysis, and machine learning techniques. The Excavatability of rock masses 

under varied conditions, including variations in sediment types (e.g., sand, silt, 

clay), geological structure, and physical properties such as moisture content and 

density. Correlation analysis revealed significant positive relationships between 

Total Loading Time (TLT) and selected rock properties, specifically uniaxial 

compressive strength (UCS), tensile strength (TS) cohesion (C), and moisture 

content (M), and a negative correlation was observed with wet bulk density 

(WBD). Pareto analysis further highlighted C, UCS, and TS as the most impactful 

factors, cumulatively accounting for 56% of the total effect on excavation 

performance. A multiple linear regression model, using TLT as the dependent 

variable and significant rock properties (C, UCS, M) as predictors, achieved a 

strong correlation (R=0.76) and explained 76% of the variance, demonstrating the 

model’s effectiveness in estimating shovel performance. K-nearest neighbors 

(KNN) classification, optimized with a k-value of 7 and Manhattan distance, 

achieved a high accuracy of 99.43% in categorizing the excavation difficulty into 

four distinct classes. The frequency distribution of TLT data indicates that most 

materials in the pit are categorized under the “Very Easy” and “Easy” classes, 

simplifying excavation processes. This research underscores the importance of the 

key rock properties in evaluating the excavation performance predictions and 

supporting optimized operational strategies in mining. Future work could expand 

on these findings by using additional machine-learning techniques and exploring 

non-linear models to capture complex relationships. 

1. Introduction 

Global trends in economics, technical, and 

geopolitical developments are driving higher demand 

for minerals, influencing mining operations [1]. 

Surface mining, particularly open-pit mining, is 

favored for its higher production rates and simpler 

operational processes as compared to underground 

techniques [2]. Open pit mining is a commonly 

practiced surface exploitation technique, which 

involves the construction of benches (or levels) within 

the earth’s crust to uncover the targeted mineral, and 

subsequently excavate it [3]. The unit operations in 

open pit mining involve three key operations, i.e., 

removal of overburden, extraction of the mineral, and 

transportation of overburden and mineral to their 

respective destination. Heavy excavation equipment 
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such as draglines, hydraulic excavators, and bucket 

wheel excavators (BWEs) are vital to the process, and 

their effective utilization is critical to minimizing costs 

and optimizing production. Utilization of equipment, 

especially hydraulic shovels, is influenced by the 

geological and geomechanical characteristics of the 

rockmass. Equipment performance can be affected by 

the heterogeneity of the lithology, where different rock 

types and properties exist at varying pit levels. To 

optimize shovel usage, variability in the rockmass 

properties needs to be addressed. This variability, in 

turn, impacts loading times and the performance of the 

shovel at different pit levels [4]. A substantial capital 

investment is made in the procurement of mining 

equipment. Hence, the effective utilization of the 

equipment is one of the main economic considerations 

in every surface mining project [5, 6]. 

Equipment utilization indicates how effectively it 

is deployed and its contribution to overburden removal 

and the excavation of minerals [7]. The rockmass 

behavior significantly affects the excavation 

performance of mining equipment. The deployment of 

equipment must consider the geological and 

geomechanical characteristics of the rockmass to meet 

production requirements at each bench and 

simultaneously maintain the overall slope of the pit 

[8]. Excavators, notably hydraulic shovels, have 

gained widespread popularity due to their variety in 

terms of scale of operation, especially when used for 

excavating soft sedimentary rocks. Hydraulic-

operated shovels are now commonly employed in 

mining and civil worksites, playing a crucial role in 

both, the drill-blast excavation, and the mechanical 

excavation methods [9]. The optimization of shovel 

utilization is contingent upon correlating the 

variability in rock mass properties with its 

performance parameters. This variation needs to be 

addressed by considering the lithological 

heterogeneity. Lithological heterogeneity is the 

variation in the rock mass properties at different 

working levels of the pit. The material being excavated 

and loaded by the shovel may vary from sandy, 

unconsolidated mass to soundly compacted rock mass. 

Additionally, high-strength rock layers may be 

interbedded with lower-strength layers, or vice versa. 

In either case, the excavation performance of the 

hydraulic shovel significantly varies. Therefore, the 

shovels working at various levels will take different 

loading times to excavate the material from the bench 

face and load it into the truck. 

Excavatability is a critical concept in mining and 

geotechnical engineering, which relates to how easily 

soil or rock can be dug up using excavation machinery, 

such as hydraulic shovels or other earth-moving 

equipment. It plays a key role in the efficiency, costs, 

and safety of excavation projects, particularly in the 

mining industry. The key aspects of excavatability 

include rockmass parameters and operational 

parameters for a shovel-truck mining system (Fig. 1). 

The Rockmass parameters include the mechanical, 

physical, and structural properties of rock. Literature 

indicates that the mechanical or strength properties are 

of particular importance while assessing 

excavatability. For a Shovel-truck mining system, the 

operational parameters include the shovel cycle time, 

the number of cycles to fill one truck, and the bucket 

fill factor. Considering excavation characteristics of 

rock mass is a primary aspect of mine planning and 

accomplishment of production targets safely, 

effectively, and economically. The excavatability of 

any given rock mass depends on rock mass parameters 

such as its mechanical, physical, and structural 

properties, which in turn affect the operational 

parameters of the mining equipment. On the other 

hand, it also impacts the optimum utilization of mining 

equipment and increases the risk of equipment 

breakdowns. 

 

Fig. 1. Conceptualization Of Excavatability Characteristics 

Studies have shown that the specific cutting energy 

(SCE) as determined by cutting test/cutting resistance 

developed by Orenstein and Koppel (O and K) is also 

used to classify the rock mass excavatability. Such 

classifications are useful in determining the 

excavation performance in varying rock types [10]. 

Physical characteristics of rocks including hardness, 

density, moisture, grain size, and fragment profile also 

affect the ease of excavation of rock mass significantly 

[11]. The bucket fill factor is also a principal factor in 

assessing the excavatability. The bucket fill factor is 

the actual filling of the equipment bucket compared to 

the theoretical capacity of the bucket described by the 

manufacturer. This factor significantly affects the 

excavation efficiency. Therefore, the assessment of 

excavatability requires integration of the physical 
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properties of rock mass and their effect on the bucket 

fill factor. This integration provides more accurate 

estimates of the excavation performance. Empirical 

methods such as the classification systems developed 

to classify the rockmass are used to assess the 

excavation potential of mining equipment, considering 

the geotechnical characteristics of the rockmass [12]. 

Multiple factors such as the uniaxial compressive 

strength (UCS) of rock, its weathering profile, 

discontinuity profile, and geological contact 

(unconformity) profile are considered while assessing 

the excavation capability of equipment. In this 

context, Scoble and Muftuoglu developed an index to 

represent the diggability of rockmass based on 

geotechnical parameters [9]. Additionally, an 

excavation rating system based on compressive 

strength, hardness, spacing of discontinuities, 

weathering, and seismic velocity was proposed [13]. 

However, their proposed diggability index does not 

considers the moisture content of the rocks and fails to 

classify rocks with exceptionally low UCS. 

Excavation performance is measured utilizing 

parameters including the rate of digging, payload 

frequency, and shovel productivity. Among these, the 

rate of digging is considered the most influential factor 

[14]. It describes the ratio of payload to dig time, 

indicating the importance of dig time in determining 

the overall cycle time of excavators. Dig time is a 

primary component of material handling in mining 

operations, accounting for approximately half of the 

total cycle time [15]. The time taken by an equipment 

to excavate a particular volume of rock, and fill the 

bucket is called the dig time or excavation time. It does 

not include the swing time of the excavator boom 

towards the dump truck (to empty the load carried in a 

bucket) and back swing time (required to return to face 

for the next excavation cycle) [16]. This is because 

swing times have no relevance in determining the 

excavation performance of the equipment. 

Studies have also been conducted assessing the 

relationship between excavation easements and the 

productivity of shovels. In this context, Manyele 

investigated the excavation performance of the shovel 

and concluded that the cycle time of the shovel is the 

most critical parameter for performance assessment 

[17]. This research also considers various other 

parameters including the excavator type, location of 

operation, and productivity achieved. Additionally, 

another study was performed integrating the use of 

open-pit and underground mining technology, to 

increase the effectiveness of resource extraction [18]. 

This combination leads to enhanced productivity of 

the shovel. The application of queuing theory in 

shovel-truck system optimization has been practiced 

in recent years. Research on sustainable haulage 

operations in an open pit phosphate mine was 

conducted, considering the variations in truck fleet 

size and their effect on truck waiting times in queue, 

and shovel productivity [19]. This study extended 

significant contributions toward the applications of 

queuing techniques to optimize the effectiveness of 

shovel-truck mining operations. In addition, Elijah et 

al. developed a queuing model and optimized the 

material haulage operations, highlighting the 

relationship between waiting times and shovel 

utilization [20]. 

The influence of technology and modernization in 

shovel-truck systems cannot be ignored. A recent 

study focused on electrification alternatives for mine 

transportation systems, to optimize productivity, and 

contribute to sustainability in mining activities. The 

evolution to electrified transportation systems offers a 

flexible and more adaptable solution, to achieve 

targeted demand, thus enhancing the overall 

productivity of shovels [21]. Machine learning (ML) 

algorithms have also gained prevalent popularity for 

their applications in the analysis of geological data and 

estimation of rock mass behavior. Several studies have 

highlighted the application of different ML models, 

including random forest (RF) and support vector 

machine (SVM) in estimating the occurrence of 

landslides based on geological conditions [22]. These 

algorithms are also applicable to predict excavatability 

by considering rock mass parameters such as type of 

rock, discontinuity orientation, and moisture content, 

all of which affect the ease of excavation. 

Additionally, the applications of real-time data 

acquisition using different sensors increase the 

predictive accuracy of these models and dynamically 

adjusts the decision-making process accordingly. The 

significance of real-time data in determining rockmass 

characteristics cannot be neglected. The application of 

Internet of Things (IoT) technology has proven 

particularly useful for geotechnical engineers in 

acquiring continuous data on rock mass properties, 

which are further assessed through various ML 

algorithms for the prediction of excavatability. These 

techniques not only account for reliability in decision-

making but also provide faster processing of outputs 

for excavation operations. Integration of real-time 

rockmass monitoring systems using ML techniques 

also assists in identifying the possible hazards before 

the occurrence of an accident, as a result improving the 
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cost-effectiveness and downtimes associated with 

geological uncertainty [23, 24]. 

In conclusion, the reviewed literature indicates that 

excavatability assessment is crucial for the optimum 

utilization of shovel and overall productivity of open-

pit mining operations. Considering critical factors 

including rockmass properties (mechanical, physical, 

and structural), and performance parameters of the 

mining equipment will significantly increase the 

efficiency of excavation operations, minimize the 

operational expenses, and improve overall 

productivity. Advanced ML techniques, empirical 

equations for classification, and accurate 

consideration of equipment-rock mass interaction 

provide better performance predictions, eventually 

leading toward proper equipment selection, 

deployment, and decision-making agenda. 

Additionally, the combination of machine learning 

techniques and real-time data acquisition provides a 

reliable method of assessing excavatability in different 

rock mass conditions, thus proving to be a useful 

optimization tool. 

The lithology of the Thar coalfield is comprised of 

three different geomaterials, including top stratum 

Dune Sand, poorly consolidated alluvium, and loosely 

consolidated rocks of sedimentary origin. The coal 

seams of lignite origin lie in the geological formation 

identified as the Bara Formation. The sedimentary 

rocks hosting the coal seams exhibit very low UCS 

values, hence characterized as “soft sedimentary 

rocks” [25]. The excavatability classifications 

previously developed fail to indicate the excavatability 

behavior of Thar coalfield. Therefore, to address this 

gap, this research aims to determine the rockmass 

parameters that affect the excavation performance of 

hydraulic shovels and develop a classification based 

on excavation performance in soft sedimentary rocks 

at Thar Coalfield, using the KNN algorithm. This 

approach facilitates the real-time decision making for 

equipment selection and deployment. The formation 

characteristics such as unconfined compressive 

strength, ultimate tensile strength, cohesion, internal 

friction angle, density, rock quality designation, and 

moisture content were determined for each rock and 

soil layer. Based on the shovel performance in various 

rock and soil layers, an excavatability classification is 

proposed in this study. 

2. Study Area Description 

The Thar coalfield is situated in the Thar desert of 

Sindh province of Pakistan. It has about 175 billion 

tons of lignite coal making it one of the largest coal 

deposits in the world. Thar coal is currently the most 

essential and sustainable energy source of Pakistan. 

The discovery of coalfield dates back to late 1980’s, 

however the resources were confirmed through a 

detailed exploration of the area in 1994 [26]. 

The coalfield is divided into 13 blocks numbered 

in roman as per their exploration sequence. Fig. 2 

presents the layout of the Thar coalfield area [27]. The 

Thar coal project is currently the major coal producing 

project in Pakistan, which is focused on the utilization 

of Indigenous coal reserves for electricity generation. 

 

Fig. 2. Location Of The Study Area 

The Thar coalfield is comprised of three geological 

formations [28]. The top surface of the coalfield is 

composed of undulating and thick dunes of Recent 

formation deposited during the Quaternary period. 

Lithologically, the Recent formation is composed of a 

blend of sand, silt, and clay [2]. The Subrecent 

Formation underlying the Recent Formation, also 

deposited during the same period. These are alluvial 

deposits consisting of silty sand, sandstone, siltstone, 

and claystone. Finally, meets the Bara Formation 

which contains the coal seams, deposited during the 

Tertiary period of the Cenozoic era. The coal-bearing 

formation consisted of a sequence of coal seams of 

varying thickness, deposited at about 130 meters and 

250 meters deep, with a cumulative seam thickness of 

1.45 – 42.6 meters [29]. 

This entire stratum is slightly dipping at about 2⁰, 

which makes it structurally simple, and no major fault 

zones are encountered within the coalfield. The Bara 

formation rests upon the major unconformity, 

underlain by the granite basement zone deposited 

during the Precambrian era [30]. Due to a long and 

consistent period of erosion and non-deposition, the 
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basement granite is highly weathered, medium 

compact composed of coarse to fine quartz grains, and 

a small deposit of rhyolite and diorite. Fig. 3 presents 

the generalized lithology and stratigraphy of the Thar 

coal basin. 

 

Fig. 3. Generalized Lithology and Stratigraphy Of Coal 

Basin 

At the base of the Recent formation lies the dune 

sand aquifer. This aquifer is present all over the Thar 

desert and on the Indian side. The water column in this 

aquifer is only around one to five meters at maximum. 

Near the base of the Subrecent Formation, the 

Subrecent aquifer is located, which is widely spread 

over the entire Thar area. This aquifer is 0 to 12 meters 

in thickness with an average thickness of six meters. 

The bottom aquifer, also known as the footwall 

aquifer, is present at the base of the Bara formation, 

also extending the overall coalfield area, with a 

variable thickness ranging between 30 to 50 meters. 

3. Methodology 

3.1 Data Collection 

The study involves extensive data collection through 

real-time on-site investigations focusing on the 

excavation operations and performance of shovels in 

varying lithological units of the open pit mine. The 

shovels considered in this study are backhoe-type 

hydraulic-operated having a bucket capacity of seven 

cubic meters (heaped). These shovels were loading 

two different variants of trucks, i.e., for overburden 

and coal. The trucks used to carry overburden loads to 

dumpsites are thirty-four cubic meter capacity trucks, 

whereas the trucks used to transport excavated coal to 

the crushing plant are fifty-four cubic meters. The 

difference in truck capacity is justified by matching 

their load (tonnage) capacity, because the Coal is less 

dense as compared to the overburden and inter-burden 

rock/soil material. 

The data collection methodology involved the 

recording of videos of shovels’ excavation operations. 

The key performance parameters of the shovel are then 

extracted from these videos, including shovel cycle 

time (SCT), number of cycles (N) to fill a truck, total 

loading time (TLT), and bucket fill factor (BFF). The 

performance parameters are then correlated with 

major rock mass properties such as uniaxial 

compressive strength (UCS) in MPa, tensile strength 

(TS) in MPa, cohesion (C) in kPa, internal friction 

angle (ɸ) in degrees, moisture content (M) in %, wet 

bulk density (WBD) in tons/m3, and rock quality 

designation (RQD) in %. These rock properties were 

acquired from previous studies comprising the in-situ 

and laboratory investigations [25, 31]. The laboratory 

tests were conducted following standardized 

procedures outlined in American Society for Testing 

and Materials (ASTM) and International Society for 

Rock Mechanics (ISRM) guidelines, to ensure 

reliability, and accuracy of the input parameters [32-

34]. This data collection methodology integrates the 

geotechnical and operational parameters, to gain a 

clear understanding of how the rock mass properties 

affect the excavation performance of the shovel [1]. 

The performance of shovels at various rock and soil 

layers is analyzed, each showing different 

excavatability behavior. The variation in rock 

properties showed a considerable impact on the 

operational effectiveness of the shovel. The Total 

Loading Time (TLT) is considered a major 

performance indicator in this study. 

3.2 Nomenclature Of The Operational Parameters 

For Excavatability Assessment 

This section presents the description of the operational 

parameters extracted from the videos. Each parameter 

is defined with a notation and unit of measure. 

- Truck Capacity (Ctruck), m3 – The Total 

volume of material that can be filled in a truck. 

- Bucket Capacity (Cbucket), m3 – The Total 

volume of material that can be filled in a 

Shovel Bucket. 

- Number of Cycles (N) – The total number of 

loading cycles a shovel takes to fill one truck. 

- Shovel Cycle Time (SCT), sec. – The time 

taken by a shovel to load one bucket, swing 

towards the truck position, empty the bucket 
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in the truck, and swing back to a position for 

the next loading. 

- Spotting Time (Tspot), sec. – The time taken 

by a truck to spot itself at the loading position. 

- Leaving Time (Tleave), sec. – The time taken 

by a truck to leave the loading spot. 

- Bucket Fill Factor (BFF), % – The percentage 

of available volume in an excavator bucket 

that is filled. 

- Total Loading Time of Truck (TLT), sec. – 

The total time a Shovel takes to fill one truck 

including its spotting and leaving times at the 

loading point. The spotting and leaving times 

of trucks are included in the TLT because the 

shovel engages in the excavation work while 

the loaded truck departs from the loading spot 

and an empty truck gets positioned for 

loading. In this way, the TLT provides a 

comprehensive measure of the entire 

excavation and loading cycle. 

The bucket fill factor and Total Loading Time were 

calculated using the following equations: 

𝐵𝐹𝐹 =
𝐶𝑡𝑟𝑢𝑐𝑘

𝑁×𝐶𝑏𝑢𝑐𝑘𝑒𝑡
× 100           (1) 

𝑇𝐿𝑇 = (𝑆𝐶𝑇 × 𝑁) + 𝑇𝑠𝑝𝑜𝑡 + 𝑇𝑙𝑒𝑎𝑣𝑒       (2) 

3.3 Correlation Of Rock Mass Properties With Total 

Loading Time (TLT) 

The study investigates the relationship between total 

loading time (TLT) and rock mass properties across 

various working levels (benches) to evaluate the 

predictive significance of geotechnical parameters on 

excavatability. Linear multiple regression analysis is 

conducted to model the relationship between TLT and 

the corresponding rock properties at each working 

level. The proposed regression model is validated by 

comparing the predicted TLT, based on rock 

properties, with the actual shovel performance 

observed in the field. This accounts for the evaluation 

of the model’s accuracy in the prediction of shovel 

performance and excavatability. Additionally, this 

study involves the application of the K-nearest 

Neighbors (KNN) classification algorithm to classify 

the strata into unique classes based on the predicted 

TLT data. These categories reflect various levels of 

excavatability, ranging from easy to difficult, based on 

the TLT predictions. Finally, an excavatability 

classification is proposed, which classifies various 

rock and soil layers into different classes, also 

describing the corresponding level of effort required 

to excavate the rock/soil material. 

The comprehensive methodology used in this study 

includes the regression analysis, its statistical 

validation, and excavatability classification presented 

in Fig. 4. 

 

Fig. 4. Methodology Flowchart 

4. Excavation Performance Assessment 

The shovel operation data was acquired through real-

time performance assessment by recording the videos 

of the excavation and loading operation for ten 

working shifts, equal to 80 working hours. A total of 

40 shovels were recorded during the stated time 

duration, and the operational parameters such as, 

number of trucks, number of shovels, shovel cycle 

time, total loading time, and bucket fill factor were 

extracted from the recorded videos that are presented 

in Table 1, along with the respective rock mass 

properties. 

A significant variation in the shovel operating 

parameters across different rock and soil layers was 

observed, as summarized in Fig. 5 (a-d). 

 

Fig. 5. Variation In Shovel Operational Parameters
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Table 1 

Rock mass properties of various lithological units and corresponding excavatability parameters 
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PIT BOTTOM 

In Table 1, the UCS is described as uniaxial 

compressive strength, and defines the peak 

compressive load bearing capacity rocks. TS is the 

indirect tensile strength, defined as the maximum 

tensile load carrying capacity. C indicates cohesive 

strength due to internal bond between the material 

particles. In soil, cohesion is due to inter-particle 

forces, such as electrostatic attractions, cementation, 

and the interblended clay minerals or moisture. In 

rocks, cohesion results from mineral interlocking, 

cementation, and the intrinsic strength of the material. 

The internal friction angle (ɸ) is a fundamental 

geotechnical property indicating the shear strength of 

a rock or soil due to particle interlocking and friction. 

Moisture content (M) is the amount of water present 

within the pores of rocks and soil, usually expressed 

as a percentage of the material’s dry weight. Wet bulk 

density (WBD) refers to the total mass of material 

(solid and water) per unit volume. RQD is the rock 

quality designation, a basic geological parameter 

indicating the percentage recovery of core pertaining 

to the presence of geological anomalies (faults, joints, 

and bedding planes). 

The rock properties presented in Table 1 were 

compared with the respective TLT values by a 

correlation analysis to check the impact of individual 

rock properties on the excavatability. The results of the 

correlation analysis are presented in Fig. 6. From the 
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correlation analysis it was observed that majority of 

the correlation coefficients lie between 0.5–1. This 

shows that there is a significant positive relationship 

between TLT and UCS, TS, C, M, and RQD. An 

inverse correlation was observed between the TLT and 

WBD. However, a correlation coefficient of 0.31 was 

obtained for TLT and ɸ, indicating a moderate 

relationship. 

 

Fig. 6. Correlation Coefficients Of Various Parameters 

Additionally, the Pareto analysis was performed to 

assess the significance or impact of each rock property 

on the excavation performance of the shovel. For this 

reason, the TLT was compared with rock properties 

and showed a strong correlation. Fig. 7 presents the 

Pareto chart showing the analysis results. It can be 

observed that cohesion has the highest impact (0.84), 

contributing to 20% of the total cumulative effect. This 

indicates that cohesion is the most significant rock 

property influencing excavation performance. The 

UCS has an impact of 0.75 and brings the cumulative 

percentage to 38%. It is the second most influential 

factor. Tensile strength has an impact of 0.74, bringing 

the cumulative to 56%, showing it is another crucial 

factor after UCS. The moisture content has an impact 

of 0.68 and pushes the cumulative percentage to 72%, 

indicating that moisture also plays a considerable role. 

The WBD shows an impact of 0.60, increasing the 

cumulative percentage to 87%. Its contribution is 

significant but lower compared to the previous factors. 

The RQD has the lowest impact (0.55) but raises the 

cumulative percentage to 100% indicating that it is the 

least significant factor among those analyzed. 

Therefore, the RQD and the friction angle (ɸ) are not 

considered for the analysis of excavatability. The red 

line represents the cumulative percentage. As more 

rock properties are considered, the cumulative impact 

on excavation performance increases with cohesion, 

UCS, and tensile strength contributing the most to the 

total impact. 

 

Fig. 7. Pareto Analysis For The Impact Of Rock Properties 

On Excavation Performance Of Shovel 

To predict the excavatability using the rock mass 

properties, a multiple regression analysis approach is 

effective, as it allows for the combination of various 

rock characteristics to develop an empirical model. In 

this context, the model was created using the 

excavation performance data from the shovel (TLT) as 

the dependent variable for 134 trucks allocated to 

shovels working at various levels of the pit, and the 

corresponding rock properties as independent 

variables. 

The regression analysis performed using five 

independent variables revealed that the predictors such 

as C (kPa), UCS (MPa), and M (%) have statistically 

significant relationships with the dependent variable. 

However, TS (MPa) and WBD (t/m3) do not have 

significant p-values, meaning that they do not 

contribute to the model. Therefore, the model was 

further analyzed, removing the insignificant predictors 

(TS and WBD) to improve the statistical significance. 

The correlation coefficient (R) of the improved model 

indicates a strong positive correlation between the 

observed and predicted values of the dependent 

variable (TLT). It shows that the model’s predictions 

are strongly related to the actual outcomes. The 

coefficient of determination (R2) shows that about 

76% of the variance in Total Loading Time (TLT) is 

explained by the independent variables (C, UCS, M), 

indicating that the model is a good fit. Adjusted R 

square of 0.75 is slightly lower than the R2 explaining 

the model is well-fitted but does not overfit the data. 

A standard error of 27.57 represents the average 

distance between the observed values and the 

predicted values (residuals). A lower standard error 

indicates better predictive accuracy of the model. The 

higher F-statistic value (35.033) validates the overall 

statistical significance of the model, and it fits the data 

well. The p-value associated with the F-statistic is 

zero, which is less than the typical threshold of 0.05. 

This confirms that the overall regression model is 
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statistically valid, and at least one of the predictors has 

a significant influence on the dependent variable. 

The developed regression model for the estimation 

of TLT from rock properties is expressed in eqn. 3: 

𝑇𝐿𝑇 = 29.3 𝑈𝐶𝑆 + 0.4 𝐶 − 0.92 𝑀 + 167.26    (3) 

Here, TLT = Total truck loading time (sec), 

UCS = Uniaxial compressive strength (MPa), 

C = Cohesion (kPa), 

M = Moisture content (%). 

The developed model has a strong correlation 

between TLT and rock properties, as indicated by the 

high R-squared value in the analysis. This suggests 

that the linear combination of these rock properties can 

explain a substantial portion of the variability in TLT. 

The results are significant within a 95% confidence 

interval, implying that the predictions made by the 

model are statistically reliable. The intercept (167.26) 

indicates that when all predictors (C, UCS, M) are 

zero, the TLT is expected to be 167.26 seconds. For 

every 1-unit increase in UCS (MPa), the TLT 

increases by approximately 29.3 seconds, and the low 

p-value (0.00) indicates that this variable is significant 

and plays a critical role in the model. Similarly, a 1-

unit increase in C (kPa) increases the TLT by 0.40 

seconds, and a lower p-value (0.00) also makes it a 

statistically significant parameter. In the case of 

predictor M (%), an inverse relationship was indicated 

with a coefficient of 0.92 and p-value of 0.00 

validating its implication on the TLT. 

Additionally, the variance inflation factor (VIF) 

analysis was performed to check the multicollinearity 

(correlation among the independent variables) that 

exists in the models. VIF values indicate how much a 

predictor’s variance is inflated due to 

multicollinearity. VIF values less than 1 indicate no 

multicollinearity, between 1 to 5 indicate moderate 

multicollinearity (acceptable), and greater than five 

indicate multicollinearity (not acceptable). 

Tables 2-5 present the summary and validation of 

the regression model and interpretation of 

corresponding metrics. 

Table 2 

Regression statistics 

Metric Value 

Multiple R 0.87 

R-square 0.76 

Adjusted R-square 0.75 

Standard Error 27.57 

Observations 134 

Table 3 

ANOVA table 

Source of 

Variation 

df SS MS F Sig. 

F 

Regressi

on 

3 307,967 102,6

55.7 

135.03

3 

0.000

0 

Residual 130 98,829.6 760.2

2877 

  

Total 133 406,796.6    

Table 4 

Coefficients and statistical significance 

Varia

ble 

Coeffici

ent 

Stand

ard 

Error 

t-

Stat 

p-

val

ue 

Low

er 

95% 

Upp

er 

95% 

Interc

ept 

167.26 6.34 26.

40 

0.0

0 

154.

73 

179.

79 C 

(kPa) 

0.40 0.06 7.1

2 

0.0

0 

0.29 0.51 

UCS 

(MPa) 

29.29 5.10 5.7

4 

0.0

0 

19.2

0 

39.3

8 M (%) -0.92 0.23 -

4.0

4 

0.0

0 

-

1.37 

-047 

Table 5 

Variance Inflation Factor (VIF) analysis 

Variable 𝑹𝟐 VIF 

C (kPa) 0.664 2.97 

UCS (MPa) 0.644 2.80 

M (%) 0.0005 1.00 

5. Excavation Performance Assessment 

The K-nearest Neighbors (KNN) algorithm for 

classification was applied to classify the digging 

behavior of the shovel, specifically for understanding 

the digging ease of the rockmass. This was done by 

dividing the TLT values into four distinct classes. 

Each class represents distinct levels of performance in 

terms of how easily the shovel can dig through various 

rock and soil zones. The TLT values reflect the 

performance of the shovel in different rock mass 

conditions based on various rock properties. KNN 

analysis was performed using the R-Project software. 

Based on the performance of shovels in different rock 

and soil zones, the TLT data was classified into three, 

four, and five classes. The k initial k value (k=12) was 

determined using the “Square Root of N rule”, where 

N represents the total number of data points analyzed. 

Additionally, the model’s performance was also 

evaluated for different values of k by performing grid-

search and cross-validation techniques and 

determining the optimal k value. It was observed that 

the optimal number of neighbors (k=7) is significantly 

lower than the initial value of 12. This means that 

fewer but more relevant neighbors improve the 

classification performance. Using distance-based 
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weighting helps prioritize closer neighbors, which is 

useful in regions with varying data densities (i.e., 

densely, and sparsely populated areas of TLT data).  

The Manhattan distance metric (L1 distance) 

seems to work better for this data set compared to 

Euclidean distance. This may be because the data 

distribution follows a more grid-like or stepwise 

pattern, where straight line (L2) distance does not 

capture the true difference between the points as 

effectively. The cross-validation accuracy for the 

optimized model is 99.43. The KNN model minimizes 

the variability between classes, ensuring that each 

class is distinct in terms of excavation difficulty.  

Furthermore, for practical improvements, the 

excavation classes were extended by analyzing the 

frequency distribution of the existing TLT data. The 

histogram (Fig. 8) is a graphical representation of the 

extended excavation classes. 

 

Fig. 8. Graphical Representation Of Excavatability Classes 

Based On TLT 

It can be observed that the green shaded region 

represents Excavatability Class-I, described as Very 

Easy to excavate. The histogram shows a high 

frequency of occurrences, reflecting that most of data 

points fall within this range. The blue-shaded portion 

of the histogram indicates Excavatability Class-II, 

described as Easy to excavate. The frequency 

distribution peaks here, indicating a large 

concentration of data within this range. Excavatability 

Class-III, described as Moderate to excavate, is 

represented by the orange shaded region of the 

histogram. There is a noticeable cluster of data points 

in this range, though the frequency is slightly lower 

than in the previous class. Highlighted in the red 

portion of the histogram indicates the Excavatability 

Class-IV, described as Hard to excavate. Data in this 

range are sparser but still significant, with a consistent 

distribution up to around 370 seconds. 

The frequency distribution analysis shows that the 

data are normally distributed across the four classes, 

but with noticeable peaks in the “Very Easy” and 

“Easy” categories, suggesting that a huge portion of 

the materials are easy to manage. 

The summary of classification is presented in Table 6. 

Table 6 

Excavatability classification for soft sedimentary rocks 

Excavatabi

lity Class 

KNN 

TLT 

Rang

es 

(sec) 

Extend

ed TLT 

Ranges 

(sec) 

Rockmass 

descriptio

n 

 

Interpretat

ion 

Class-I 

(Very 

Easy) 

130 – 

171 

< 175 Very Low 

UCS, no 

cohesion, 

high 

moisture 

Represent 

zones with 

the easiest 

digging 

condition, 

shovel 

performs 

efficiently

. 

Class-II 

(Easy) 

178 – 

225 

175 – 

230 

Low UCS, 

low 

cohesion, 

average 

moisture 

Represent 

zone with 

the normal 

digging 

condition, 

shovel 

performs 

well. 

Class-III 

(Moderate) 

232 – 

277 

231 – 

280 

Moderate 

UCS, high 

cohesion, 

low 

moisture 

Represent 

zones with 

moderate 

digging 

difficulty, 

shovel 

takes a 

reasonable 

amount of 

time to 

load 

material. 

Class-IV 

(Hard) 

> 284 > 280 Moderate 

UCS, 

average 

cohesion, 

exception

ally low 

moisture 

Represent 

areas with 

the most 

difficult 

digging 

conditions

, shovel 

takes a 

much 

longer 

time to 

load a 

truck. 
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The application of KNN in Thar is new in context 

of real-time categorization for softer overburden and 

coal. The study achieved significant accuracy for 

classifying excavation difficulty, aligning with global 

benchmarks, despite the unique geological 

characteristics of the region. The KNN algorithm is a 

non-parametric, linear modeling-based classification 

technique. Therefore, this study does not address the 

non-linear relationships between rock mass properties 

and excavatability. Despite these limitations, the 

findings of this study offer practical benefits such as, 

optimization of excavation operations, improved 

equipment selection and matching, cost reduction and 

resource allocation, adaption to varying rock mass 

behavior, and short-term planning in open-pit mines. 

6. Conclusions 

The analysis conducted on shovel operation data 

through real-time performance assessments, rockmass 

properties, correlations, and machine learning 

techniques provides a comprehensive understanding 

of the factors influencing excavation performance in 

various rockmass conditions. A significant positive 

correlation was found between Total Loading Time 

(TLT) and various rock properties, particularly 

uniaxial compressive strength (UCS), cohesion (C), 

and moisture content (M), while an inverse 

relationship was observed with wet bulk density 

(WBD). The Pareto analysis further highlighted 

cohesion, UCS, and tensile strength as the most 

impactful properties affecting shovel excavation 

performance, accounting for a cumulative 56% of the 

total effect. This insight underscores the importance of 

these properties in understanding rock excavatability 

and optimizing shovel performance. 

The multiple regression model developed using 

TLT as the dependent variable and significant rock 

properties (C, UCS, M) as predictors demonstrated a 

strong correlation (R=0.76) and explained 76% of the 

variance in TLT. This model, validated with high R-

squared and F-statistic values, shows that the selected 

rock properties are robust predictors for estimating 

excavation performance. Removing statistically 

insignificant predictors, such as tensile strength and 

wet bulk density, improved the model’s accuracy and 

predictive reliability, achieving a 95% confidence 

interval for the predictions. Variance inflation factor 

(VIF) analysis confirms that the model’s predictors do 

not exhibit problematic multicollinearity, thus 

supporting the model’s stability. 

The application of K-nearest neighbors (KNN) for 

classifying TLT data into four classes based on 

rockmass properties provides additional insights into 

the ease of excavation. By optimizing the k-value and 

employing Manhattan distance as the metric, the 

model achieved an impressive 99.43% accuracy, 

affirming the effectiveness of KNN in distinguishing 

between different excavatability classes. The 

frequency distribution of TLT data and the histogram 

visualization of extended excavation classes 

underscore the distribution patterns within the classes. 

The frequency distribution illustrates a predominance 

of “Very Easy” and “Easy” classes, indicating that 

majority of the materials within the pit are simple to 

excavate, while smaller portions fall under more 

challenging classes. 

In conclusion, this study emphasizes the critical 

role of rock properties, particularly cohesion, UCS, 

and moisture content, in determining shovel 

excavation efficiency. The combination of regression 

and KNN classification analyses provides a robust 

framework for predicting and categorizing excavation 

performance. These findings can be leveraged to 

optimize excavation strategies, improve operational 

efficiency, and support real-time decision-making in 

surface mining operations. Specifically, the shovel 

deployment based on such criteria will effectively 

reduce time losses involved in material handling 

process and increase overall equipment effectiveness 

(OEE). Future work may expand on these findings by 

integrating additional machine-learning techniques 

and exploring non-linear models such as Decision 

Trees, Random Forests, Support Vector Machines 

(SVM) to capture more complex relationships 

between rock properties and excavation performance. 
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