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 The increasing Internet of Things (IoT) device integration in smart home 

environments has increased the options available for intelligent energy 

management. In the context of smart homes, this paper provides a detailed 

analysis on the use of IoT data for energy consumption trend prediction and 

anomaly detection. We propose a novel approach that combines the advantages of 

the Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term 

Memory (LSTM) models for accurate consumption forecasting. Real-world data 

from a smart home setting is utilised to evaluate the proposed models. Results will 

therefore show that our approach performs best in optimally utilizing resources, 

minimizing waste, and improving energy consumption. The current study 

contributes to the development of energy-efficient smart houses through 

providing a reliable method for consumption forecasting and anomaly detection. 

Results indicate that the LSTM model outperformed ARIMA in prediction 

accuracy, achieving a lower Mean Absolute Error (MAE) of 0.110 compared to 

ARIMA's 0.176. Furthermore, the LSTM model demonstrated superior 

performance in anomaly detection, with higher precision and recall scores. 

1. Introduction 

As an outcome of the emerging global concern about 

the conservation of energy and sustainability, there has 

been a rigorous change in expanding energy-saving 

technologies and strategies. Smart homes 

incorporating IoT have become a source of reducing 

pollution impacting the environment, enhancing user 

contentment, and optimizing energy usage [1]. These 

houses comprise of integrated sensors responsible for 

collecting data from various devices thus enabling 

smart control over the systems. These technologies are 

now jettisoning, the engineers and researchers are now 

in search of new ways to forecast trends in power 

utilization and detect real-time anomalies that will 

govern better energy management and decision-

making [2]. 

A large fraction of global energy demand results 

from increased usage of residential buildings. For 

instance, the US Energy Information Administration 

estimated that 21% of the total energy usage in 2019 

was accounted for by the residential sector [3]. 

Therefore, pragmatic approaches must be adopted to 

reduce energy wastage and increase the adoption of 

smart homes. This can be explored today by 

incorporating modern data analytic tools with IoT 

devices [4]. 

This research study introduces an IoT-powered 

smart home design capable of accurately forecasting 
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power consumption and providing early anomaly 

detection. In this architecture, time series analysis is 

coupled with machine learning, giving homeowners 

insights into their power consumption patterns and 

enabling informed decision-making. Comparing past 

consumption trends to current readings may reveal 

unusual behaviours, which could be due to faulty 

equipment, changes in user behaviour, or other 

relevant factors. 

This study presents a comprehensive approach that 

includes data collection, pre-processing, time series 

analysis, machine learning-based prediction, and 

anomaly detection [5]. Drawing from advanced 

methods in time-series forecasting and anomaly 

detection, this adaptive system is robustly designed. 

Tested on real smart home data, it demonstrates 

effectiveness in minimizing electricity usage and 

identifying unexpected behaviours. 

2. Related Work 

Recently, intelligent home energy management 

systems have been gaining more interest in the 

literature because they enhance energy efficiency 

besides ensuring user comfort. Several approaches 

have, in recent times, been put forward for estimating 

the quantity of electrical power required, detecting 

unusual situations, and optimizing home appliances in 

the framework of smart homes. This is a review of the 

literature on those aspects. 

2.1 Energy Consumption Prediction 

It is important to use historical information about 

energy consumption patterns when projecting future 

energy utilization for smart homes [6]. Machine 

learning methods along with time series analysis are 

commonly used in creating accurate forecasting 

models. Traditional techniques like Autoregressive 

Integrated Moving Average (ARIMA) have been used 

to predict power consumption before now [7]. They 

model lagged interdependencies and seasonal trends 

among variables found in a dataset on power usage. 

Machine learning algorithms have been 

investigated for their ability to predict energy 

consumption by using techniques such as Support 

Vector Machines (SVM), Random Forests, and Neural 

Networks [8, 9]. These models capture complex 

relationships among various aspects of energy usage 

including the environment, tenant behaviour, 

appliance usage, etc. [10]. 

2.2 Anomaly Detection 

This subsection reflects on identifying abnormal 

power employment trends that may demonstrate 

faults, inefficiencies, or odd behaviours by users 

hinged on anomaly detection [1]. There have been 

rule-based approaches, statistical techniques, and 

machine learning methods for anomaly detection in 

smart homes. The z-score analysis is a statistical 

method that identifies abnormalities using deviations 

from the mean [12]. 

In machine learning-based approaches to 

abnormality identity, three methods are used: 

clustering, autoencoders, and one-class SVM [13]. 

These methods employ historical data to detect regular 

consumption patterns of electricity customers and flag 

any instances significantly different from such 

patterns as anomalous cases [14]. 

2.3 Integrated Smart Home Systems 

Smart home energy management systems (SHEMS) 

have been developed through the integration of 

different solutions. HEMS (Home Energy 

Management System) proposed by Carli et al. [15] 

combines IoT devices for forecasting power demand 

and optimizing the performance of appliances. 

Similarly, Apanaviciene et al. [16] suggest a smart 

energy management system which integrates real-time 

data along with machine learning methods for demand 

side control. 

2.4 Challenges And Opportunities 

While significant development has taken place in 

Smart Home Energy Management Systems (SHEMS), 

many challenges still persist. Some of these include 

data-privacy related issues, the need for precise 

occupancy detection, and the integration of renewable 

energy sources with management systems. This paper 

is presenting an IoT-based smart home architecture 

addressing these challenges in relation to time series 

analysis with machine learning, providing accurate 

forecasting of energy consumption, while detecting all 

sorts of anomalies for their respective mitigations. Our 

system integrates various approaches currently 

implemented elsewhere, and tries to provide 

comprehensive and effective management of power 

resources at the residential level. 

3. Problem Statement 

Energy management in IoT-enabled smart homes 

faces significant challenges due to the complexity and 

nonlinearity of energy consumption patterns. 

Traditional statistical models, such as ARIMA, 

struggle to capture these patterns, while many machine 

learning methods lack reliability in real-world 

scenarios. Additionally, accurate detection of 

anomalies, such as faulty equipment or unusual usage 

behaviours, remains a persistent challenge. This study 

aims to address these gaps by developing a hybrid 

framework that combines ARIMA and LSTM models 
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for accurate energy consumption forecasting and 

robust anomaly detection, utilizing real-world data to 

enhance the efficiency and sustainability of smart 

home energy management systems. 

4. Methodology 

An IoT-enabled full-stack smart-house architecture 

has been built within our methodology which is used 

both in the detection of anomalous events related to 

power consumption but also in the prediction of them. 

While combining time-series analysis with machine 

learning techniques we develop strong systems which 

optimize ARIMA or LSTM model parameters using 

IoT-enabled device data streams collected from public 

Kaggle datasets representing real-world usage 

metrics/power consumptions in IoT-based homes. 

4.1 Baseline Comparison: Moving Average 

The ARIMA and LSTM models were compared 

against a moving average approach as a basis for 

prediction [17]. The goal of predicting future 

consumption is achieved by estimating the average 

consumption over a specific period using a moving 

average. Below is the formula for finding moving 

average; 

𝑦^𝑡 =
1

𝑛
 ∑ 𝑦𝑡−𝑖

𝑛

𝑖=1

                                               (1) 

Where 𝑦^𝑡 represents the forecasted consumption 

at time t, n is the number of time periods in the moving 

average window, and 𝑦𝑡−𝑖 represents the consumption 

at time 𝑡 − 𝑖 [18]. 

The moving average method supplies a plain and 

simple criterion for evaluating the performance of 

more intricate prediction systems [19]. It serves as a 

benchmark to compare forecasting accuracy between 

ARIMA and LSTM models [20]. 

4.2 Time-Series Analysis And Forecasting (ARIMA) 

To determine temporal patterns in energy 

consumption, we make use of the Autoregressive 

Integrated Moving Average (ARIMA) models [21]. 

Both current value with its lag values relationship and 

subsequent observation differences are forecasted by 

ARIMA, which is a popular time-series forecasting 

technique. ARIMA (p, d, q) is stated mathematically 

as follows: 

(1 − 𝜙1𝐵 −  𝜙2𝐵2 − ⋯ −  𝜙𝑝𝐵𝑝)(1 − 𝐵)𝑑𝑋𝑡 =

(1 +  𝜃1𝐵 +  𝜃2𝐵2 + ⋯ + 𝜃𝑞𝐵𝑞)𝑍𝑡                           (2)    

Where 𝑋𝑡  represents time-series data, 𝐵  is 

backward shift operator, d is differencing order, 𝜙𝑖 

and 𝜃𝑖 are coefficients while 𝑍𝑡 being white noise. On 

past data normal consumption patterns are revealed by 

this model that helps in predicting future energy usage 

trends [22].                          

4.3 Deep Learning-Based Prediction (LSTM) 

Long Short-Term Memory (LSTM) networks are used 

by us for describing complicated temporal 

relationships and nonlinear patterns in energy usage. 

These LSTMs are recurrent neural networks (RNNs) 

that should keep information over long sequences 

[23]. Besides historical energy use data, 

meteorological data among other aspects will be 

considered by our LSTM model. Fully connected 

layers after LSTM layers have been included in the 

model design for prediction [24]. 

The architecture of LSTM consists of the input 

layer, LSTM hidden layers, and output layers. The 

input sequence X is used to predict the result Y: 

𝑌 = 𝑓 (𝑊𝑜. ℎ𝑡   +  𝑏𝑜)                                       (3) 

Where 𝑓 is the activation loss function. The hidden 

state of the model is ℎ𝑡 . 𝑊𝑜  and  𝑏𝑜  are weight and 

bias parameters of LSTM model [25]. 

4.4 Anomaly Detection 

This research uses Anomaly detection technique to 

identify deviations from patterns of normal energy 

usage. In this paper, the prediction uncertainty 

generated from LSTM and ARIMA models for 

detecting anomalies [26]. More precisely, we develop 

some prediction intervals using the standard deviation 

of forecast errors. Any data point which falls outside 

these ranges is considered as an anomaly that has been 

detected. This provides a very robust system in early 

identification of anomalous energy consumption 

events. 

4.5 Performance Evaluation 

We evaluate our IoT-based architecture’s efficiency 

using various performance measures. The accuracy of 

energy consumption forecasts is measured with Mean 

Absolute Error (MAE), Root Mean Squared Error 

(RMSE) and Mean Absolute Percentage Error 

(MAPE) [27]. Precision, recall, and F1-score are 

computed to determine the system’s ability to detect 

anomalies. Comparative analysis between ARIMA 

and LSTM models is done to assess how much better 

predictions become over the moving average baseline 

model [28]. 

5. Data Visualizations And Insights 

In this part, we show and examine a variety of data 

visualizations that shed light on energy consumption 

trends in the context of smart homes. These 

visualizations include information on consumption 
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patterns by the hour, day of the week, and month, as 

well as utilization areas and the effect of weather on 

energy use. 

5.1 Usage Location And Energy Consumption 

To achieve efficiency in specific smart home use 

areas, it is important to understand energy 

consumption. Fig. 1 shows the use of energy in 

different places such as living rooms, sheds, and 

kitchens. The representation highlights the variation in 

energy levels between each location. For example, 

because it often contains energy-intensive appliances 

[29], the kitchen uses more power than less used 

rooms. This kind of knowledge enables families to 

make wise decisions about resource allocation as well 

as consider options for energy-saving devices.

 

Fig. 1. Household Power Usage Flux Locations

5.2 Impact of Weather Conditions 

The weather has a great impact on energy usage. This 

relationship between temperature and power 

consumption can be observed from Fig. 2 where this 

correlation is evident. The features used are time, 

temperature, humidity, pressure, CloudCover, 

windBearing, WindSpeed, DewPoint. When it gets 

colder, more heat is needed hence electricity demand 

rises sharply whereas during hot times cooling 

becomes essential leading to an increased need for 

electrical services too. One implication of this finding 

is that weather forecasts should be incorporated into 

real-time adaptation systems for better management of 

energy. 

 

Fig. 2. Weather Impact on Household Power Usage
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5.3 Consumption Patterns Per Hour 

The given data visualizations are very helpful in 

tracking energy usage patterns within smart homes. By 

per hour, per weekday, per month, and by location of 

use; – about weather changes etc. These could enable 

house owners to save on power and become more 

efficient as well.

 

Fig. 3. Household Power Consumption per Hour

For example, Fig. 3 shows an hourly trend line for 

power consumption at a smart home over time. Each 

bar represents one hour out of the 24 hours in a day; 

while the y-axis represents average energy use (in 

kWh) during that particular hour. Consumption peaks 

can be seen early morning and late evening which 

coincide with when most people are awake or active. 

Such habits should therefore be considered while 

managing such devices, especially during peak 

periods. 

5.4 Consumption Patterns Per Day Of The Week 

Another way to look into this is through daily analysis 

where you compare Monday through Sunday 

consumption rates as shown below in Fig. 4. It’s 

obvious that weekdays have higher demands than 

weekends probably due to schools and offices being 

open then closed respectively. Consequently, homes 

can reduce their usage if they take note of such trends 

and only concentrate on those days that experience 

high levels of power wastage.

 

Fig. 4. Household Power Consumption per Day of Week
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5.5 Consumption Patterns Per Month 

Month-to-month fluctuation in consumption is an 

important aspect of power management. The graph in 

Fig. 5 shows the average monthly electric use per unit 

area over a year. It can be seen that there are some 

months with higher consumption compared to 

transitional seasons like winter or summer where 

heating and cooling requirements may drive up 

demand necessitating specific measures for saving 

energy during peak periods.

 

Fig. 5. Household Power Consumption per Month

5. Results And Discussion 

This Section presents findings from our proposed IoT-

based SHEMS; firstly performance evaluation of the 

ARIMA model for anomaly detection as well as 

energy prediction then results obtained through the 

implementation Long Short -Term Memory (LSTM) 

model used for predicting usage patterns as well as 

detecting abnormal behaviours. 

6.1 Results of Moving Average And Anomalies 

We tested the ability of the moving averages method 

not only to forecast accurately but also to identify 

areas with unusually high or low levels so that we can 

fully understand its effectiveness when applied to 

different datasets. 

6.1.1 Forecasting performance of moving average 

Fig. 6 displays the inconsistency between the moving 

average technique’s predictions and the real 

consumption numbers during a given period. The 

actual data on consumption (shown in blue colour) is 

always delayed as compared with the moving average 

estimate (represented by the red line). This delay is 

attributed to the inherent simplicity of this method 

which tends to eliminate abrupt movements and rapid 

shifts in consumer behaviours. 

 

Fig. 6. Moving Average Base Model 

The moving average approach offers a baseline 

reference for energy consumption projections 

notwithstanding its ease of use. It works well in 

situations where slow trends prevail and dramatic 

changes are uncommon. However, its limits become 

clear when attempting to capture complicated 

consumption patterns with quick changes and sporadic 

spikes. 
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To identify problems with the data on energy use, 

we employed the approach of moving average. We 

took note of instances when the real consumption was 

far from what was predicted by this method as 

anomalies. These are indicated in Fig. 7, which shows 

the observed anomalies that are marked in red. Such 

abnormalities may signify events or indicate an 

abnormality. 

 

Fig. 7. Moving Average Model Anomalies Analysis 

The technique of anomaly detection using moving 

averages successfully highlights deviations from 

normal patterns of consumption. Nevertheless, it can 

produce false positives due to sensitivity towards 

fluctuations especially if there is an increase in usage 

that had not been anticipated. 

6.2 ARIMA-Based Energy Consumption Prediction 

And Anomaly Detection 

We used the classic time-series analysis method for 

predicting energy usage; the ARIMA model. Fig. 8 

shows projected energy consumption numbers 

together with actual data on consumption. From here 

it can be seen that this model describes the main trends 

in usage very well. 

 

Fig. 8. ARIMA-Based Energy Consumption Prediction 

Anomaly detection is an important step in smart 

home energy management because it helps to identify 

abnormal consumption patterns. In Fig. 10, the 

ARIMA model has detected these anomalies (red 

circles). They represent times when actual consumed 

power goes beyond the confidence interval estimated 

by the ARIMA model. 

 

Fig. 9. ARIMA Prediction Uncertainty 

Mean absolute error (MAE) metric was also used 

as an evaluation measure for accuracy estimation of 

ARIMA Model predictions on the Energy Usage 

forecasting task; moreover, prediction uncertainty was 

also computed to quantify them within boundaries 

given by the shaded area shown in Fig. 9 against actual 

data points collected over time series depicting 

electrical power demand pattern recorded at residence 

level over a period lasting one week starting Monday 

morning through Sunday evening inclusive. 

 

Fig. 10. ARIMA Anomaly Detection 

The ARIMA-based approach efficiently discerns 

abnormalities and provides intuitive information about 

energy utilization statistics. Its performance however 

could be constrained, when it comes to handling 

complex links in bulk data. To resolve this, we have 

applied a Deep Learning technique for energy 

consumption prediction and anomaly detection using 

the LSTM model. 

6.3 LSTM-based Energy Consumption Forecasting 

And Anomaly Detection 

Long Short-Term Memory (LSTM) network deep 

learning models have improved capabilities in 

capturing complicated temporal relationships for 

precise energy consumption prediction. The projected 

energy consumption numbers from the LSTM model 

are shown with the actual consumption data in Fig. 11. 
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Fig. 11. LSTM-Based Energy Consumption Forecasting 

To evaluate the performance of the LSTM model, 

the Mean Absolute Error (MAE) metric along with 

uncertainty estimates were employed. 

Still, another key component of our proposed 

SHEMS is anomaly detection. The LSTM model 

detected these anomalies which are shown in Fig. 12 

by red circles. These occur when actual power 

consumed deviates significantly from what was 

expected according to the predictions made using 

trained long short-term memory recurrent neural 

network architecture for deep learning-based 

regression tasks. 

 

Fig. 12. LSTM Anomaly Detection 

6.4 Discussion 

Moving averages have been used widely because they 

give a basic approach to predicting energy use. 

However, since its major drawback lies in detecting 

complex patterns quickly; thus suitable where there is 

gradual change only but not necessarily fast-moving 

ones like this case here. Additionally, it helps detect 

deviations from predictions made based on what 

usually happens though some false alarms need 

rectification to avoid unnecessary worries [30]. 

On the other hand, the ARIMA model was found 

better compared to LSTM models especially when it 

came down to precision level while forecasting 

abnormal readings related to power consumption in 

Fig. five below- hence showing how different methods 

perform differently depending on their application 

areas [31]. 

6.5 Comparative Analysis And Practical Implications 

A comparison of the findings from the ARIMA and 

LSTM models is necessary to determine the 

advantages and disadvantages of each method. The 

performance metrics for both models are shown in 

detail in Table 1. 

Table 1 

Performance Metrics of Various Models 

Model MSE RMSE MAE MAPE R2 

Baseline 0.071 0.266 0.177 0.236 0.077 

Arima 

Basic 

0.259 0.509 0.463 0.722 -

2.379 

Arima 

Dynamic 

0.069 0.263 0.176 0.229 0.094 

LSTM 

Univar 

0.068 0.261 0.173 0.307 0.106 

LSTM 

Multivar 

0.022 0.150 0.110 0.107 0.700 

As presented in Table 1, the LSTM model beats the 

ARIMA model not only in energy consumption 

prediction accuracy but also in anomaly detection. The 

reduced MAE of the LSTM model indicates its ability 

to detect complicated patterns of use and make 

accurate forecasts that can contribute to better 

planning for energy utilization. The use of metrics 

such as Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), and 𝑅2 

(coefficient of determination) for evaluating ARIMA 

and LSTM models is well-suited to provide a 

comprehensive assessment of their performance. MSE 

captures the average of squared errors, making it 

particularly sensitive to large deviations, which is 

crucial for identifying significant inaccuracies in 

predictions. RMSE, derived from MSE, expresses 

error in the same units as the target variable, offering 

a more interpretable measure of overall prediction 

accuracy. MAE, on the other hand, calculates the 

average absolute differences between predicted and 

actual values, providing a straightforward 

understanding of the model’s typical error magnitude 

without emphasizing outliers. MAPE complements 

these metrics by normalizing errors as percentages, 

enabling comparisons across datasets with varying 

scales, which is especially important in applications 

like energy consumption where usage levels can 

fluctuate widely. Lastly, 𝑅2 measures the proportion 

of variance in the dependent variable explained by the 

model, serving as an indicator of the model's overall 

goodness-of-fit. Together, these metrics ensure a 

robust evaluation framework, addressing different 

dimensions of prediction accuracy and providing 

insights into both the precision and reliability of the 
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models in forecasting energy consumption and 

detecting anomalies. 

Accurate anomaly detection is an essential 

component of any energy management system.  Due 

to the LSTM model’s improved capacity to detect 

anomalies, homeowners may quickly spot 

consumption abnormalities and take the required steps 

to reduce energy waste. 

The implications of our results are significant about 

applications. Based on IoT-enabled smart home 

design coupled with state-of-the-art prediction as well 

as anomaly detection models [32]. Precise predictions 

about consumption together with timely notifications 

concerning abnormal behaviours facilitate proactive 

management thus fostering sustainability in energy 

use. 

6.6 Practical Insights And Recommendations 

For the successful implementation of our IoT-based 

energy management system, several key 

considerations need to be taken into account. First, the 

system should collect accurate data from different 

sensors deployed throughout the smart house under 

consideration. High quality data should be used when 

training and fine-tuning predictive models. According 

to [33], secure methods of transferring user’s data 

must also be adopted to enhance privacy and integrity. 

Secondly, choice(s) made on predictive modelling 

greatly influence(s) effectiveness of this tool(s). 

Although both ARIMA and LSTM models have 

adequate capabilities some factors like complexity 

levels exhibited by consumption patterns along with 

Secondly, choice(s) made on predictive modelling 

greatly influence(s) the effectiveness of this tool(s). 

Although both ARIMA and LSTM models have 

adequate capabilities some factors like complexity 

levels exhibited by consumption patterns along with 

desired level(s) of accuracy will guide the decision-

making process eventually selecting the best fit(s). 

While capturing non-linear temporal connections 

better than any other approach currently available; it 

would work best if used alongside ARIMA which 

captures linear trends. 

Finally, user engagement relies heavily upon 

effective communication through clear visualization 

representations showing predicted values as well as 

detected anomalies. Homeowners can make real-time 

decisions about energy use by observing user-friendly 

dashboards and mobile apps that provide insights into 

patterns [28]. 

6.7 Limitations And Future Directions 

Nonetheless, several considerations were made during 

our research which may affect outcome interpretation. 

The more historical data is used for training purposes 

the better results you get but if there is little amount or 

no data at all then it becomes difficult to make accurate 

predictions about future events; also when patterns 

become irregular due to external factors like system 

upgrades or changes in user behaviour etcetera [34]. 

The inclusion of additional contextually relevant 

information like occupancy trends together with 

weather forecasts could improve accuracy levels 

associated with future predictions being made within 

this field area. Likewise, further research can focus on 

an ensemble modelling approach where different 

methods are combined thus leading to better 

identification as well as more reliable projections 

concerning abnormal behaviours [35]. 

7. Conclusion 

In this work, we introduced an IoT-based smart home 

energy management system that makes use of 

sophisticated anomaly detection and prediction 

algorithms to ensure effective energy use.  The LSTM 

model outperformed the ARIMA model in terms of 

forecasting precision and anomaly identification when 

they were applied and evaluated. 

The potential of IoT technologies to revolutionize 

energy management and conservation has been 

emphasized by our research. We allow families to 

predict consumption patterns and detect anomalies 

thereby enabling them to take early measures of saving 

power. This contributes towards the overall goal of 

sustainable development through eco-friendly living 

as well as reducing household electricity bills. 

The ability to control energy will increase with the 

improvement in IoT and data collection technologies. 

We are making homes smarter and more energy 

efficient through our research by giving out 

information that is important for homeowners, 

professionals, and scholars as well. 
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