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 Machinery components degrade over time due to continuous use. A reliable 

prognosis framework can improve machinery health by monitoring the behavior 

of its parts and providing warnings before critical failures occur. Bearings, which 

are essential components of rotating machinery, help maintenance personnel 

assess the machine’s condition during continuous wear. In this study, vibration 

data from roller bearings under various conditions and faults were collected. The 

Vibration analysis technique was employed to detect and classify different faults 

in bearings based on the characteristics of the vibration signals generated by the 

machinery. Faults can be detected, diagnosed, and classified by analyzing bearing 

vibration signatures using techniques such as frequency analysis, time-domain 

analysis, spectral analysis, and kurtogram classifiers. This enables appropriate 

maintenance actions to be taken in time, preventing further damage or failures. 

1. Introduction 

In the industrialized era, rotating machines are the 

backbone of everyday programs and procedures. In the 

realm of rotating machinery, noise poses a significant 

challenge for engineers and academic researchers by 

masking faulty bearing signals, particularly in their 

initial stages. Early detection and identification of 

rolling element bearing faults play a crucial role in 

enhancing the reliability of mechanical components, 

averting sudden machine failures, and reducing 

maintenance expenses. In real-world scenarios, 

defective bearings are responsible for the majority of 

failures in rotating machinery [2, 3]. The study of 

bearing faults indicates that from 40% to 90% of 

failures in both, large and small machines are 

attributed to damage in rolling element bearings [4]. In 

general, rolling element bearings are engineered to 

support axial and/or radial loads while minimizing 

rotational friction through the placement of rolling 

elements like cylinders or balls between inner and 

outer races. They find widespread application across 

various industries today, serving in production lines, 

electric motors, pumps, and gearboxes. These bearings 

may encounter angular, axial, or radial loads 

depending on the specific design requirements. While 

ball and roller bearings may seem straightforward, 

their internal workings are quite intricate. Premature 

bearing failure can occur under extreme operating 

conditions characterized by heavy loads, high speeds 

and very high or low temperatures. Normally the 

vibration signals of ball bearings in healthy conditions 

are not smooth, they are essentially generating 

vibrations. At the existence of a defect, the vibration 

level is increased in a ball bearing. The nature of 

defects in a ball bearing such as cracks on the rotating 

surface, distributed defects, uneven races, etc. The 
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vibration pattern of these defects is captured by an 

accelerometer and analyzed using an algorithm. When 

a rolling element comes across a defect in one of the 

races, it generates an impulse. As the bearing rotates, 

these impulses occur periodically at a specific 

frequency. Modeling is employed to describe the 

vibration pattern resulting from a single-point defect 

in the inner race. 

 

Fig. 1. Possible Defects In Ball Bearing 

If a defect emerges on the inner or outer race of the 

bearing, the frequency at which each rolling element 

strikes the defect is termed the "Ball-pass frequency," 

determined by the bearing's geometry and rotation 

speed. This frequency can be theoretically calculated 

and compared to the detected frequency post-signal 

processing, serving as an indicator of the algorithm's 

efficacy. For more comprehensive diagnosis, such as 

assessing defect size for decision-making, ball-pass 

frequencies and a vibration pattern devoid of noise can 

be valuable. Fig. 1 presents vibration signals from a 

defect-free bearing and bearings with inner and outer 

race faults. Notably, the characteristics of impulses 

stemming from inner and outer race defects differ. 

Impulses arising from outer race defects exhibit nearly 

uniform amplitudes, as the race remains stationary 

relative to the load zone; hence, each rolling element's 

passage by or strike against the stationary defect on the 

outer race generates impulses of equal amplitude. In 

contrast, impulses originating from inner race defects 

vary in amplitude yet retain periodicity, indicating 

amplitude modulation. As these impulses stem from 

resonance within the bearing elements, their amplitude 

correlates directly with the applied force on the ball 

bearing. When the inner race of a rotating component, 

bearing a defect, traverses the load zone—meaning a 

rolling element encounters the defect as it moves in 

and out of the load zone—periodic modulated 

impulses emerge with each shaft rotation. 

Consequently, the envelope of these impulses can be 

defined in terms of load distribution. 

 

Fig. 2. Fault Detection Process 

Following the measurement system, noise, 

distortions, and disturbances obscure the signals from 

a faulty bearing. The algorithm aims to restore and 

amplify these signals by eliminating undesired effects, 

as depicted in Fig.2. The objective is to accomplish 

this with minimal computational resources, effort, and 

complexity, avoiding additional pre-processing steps 

like filtering or envelope detection, and ensuring the 

system remains cost-effective. 

The vibration analysis is the most common 

technique used to detect faults in a bearing [5]. The 

vibrational signals of the fault bearing are non-linear 

or non-stationary in behaviour due to random noise. 

The feature extraction process becomes complicated 

due to this random noise [6]. 

In the CBM technique to identify the fault in the 

vibration data of the bearing features extraction 

approach was applied [7, 8]  these features identify the 

specific pattern related to the fault in the vibration data 

of the operating machine [9, 10].  

The feature extraction technique is also used in 

predictive maintenance methodology [11]. The 

extracted features are further used in the predictive 

models to forecast the health of a machine [12]. The 

forecaster's result helps to make decisions about the 

condition of an operating machine [13, 14]. 

2. Experimental Setup  

The test rig is shown in Fig: 3 in which an induction 

motor is attached to a central shaft supported by two 

bearings. A UC-203 deep groove ball bearing is 

attached to the central shift. 

 

Fig. 3. Experimental Setup  
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In which one end of the shaft is placed on a healthy 

bearing, whereas the other end is used for testing 

different faulty bearings. The motor running speed 

ranges from 0-3000 rpm. The vibration analyzer CSI 

IEPE is utilized for quantifying the performance of the 

varying faulty bearings. It has a sensitivity of 5.01 

mV/g with a frequency range of 1 to 12 kHz and a 

measuring range of up to ± 500g. The real-time data 

was collected by utilizing NI DAQ. The arrangement 

of the experimental setup is shown in the Fig 3. The 

parameters of the understudy bearing are presented in 

Table 1. 

Table 1 

The bearing specification 

Specification UC-203 

Bore diameter (d mm) 17 

Outside diameter (DSP mm) 47 

Width (B mm) 31 

Width outer ring (C mm) 17 

Sealing total width (C2 mm) 16.8 

Distance raceway (S mm) 12.7 

Width of flats (W mm) 3 

Rib diameter inner ring (d1 mm) 27.56 

Number of the balls 8 

Contact angle (degree) 0o 

Besides, three bearing conditions were examined: 

normal bearing, bearing with inner and outer race 

fault. Primarily, baseline data were obtained using 

normal bearing experiments. Secondly, data with inner 

and outer race faults were collected. Vibrant data for 

inner race, outer race faulty, and healthy bearing is 

sampled at 200000 Hz for the duration of 10 seconds. 

3. Methodology 

Vibration analysis is a crucial tool in the fields of 

monitoring and classification of the health of rotating 

machinery. Extracting features from vibration data is 

essential for understanding the behaviour of the 

system under study and for predictive maintenance 

purposes. The methodology to analyze the behaviour 

of fault in the bearing, the vibration analysis 

technique, required the following steps:  

3.1 Collection of Data 

From the experimental setup, sensors such as the 

accelerometer were used to collect the real-time 

vibration data of healthy bearings and faulty bearings. 

To capture the data at regular intervals over a specific 

period to understand the dynamical behavior of the 

bearings. 

3.2 Processing of Data:  

The data processing is the second step of this 

methodology which transforms the baseline data into 

tangible characteristics of the signal data. For this 

purpose, the FFT technique is used to convert a time-

domain signal into a frequency-domain signal. 

FFT= ∑ 𝑥𝑖(𝑡) exp(𝑖 2𝜋 𝑘/𝑛)𝑛
𝑖=1                          Eq. (1) 

Where 𝑥𝑖(𝑡) represents the time domain vibration 

signal and k represents the period signal. After 

converting the time-domain signal into the frequency 

domain, the power spectrum is used to estimate the 

distribution of power across the frequency range. 

Power spectrum= sqrt |FFT|                                Eq. (2) 

To detect the fault in the frequencies the envelope 

spectrum is used in this framework. 

Envelop spectrum=𝑥(𝑡) + 𝑖𝑦(𝑡)                         Eq. (3) 

Where 𝑥𝑖(𝑡) represents the time domain vibration 

signal 𝑦(𝑡) =
1

𝜋
∫

𝑥(𝜏)

𝑥(𝑡−𝜏)
𝑑𝜏  

∞

−∞
Hilbert Transform. 

3.3 Feature Extraction 

After processing the experimental data into significant 

statistics the third step of the methodology is feature 

extraction. The feature extract is a technique to obtain 

the significant characteristics of the signal data.  These 

observing signals have many details of health state and 

measurement noise. Features are classified using 

RMS, kurtosis, skewness, Crest Factors, peak value, 

Visual, particle count, spectrograph, etc.  In this study, 

we extracted the features of the recorded data in the 

time domain and frequency domain under the 

increasing rotating speed of the machine. 

The statistical quantification of bearing data was 

extracted we proposed the statistical vibration 

acceleration moments of a distribution signal because 

it can be used to measure the statistical features. The 

moment coefficients of time signal data can be 

calculated using Eq(4). 

𝑀𝑛 = 𝐸[𝑋𝑛] =
1

𝑁
∑ (𝑥𝑖(𝑡))𝑛𝑛

𝑖=1                                      Eq. (4) 

where E{Xn} represents the expected value of the 

function, xi is the time historical data and N is the 

number of data points. The first four cumulates: mean, 

standard deviation, skewness, and kurtosis, can be 

calculated from the first four moments using the 

following relationships. 

𝑀𝑒𝑎𝑛 = 𝑀1                                                           Eq. (5)                                                                                                                                                   
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𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑀2                              Eq. (6)                                                                              

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑀3 − 3𝑀2𝑀1 + 2𝑀1
3                     Eq. (7) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠  = 𝑀4 − 3𝑀2
3 − 4𝑀3𝑀1 + 12𝑀2𝑀1

2 −

                         6𝑀1
4                                                    Eq. (8)  

3.4 Classification Model 

The non-stationary behavior in the frequency domain 

and also their locations in the frequency domain. The 

spectral kurtosis (SK) of a signal 𝑥(𝑡) can be 

calculated using the short-time Fourier transformation 

(STFT) of the signal [15]. 

𝑆(𝑡, 𝑓) = ∫ 𝒙𝒊(𝒕)𝑤(𝑡 − 𝜏)𝑒−2𝜋𝑓𝑡𝑑𝑡                         Eq. (9)
∞

−∞

 

Where 𝑤(𝑡) is the window. 

𝐾𝒙𝒊(𝒕) (𝑓) =
⟨|𝑆(𝑡𝑖,𝑓)|4⟩

⟨|𝑆(𝑡𝑖,𝑓)|2⟩2 − 2,     𝑓 ≠ 0  and   ⟨. ⟩ is the 

mean operator in time. 

A kurtogram classifier for bearing fault detection 

involves using the kurtogram method to analyze 

vibration signals from bearings and classify them 

based on fault conditions.  

3.5 Fault Diagnosis 

This involves determining the specific type and 

severity of the fault, based on the features extracted 

from the vibration data and the results of the fault 

detection process. This information can be used to 

develop a maintenance plan and to prioritize repairs. 

4. Results and Discussion 

The dissimilarity in trend is classified into three 

classes concerning healthy and unhealthy bearing, 

with inner and outer race faults. Primarily, the 

vibration spectrum for healthy bearings is analyzed, 

which exhibits a smooth pattern. Subsequently, the 

observed spectrum lowered then stabilized or 

fluctuated in between due to damage promulgation 

during experimentation.  

a) Healthy Bearing Features with Increasing Speed 

The process of vibration analysis starts with applying 

the algorithm on a perfectly working and healthy 

bearing undergoing regular increases in rotational 

speed. The healthy bearing time domain data collected 

for a duration of 10 seconds is plotted in Fig 4, which 

shows the double amplitude from the starting 

amplitude as evident from the rotating speed, which 

varies from 14.1 Hz to 23.8 Hz  

 

Fig. 4. Healthy Bearing Increasing Speed Time-Domain 

Plot 

Fig.5 is a zoomed plot to 100X in the time domain 

between 0 to 0.1 seconds, which signifies the 

smoothness in the vibrant data. The spikes generated 

during this plot are because of the increase in 

rotational speed at each cycle. 

 

Fig. 5. Zoomed In View Of Time-Domain Plot 

To cater to these spikes, we converted the data into 

the frequency domain by utilizing the Fast Fourier 

Transform (FFT).  

 

Fig. 6. Zoomed Given Time-Domain Plot 

The power spectrum acquired by converting data 

into the frequency domain is displayed in Fig 6, which 

shows that the frequency domain plot is regular and 

smooth, which authenticates the healthy behavior of 

the bearing during the functioning of the motor. The 

Eq. obtained by utilizing frequency data is as follows:  

𝑓(𝑥) =  −80.36 + 4.59 𝐶𝑜𝑠 𝑤𝑥 + 0.66 𝑆𝑖𝑛 𝑤𝑥   Eq. (10) 

To cross-validate the results, the computed and 

observed frequency is plotted as shown in Fig 7, which 
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signifies the power of the estimate of the frequency for 

healthy bearing. 

 

Fig. 7. Computed And Estimated Frequency Plot 

Now, the envelope spectrum analysis is performed 

to bifurcate the unwanted signal from the desired 

signals. These unwanted signals might be accumulated 

from machinery operating conditions or any other 

specific noise. 

 

Fig. 8. Healthy Bearing Envelope Spectrum Analysis 

The outcomes of the envelope spectrum are divided 

into two groups as displayed in Fig 8, in which the 

upper portion represents the signal received from the 

data, whereas the lower part characterizes the signal 

after envelope spectrum analysis. 

The signal in the lower portion indicates the 

unwanted signals in the data set whose zoomed-in 

view is represented in Fig 9, which is considered to 

monitor harmonics in the whole process. The above 

graph does not display any particular impulse for ball 

pass frequency outer (BPFO) or ball pass frequency 

inner (BPFI). Therefore, it confirms the health of the 

bearing during machinery operation. 

 

Fig. 9. Zoomed-In View To Monitor Harmonics 

b) Inner race faults Bearing Features with increasing 

the rotational speed 

In this case, bearing data with inner race faults for 

increasing speed is considered. The behavior of the 

data in the time domain is displayed in Fig 10.  

 

Fig. 10. Time Domain Behaviour Of Inner Race Faulty 

Bearing 

The plot indicates irregularities and abnormal 

growth in amplitude concerning time amplifications. 

These enormous deviations in amplitude certified the 

inadvertent impulsiveness in the bearing. It has also 

been noticed that rotation speed accelerated from 

12.5Hz to 27.5Hz, increasing its amplitude to two-

fold, and generating an error of three hundred percent. 

The zoomed-in view portrayed in Fig 11 displays 

considerable variations every 0.03 seconds, which 

indicates the inner race fault after the completion of a 

complete revolution. 

 

Fig. 11. Time Amplitude Variation Of Inner Race Fault 

To look into the in-depth variation in the waveform 

Fourier transform is implemented as illustrated in Fig 

12. 

  

Fig. 12. Frequency Power Spectrum Plot For Inner Race 

Fault 
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The power spectrum exhibits robust disorder in the 

preliminary portion, which indicates undesired 

frequencies initiated by the inner race fault in the 

bearing.  

The estimated Fourier transform Eq. is as follows: 

𝐹(𝜔) = 5.328 +  ∑ 𝐴𝑖
𝑖=8
𝑖=1 𝐶𝑜𝑠(𝛼𝑖𝜔) + ∑ 𝐵𝑗

𝑗=8
𝑗=1 𝐶𝑜𝑠(𝛽𝑗𝜔)    

                Eq. (11) 

where 𝐹(𝜔)= Fourier Transform function of vibration 

amplitude 

𝐴1 (𝑓𝑜𝑟 𝛼1 = 1) = 127.93 ,  𝐴2 (𝑓𝑜𝑟 𝛼2 = 2) = 29.61  
 

𝐴3 (𝑓𝑜𝑟 𝛼3 = 3) = −47.89,  𝐴4 (𝑓𝑜𝑟 𝛼4 = 4) = −73.78 

 

𝐴5 (𝑓𝑜𝑟 𝛼5 = 5) = −53.54,  𝐴6 (𝑓𝑜𝑟 𝛼6 = 6) = −19.91 

 

𝐴7 (𝑓𝑜𝑟 𝛼7 = 7) = 1.01,    𝐴8 (𝑓𝑜𝑟 𝛼8 = 8) = 3.75 

 

𝐵1 (𝑓𝑜𝑟 𝛽1 = 1) = −87.75, 𝐵2 (𝑓𝑜𝑟 𝛽2 = 2) = −128.9 

 

𝐵3(𝑓𝑜𝑟 𝛽3 = 3) = −98.67,   𝐵4 (𝑓𝑜𝑟 𝛽4 = 4) = −31.28 

 

𝐵5 (𝑓𝑜𝑟 𝛽5 = 5) = 18.32,     𝐵6 (𝑓𝑜𝑟 𝛽6 = 6) = 29.69, 
 

𝐵7 (𝑓𝑜𝑟 𝛽7 = 5) = 18.77,     𝐵8(𝑓𝑜𝑟 𝛽8 = 5) = 6.45 

 

Eq (11) indicates various harmonics that specify 

that the bearing is running with numerous impulses or 

unbalanced forces that were not observed in the 

running of a healthy bearing.  

 

Fig. 13. Computed Versus Observed Plot 

In order to quantify the fault by utilizing the data 

pattern, the technique of envelop spectrum analysis is 

implemented.  

 

Fig. 14. Noisy (Upper) And Non-Noisy (Lower) Envelope 

Spectrum 

The outcomes of the envelope spectrum are divided 

into two groups as displayed in Fig 14, the upper 

portion displays the observed signal that includes 

noise and surplus disturbance on the floor, while the 

lower portion displays the resulting waveform after 

the envelope spectrum analysis. These resulting 

waveforms indicate considerable spikes and 

irregularities as evident from the lower portion of the 

graph.  

These resulting waveforms indicate considerable 

spikes and irregularities as evident from the lower 

portion of the graph. Fig:15 represents harmonics at 

the BPFI.  

 

Fig. 15. Significant Harmonics For Inner Race Fault 

These frequencies are vital parameters to identify 

any defects in the inner race of the bearing. As we can 

see, a significant peak at these frequencies confirms 

the presence of unbalanced forces or impulses at these 

points. This analysis is adequate in deciding the 

bearing dataset and in identifying faults in the bearing. 

The comparison of kurtosis for healthy and 

unhealthy bearing is illustrated in Fig:16. 

 

Fig. 16. Comparison Of Kurtosis With Healthy V/S 

Unhealthy Bearing 

The diagram is separated into two parts, with the 

upper part displaying the signal from the faulty 

bearing having a kurtosis value of almost 15. Besides, 

the lower part displays the healthy bearing signal 

having a kurtosis value of 5. 

This means that a bearing with a defect in the inner 

race fault would usually have a kurtosis value 

difference of three-fold more than a healthy bearing. 

In such cases, it can be significantly deduced that the 

bearing has an inner race fault. 
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c) Outer race faults Bearing Features with increasing 

the rotational speed 

Now, we quantify the behaviour in the signal observed 

for bearings having outer race faults with increasing 

speed. The time domain variation in the signals for 

such faults is represented in Fig 17. The above Fig. 

shows the growths in the amplitude and is estimated 

that it generates a fifteen percent error in amplitude 

progression from start to end between theoretical and 

actual values.  

 

Fig. 17. Time Domain Variation In Outer Race Faulty 

Bearing, Increasing Speed 

It has been observed that the bearing dataset of the 

inner race fault has a much higher level of 

impulsiveness than the bearing of the outer race fault. 

In contrast, the proportion of the increase is the same 

as the lower error percentage. The plotting zoomed-in 

view in Fig 18 does not enable us to detect faults in the 

bearing. 

 

Fig. 18. Zoomed-In View Of Outer Race Faulty Bearing 

The Fourier transform estimation of the entire 

signal is adopted to identify unwanted or faulty 

frequencies in the outer race defective bearing data 

whose plot is underneath Fig:19. 

The result of the Fourier Transform (FT) 

impulsiveness for an outer race faulty bearing falls in 

between healthy and an inner race faulty bearing 

impulsiveness. 

 

Fig. 19. Fourier Transform Data Of Outer Race Faulty 

Bearing 

The Fourier transform estimated Eq. yields as follows: 

𝐹(𝜔) = −77.54 + ∑ 𝐴𝑖

𝑖=4

𝑖=1

𝐶𝑜𝑠(𝛼𝑖𝜔)  + ∑ 𝐵𝑗

𝑗=4

𝑗=1

𝐶𝑜𝑠(𝛽𝑗𝜔)        

Eq. (12) 

𝐴1(𝑓𝑜𝑟 𝛼1 = 1) = 8.96 , 𝐴2(𝑓𝑜𝑟 𝛼2 = 2) = 4.95 

 

𝐴3 (𝑓𝑜𝑟 𝛼3 = 3) = 3.69, 𝐴4 (𝑓𝑜𝑟 𝛼4 = 4) = 1.721  
 

𝐵1 (𝑓𝑜𝑟 𝛽1 = 1) = 0.18, 𝐵2 (𝑓𝑜𝑟 𝛽2 = 2) = −1.11 

 

B3 (for β3 = 3) = −1.59, B4(for β4 = 4) = −0.57 

Eq (12) indicates that although the signal does 

contain harmonics and unwanted frequencies, they are 

not as much as the ones included in the inner race-

bearing fault. The outer race fault bearing right in the 

centre of a healthy bearing and with one a fault in the 

inner race. 

 

Fig. 20. Fourier Fit On Fourier Transforms 

To quantify the fault by utilizing the data pattern, 

the technique of envelop spectrum analysis is 

implemented. The computed result of the envelope 

spectrum is presented in Fig:21, which confirms the 

elimination of floor noise and unwanted signals. These 

signals were now further studied for the identification 

of faults. 
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Fig. 21. Envelope Spectrum Of Outer Race Faulty Bearing 

The Fourier transform of the envelope is plotted in 

Fig:22 to signify the peaks generated by the faulty 

bearing signals during the increasing speed of the 

understudy system. 

 

Fig. 22. Targeted View For Indicating Harmonics 

These harmonics are adjacent to the faulty 

frequencies observed in the inner race defective 

bearing. To quantify the exact fault of the bearing, an 

analysis of the kurtosis is performed for vibration 

signals. The kurtosis plot is presented in Fig:23 with 

an estimated value of 5.981. 

 

Fig. 23. Estimated Kurtosis Plot For Outer Defective 

Bearing 

Table 2 presents the significant statistics of the 

healthy bearing, inner race faulty bearing, and outer 

race faulty bearing data. The kurtosis values of inner 

race faulty bearing are very high (approximately 15) 

which indicates that inner race fault. 

Table 2 

Important statistics for the Healthy, Inner race & Outer race 

Faulty bearing data set 

It has been noticed that the amount of deviation of 

the faulty bearing is not sufficient to quantify the 

defect of the outer race faulty bearing. In pursuance of 

the defect caused by the outer race faulty bearing, 

further analysis is performed by utilizing the 

techniques of kurtogram and spectral kurtosis. 

Lastly, a kurtosis value was computed for cross-

validation of the impulsiveness of the vibration signal 

for increasing speed. The estimated spectral kurtosis 

value for the understudied case was observed to be 

5.38, which is neither maximum nor minimum. 

Consequently, the dataset for the concerned bearing is 

classified as healthy. 

The program of the corresponding signal is 

specified in Fig:24, which categorizes key parameters 

of the signal including its bandwidth and maximum 

kurtosis value at a certain point. The bandwidth of the 

signal is detected at 50kHz with a central frequency of 

75kHz. The kurtosis value in the bandwidth 50kHz 

indicate the irregularities in the vibration signal or 

fault. 

 

Fig. 24. Kurtogram Of Outer Race Faulty Bearing 

Statistical 

Features 

Healthy 

bearing 

Inner race 

Faulty 

bearing 

Outer race 

Faulty 

bearing 

Mean Value 5.22e-04 0.2069 0.0016 

Root Mean 

Square   

0.0072 0.2133 0.0098 

Standard 

Deviation 

0.0071 0.0520 0.0097 

Kurtosis 5.38 14.6763 5.98 
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By employing statistics specified in the program, a 

spectral kurtosis is performed to identify unwanted 

frequencies in the signal for quantifying faults in the 

outer race of the bearing. 

 

Fig. 25. Spectral Kurtosis Of Outer Race Faulty Bearing 

The result of the spectral kurtosis is presented in 

Fig:25 which represents the peaks that are unwanted 

or induced due to the fault in the bearing. Since the 

faulty bearing applied forces are not balanced it 

produces numerous impulses of countless frequencies 

as illustrated in Fig:25. It precisely quantifies the fault 

induced by the outer race defective bearing. 

5. Conclusion 

In this study behaviour of healthy, inner race, and 

outer race faulty bearing with increasing speed was 

quantified by utilizing vibration techniques. This 

study reveals that signals of healthy bearing are 

regular and smooth. Besides estimated Eq. perfectly 

follows the observed data. In the second case, the 

behaviour of the vibrational signal is increased 

without any bounded, due to unwanted harmonics, and 

irregularities. The impulses are being repeated at the 

BPFI (Ball Pass Frequency Inner) which indicates the 

bearing inner race fault. The estimated kurtosis for this 

case is around 15 which specifies the fault in the 

bearing. In the third case, it can be observed that the 

waveform is highly irregular, contains unwanted 

frequencies, and has multiple spikes. The kurtosis 

value of 5.98 does not quantify outer race fault at this 

stage. In this case, the fault is quantified by utilizing 

the spectral kurtosis technique that Identifies the 

frequency range where outer race fault transients 

occur. Isolates BPFO and other fault-specific 

frequency bands affected by the outer race fault, and 

provides greater diagnostic. 
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