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 The ongoing challenge against network security issues persists, necessitating the 

exploration of alternative approaches. Anomaly-based strategies, diverging from 

traditional signature-based methods, gain popularity for their effectiveness in 

detecting new attacks. However, accurately defining normal network behavior 

becomes increasingly challenging due to data fluctuations. This study introduces 

a two-step process for recognizing evolving anomalies in streaming network 

data. Initially, clusters are updated incrementally upon new data arrival (the 

updating phase). Subsequently, anomalies are identified by discerning outer and 

inner outliers using minimum and maximum density thresholds. A buffer concept 

temporarily stores incoming data to prevent misclassification of normal network 

samples as anomalies. Performance evaluation in Python 3 assesses the impact 

on detection rate, false positives, and accuracy using two popular streaming 

datasets (NSL-KDD and UNSWNB-15). The algorithm achieves notable results, 

with a detection rate of 99.12% on UNSWNB-15 and a 7.9% false positive rate 

on NSL-KDD, marking significant progress. The proposed approach CADSD 

(Cluster-based Anomaly Detection with Streaming Data), operates in real-time 

without pre-training. However, challenges may arise from assuming the majority 

of data comprises normal instances, particularly during sudden spikes in attack 

data, potentially diminishing algorithm effectiveness. Nonetheless, the method 

shows the potential to enhance network security by promptly identifying 

emerging anomalies in real-time streaming data. The incorporation of a buffer 

concept to prevent the misidentification of normal network samples as anomalies 

underscores the innovative nature of this approach. 

1. List of Abbreviations 

The following abbreviations are used in this 

manuscript. 

MC   Micro-cluster 

mD   Minimum Density  

MD   Maximum Density  

Pmc   Prospective microcluster  

RadiusM  Radius Max  

RadiusMN   Radius Min  

Sb   One-Stream block length  

MCcore(Imc)  Core microcluster   

MCoutlier(Omc) Outlier microcluster  

B     Unique Base-cluster id  

I    microclusters  

EL’    Edge list microcluster 

2. Introduction 

This section introduces the motivation of the work, 

followed by the literature review and our 
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contributions. Finally, the organization of the 

manuscript is presented. 

2.1 Motivation 

According to a report by McAfee, cybercrime has 

caused global economic losses exceeding $1 trillion, 

which is equivalent to the global GDP of 1% [1]. The 

number of network attacks incrementing every year 

and taking on a variety of forms [2]. Many intrusion 

detection systems currently in use rely on signature-

based techniques that can only identify known attacks 

by matching traffic patterns to previously defined 

attack signatures [3]. This means that any traffic that 

matches the signature is automatically flagged as an 

attack. However, anomaly-based intrusion detection 

techniques are capable of detecting unknown attacks 

by identifying deviations from normal network traffic 

patterns. Therefore, it is essential to create an accurate 

model of normal network traffic to ensure the 

effectiveness of intrusion-based detection. 

The manual labelling of data demands substantial 

time and effort, exceeding the capacity of human 

experts. In contrast, unsupervised network anomaly 

detectors possess the ability to extract valuable 

insights from data without depending on pre-existing 

knowledge or labelled datasets.  

For changing data patterns Online clustering 

emerges as an unsupervised method making it well-

suited for immediate anomaly detection [4].  

The underlying concept of these algorithms is 

rooted in the assumption [5] that intrusive activities 

constitute a minor fraction of the overall network 

traffic and manifest distinct patterns compared to 

normal traffic.   

The CADSD algorithm enhances the earlier online 

clustering method BOCEDS [6]. The CADSD does 

not require any training of dataset or prior knowledge 

Unlike BOCEDS [6]. With the arrival of new data, the 

system continuously updates the normal patterns and 

promptly detects and removes anomalies. This reduces 

the computational cost and makes it suitable for real-

time intrusion detection.  

2.2 Related Work 

Online clustering is a technique that is used to analyze 

evolving data streams, particularly in real time for 

detecting anomalies. Network traffic, which is 

commonly represented as data streams, can benefit 

from the application of online clustering algorithms to 

identify anomalies. Various online clustering methods 

have been proposed over the past two decades, such as 

CluStream, DenStream, C-Denstream, and SDStream 

[7,8]. More recently, CEDAS [9], an improved version 

of CODAS, has been proposed as a fully online 

algorithm. CEDAS employs micro-clusters to 

characterize data samples, and upon the arrival of new 

data, it either updates existing micro-clusters or 

generates new ones. This methodology utilizes 

'energy' to handle temporal information within the 

micro-clusters, enabling the identification of evolving 

properties in the data stream and the formation of high-

quality clusters. BOCEDS represents an enhanced 

iteration of CEDAS.Numerous recent approaches for 

detecting network anomalies rely on online clustering.  

In 2017, Dromard et al. [5] introduced 

ORUNADA, a method for network anomaly detection 

based on clustering using a sliding window.  This 

method detects anomalies in data streams by 

incrementally updating a grid with a normal pattern 

and identifying outliers using outlier scores. The 

detection accuracy was satisfactory, but the time 

required for processing could be improved. In 2018, 

researchers proposed a method for detecting network 

anomalies in data streams using a Cauchy density-

based network [10]. This approach creates a new 

cluster if the distance from existing clusters surpasses 

a specified threshold.  

In 2018, Bigdeli et al. [11] introduced an 

incremental anomaly detection approach that utilizes 

Gaussian mixture models (GMMs) for cluster 

representation.  This two-layer structured model 

updated the Gaussian mixture models (GMMs) with 

new upcoming data samples and successfully filtered 

out noise. 

During the creation of a new cluster this method 

required clusters to be labeled as either regular or 

assault. In 2019,[3] introduced a model for anomaly 

detection that relied on clustering of data that arrives 

continuously.  The clusters were continuously 

refreshed as new data samples arrived, making 

efficient use of available memory resources. Outliers 

were identified as the distance from the current 

clusters increases exceeded a pre-defined threshold. 

To detect network anomalies based on behavior 

analysis Chonghua et.al., 2022 [12] Unlike other state-

of-the-art algorithms that only consider the difference 

between normal and abnormal, CCAD tracks the 

problem of collective anomaly scattered among 

multiple clusters when applying clustering-based 

algorithms in stream network traffic.  [13], Meryem et 

al. in 2023 demonstrated the utilization of 

autoencoder-based models in the Fed-ANIDS 

algorithm, which has been proven to outperform other 

generative adversarial network-based models 

regarding detection precision and reduced false 

positives. An overview of outlier detection techniques 

from 2022 to 2023 is presented in Table 1.  
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Table 1  

Techniques of network anomaly detection published between 2022 and 2023 

Authors      & year   Method Supervised/ 

Unsupervised 

Offline / 

Online 

Dataset Performance Metrics 

Shajoun & Xin Wang 2023 

[20] 

Multitask 

learning 

Super 

vised 

online UNSW-NB15 Accuracy, Recall, F1 

score, training time 

Xueyuan et.al., 2023 [21] MSRC Super 

vised 

offline KDD99, 

NSLKDD, 

UNSW-NB15, 

CICIDS 2018 

Accuracy, Recall, F1 

score. 

Igor et.al., 2023 [22] N/A Super 

vised 

offline UNSW-NB15 Accuracy,     

F2 score, AUC 

Maya et.al., 2023 [23] GBDT Super 

vised 

offline NSL-KDD, 

UNSW-NB15, 

and HIKARI-

2021 

Accuracy, Precision, 

Recall, F1, MCC 

Chonghua et.al., 2022 [49] CCAD Unsuper 

vised 

online UNSW-NB15, 

CICIDS2017 

ROC, AUC, Runtime 

Meryem et.al., 2023 [50] Fed-ANIDS Unsuper 

vised 

online USTC-

TFC2016, CIC-

IDS2017, CSE-

CIC-IDS2018 

Accuracy,     

F1 score, FDR 

Aiguo et.al., 2022 [41] NBAD  Unsupervised offline KDD99, 

CICIDS 2017 

Accuracy 

ROC, Recall, 

Training and testing 

time 

2.3 Contributions 

The CADSD (Clustering-Based Anomaly Detection 

for Network Streaming Data) method suggests the 

anomaly detection phase involves partitioning the 

analyzed data stream into two blocks, the latest data 

represented with block two. Consequently, the outlier 

micro-clusters Omc in this subsequent block might not 

be able to classify a significant number of data 

samples due to less time to transition in Imc which are 

core clusters. To avoid misclassification, a shield is 

employed to save the outlier clusters. 

The buffer plays a crucial role in storing outlier micro-

clusters Omc and contributes to the precise 

differentiation between regular and outlier micro-

clusters Omc during the clustering process in CADSD. 

In the suggested framework, the outlier clusters kept 

in the storage are called prospective micro-clusters 

Pmc. With a new stream of data coming in and the 

process progressing, some prospective clusters may 

develop into core clusters Imc and ultimately 

transition into regular clusters. This approach differs 

from BOCEDS as the buffer stores outdated micro-

clusters temporarily. The methods differ in their 

strategies to manage and adapt to changing data 

streams. 

The CADSD structure is designed to save concise 

information about micro-clusters. which can be used 

to provide a summary of network traffic samples. This 

enables the detection of low-density samples in local 

areas through micro-clustering, and low-density 

clusters in global areas through base-clustering. 

Normal patterns, referred to as normal base clusters, 

are updated incrementally over time, allowing for real-

time detection of outliers. In general, the contributions 

of CADSD can be outlined as follows: 

- A novel method has been created to identify 

anomalies in real-time data streams. This 

approach consists of clustering data streams 

through a two-phase process. In the initial stage, 

clusters are dynamically updated with incoming 

data. Next, in the outlier finding stage potential 

clusters Pmc are stored in a storage and any 

anomalies are identified and removed during the 

outlier’s removal stage. 

- Anomalies are redefined by setting thresholds 

for minimum density (LD) and maximum 

density (MD). This redefinition encompasses 

not only outlier clusters Omc having a density 

under the minimum limit as well as base clusters 

possessing a particular density level lower than 

the maximum requirement of density. 
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- A new algorithm with a buffer is proposed to 

prevent prospective clusters Pmc from being 

erroneously identified as genuine anomalies 

during the anomaly detection phase leading to a 

significant enhancement in detection 

performance. The most recent dataset, received 

after the last anomaly detection phase, is split 

into two distinct streams. The second stream, 

comprising the latest data, retains any outliers 

identified as prospective micro-clusters. 

- The recently introduced unsupervised anomaly 

detection algorithm surpasses current solutions 

in various aspects, including detection 

capability, false positive rate, accuracy, and 

computational complexity. Notably, it excels in 

the real-time detection of network anomalies. 

2.4 Organization 

The article follows a structured format outlined as 

follows:  Section 2 provides an in-depth examination 

of the proposed CADSD algorithm, accompanied by 

its pseudo-code. Moving forward to Section 3, we 

showcase the results obtained from experiments 

conducted on two extensively employed network 

streaming datasets, substantiating the effectiveness of 

CADSD. Additionally, we conduct a comparative 

analysis of CADSD with other algorithms using 

evaluation metrics. Section 4 provides the limitations 

of the proposed algorithm, and finally, Section 5 

serves as the conclusion, summarizing the study and 

outlining potential future research directions. 

3. Methodology 

3.1 CADSD: Proposed Algorithm 

The CADSD algorithm aims to establish a standard 

pattern that can be continually updated as 

characteristics evolve. Additionally, the algorithm 

must efficiently detect and eliminate abnormal data 

points with high precision. CADSD specifically 

retains concise information about micro-clusters. One 

can depict the connection between micro-clusters and 

the base-cluster formed by the intersection of the 

micro-clusters. The arrangement is defined, with its 

center represented by the central point of a 

microcluster. The cluster's radius is a direct line 

extending from the middle of the circle to the outer 

border of the circle. The kernel region, encompassing 

half of the radius, is found within the inner circle, 

while the shell region is the space between the inner 

and outer circles. 

  Fig. 1 [14] depicts the correlation between micro-

clusters and the corresponding base-cluster they 

represent. Two clusters intersect when the central 

region of one overlaps including at least the outer layer 

of another micro-cluster. In essence, two micro-

clusters intersect when the distance between their 

center's radii is less than sum of the half of their radius.  

The resultant overlapping micro-clusters, labeled as 

I1, I2, and $I3, collectively form the base-cluster B1. 

Significantly, despite the connection between I4 and 

I5, they do not consider Overlapping due to the outer 

boundary of I4 only intersecting with the outer 

boundary shell I5. Together, the micro-clusters I4 and 

I5 constitute another base-cluster, B2 [14]. 

Fig. 1. Intersection of Micro-Clusters and Base- 

Clusters 

A MC which is a microcluster is characterized by 

a set of values (mD; C; R; EL’; B). In this 

representation, 'mD' denotes Min-density, which 

corresponds to the count of samples within the micro-

cluster. 'C' represents the center of the micro-cluster, 

calculated as the mean of the samples contained within 

it. 'R' represents the micro-cluster's radius. Edge list 

EL 'of the micro-cluster, specifying intersecting 

micro-clusters. 'B' serves as the base-cluster ID, a 

unique integer that identifies the specific base-cluster 

where the micro-clusters are situated. Additionally, if 

a micro-cluster has a min-density above a certain 

threshold and no intersections with other micro-

clusters is also recognized as a base-cluster. 

3.2 CADSD Algorithm and Its Procedure 

This study is based on the concept that incoming 

malicious packet patterns will be different from the 

normal network traffic [5]. The following 

terminologies are associated with the algorithm. 

- Cluster Head: A cluster head depicts a group of 

small clusters and shows how they combine to 

form larger clusters. 

- Inner micro-cluster Imc: The micro-clusters 

contain several samples that meet or exceed the 

density threshold. 

- Outerlier micro-cluster Omc: The count of 

samples within the microcluster falls below the 

density threshold. 

- BaseCluster (B): Intersection of Several 

microclusters created a one base cluster. 
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- Min-density (mD):  The quantity of samples 

within a single Inner micro cluster. 

- Max-density (MD):  The quantity of samples 

within a single Outer micro cluster. 

- Prospective microclusters Pmc: When the 

sample count falls below the density threshold, 

it becomes an Outer micro-cluster. Any possible 

Pmc is kept in a buffer. 

- RadiusMax (RadiusM) and RadiusMin 

(RadiusMN): Expert knowledge of the 

application is used to determine the highest and 

lowest radius of the microclusters. The 

maximum radius is essential to ensure the 

uniformity and separation of the micro-clusters, 

while the minimum value of radius is for 

generating clusters comprising a satisfactory 

quantity of data points. 

- Min-Threshold: The minimum density required 

for a sample to constitute a core microcluster. 

- Outlier-Threshold: The maximum density of an 

outer-micro-cluster required for the formation 

of a regular cluster. In this scenario, the Outlier-

Threshold exceeds the Min-Threshold. 

- Regular clusters: Regular clusters are stored in 

memory when the quantity of data points within 

one cluster surpasses the Outlier-Threshold. 

- Outlier clusters: Outliers are recognized by 

considering both the min-density threshold 

(Min-Threshold) for micro-clusters with lower 

density and the max-density threshold (Outlier-

Threshold) for the base cluster with lower 

density. 

- Stream-block: Duration of one-datastream  Sb. 

The execution of the proposed CADSD algorithm 

started once the system parameters (Min-Threshold, 

Outlier-Threshold, RadiusMax, RadiusMin, and Sb 

were configured. Subsequently, the program awaits 

the arrival of data samples. The algorithm is 

implemented right from the start and doesn't require 

any preprocessing. 

Upon the arrival of new data traffic, the algorithm 

initiates a search to identify the specific micro-cluster 

that the sample is associated with. The search involves 

both the micro-clusters stored in the buffer and in 

memory. The details linked to the intended cluster are 

revised once the search is accomplished. Conversely,  

a new microcluster is created if the search is 

unsuccessful. Base-cluster modification triggers an 

update in the base-cluster. The specified step is 

referred to as the increment stage. In this stage, new 

data continuously arrive and undergo processing, and 

the base clusters are dynamically generated online in 

the suggested CADSD algorithm. These base-clusters 

undergo continuous updates, adapting in sync with the 

incremental adjustments to the micro-clusters. 

Anomaly detection is triggered following the 

consecutive increment process of two streaming data 

blocks, marked by an exceptionally brief period. 

During this process, only the regular clusters, 

depicted as base-clusters, persist in memory. The 

allocated potential clusters, demonstrating regular 

arrangement, undergo incremental updates to ensure 

they adapt to the evolving and changing data stream. 

To enhance detection accuracy buffering is employed 

to prevent potential micro-clusters from mistakenly 

removed as inner anomalies. 

Furthermore, a modified definition of an outlier is 

introduced. The term now encompasses not only inner 

outliers as in BOCEDS but also outer outliers, 

referring to base-clusters having limited data points. 

The expanded definition significantly adds to the 

overall enhancement of detection precision. 

Fig. 2.  Model of The Proposed CADSD Algorithm 

In each interval, our dataset assumption constitutes 

most of the normal dataset. If there is a substantial 

influx of invasive data points within a specific time 

period, the maximum density formed by these 

intruding data points of the clusters might surpass the 
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highest density threshold. Consequently, these clusters 

could be inaccurately classified as regular, signalling 

a potential distortion in the evolving regular patterns. 

This scenario is acknowledged as a drawback for the 

proposed CADSD, as it has the potential to 

compromise the accuracy of the system when 

confronted with such abnormal data patterns. Fig. 2 

offers a visual depiction of the structure of the 

algorithm.  

3.2.1 Increment stage 

Streaming data samples are executed by scanning 

them in a single run. Upon the arrival of a new sample, 

the program searches to find the corresponding micro-

cluster it belongs to. Initially, it looks for the target 

micro-cluster within the prospective clusters within 

the storage and subsequently among the clusters stored 

in the computer's memory. When the search is 

accomplished, the specific cluster undergoes an 

update; alternatively, another micro-cluster is created. 

This process leads to updates in the base-clusters, 

represented as clusters, whenever a new Inner-

microcluster is created or an existing Inner-

microcluster is modified. The algorithm for the 

increment stage unfolds in two steps: (i) modifying the 

microclusters and (ii) adjusting the clusterhead. 

i) Microcluster Updation 

When a new sample is obtained, the algorithm 

finds the corresponding micro-cluster it is associated 

with. If a micro-cluster acquires a new data point, the 

algorithm undergoes recursive updates. The algorithm 

involves two main processes: "searching" and 

"updation". The algorithm first examines the 

prospective micro-clusters in the storage and then in 

the memory bank to identify the target microcluster. If 

the distance from the data point to the micro-cluster's 

center is shorter than the micro-cluster's radius, then 

the data point is deemed a member of that micro-

cluster [14]. 

The min-density is increased by one if the 

datapoint is within the aimed micro-cluster  and when 

the datapoint falls within the shell region the specific 

micro-cluster's radius and center are updated. No 

updation is required if the datapoint falls within the 

kernel region. A new micro-cluster is formed in the 

event of an unsuccessful search for the target micro-

cluster, and its characteristics are set initially with the 

min-density set to 1, the radius established to 

RadiusMN, the central point set to the datapoint, and 

with the emptied edge list. The variable M is 

configured to 0 since it does not pertain to any base 

group. 

Algorithm 1 starts the process. Upon receiving a 

new datapoint si', the micro-cluster is first sought in 

the buffer, specifically in the Prospective microcluster 

Pmc. If still the intended micro-cluster is not found in 

Pmc, the algorithm then proceeds to search for it in 

memory, within the set of micro-clusters (MC). A new 

microcluster is generated if the aimed micro-cluster is 

still not found in microclusters. The process involves 

the following steps of finding the micro-cluster in 

Pmc.  

The distance 'd' calculated between  Si’ and the 

microcluster closest center  L’(mD, C,  EL’, R, B), 

where,  L’Ɛ (Pmc). One of the following steps will be 

executed for the distance calculation between 'd' and 

'R': 

- If distance < Radius,  si’ remain in the region of 

L’. Update the microcluster C’. Assign the min-

density to mD+1.   

- If R/2 < d<R (si’ remains in the region of L’). 

Update C by Eq. (1) and R by Eq. (2) where ‘n’ is the 

number of data samples within the stream of data. 

𝐶𝑛𝑒𝑤 =
(𝑚𝐷 ∗ 𝐶 + 𝐿′)

(𝑚𝐷 + 1)
                                                (1) 

𝑅𝑛𝑒𝑤 = min (𝑅

2 ⅆ
𝑅 − 1

2𝑛
) , Max 𝑅𝑎𝑑i𝑢𝑠                 (2) 

- If d ≥ R 

The expected microcluster is not in the buffer it is 

searched in the MCcore and MCoutlier. 

The procedure for identifying the target micro-

cluster in both MCcore and MCoutlier is similar to that 

in Pmc. A new micro-cluster is created if the target 

micro-cluster is not found, with the smallest radius and 

sample as its center. First initiate to 1 the edge list, 

min-density, and base-cluster ID. 

Algorithm 1: Initializing Stage 

 

Input: si' sample datastream, MC (micro-clusters),  
Pmc (prospective micro-clusters), 
RadiusMinimum, RadiusMaximum.  

Stage 1: closest micro-cluster L’(L’ ϵ Pmc) 

      If the distance d is < between si’ and L’ then      

       radius of L’  

      goto stage 2 

       else 

       goto stage3 

       [End] 

Stage 2: Modify the mD of L’, mDnew – mD + 1 

       If  (Radius/2 < ( datasample, center of L’) < 
Radius)  [C is the  center of L’] 
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ii) ClusterHead Updation 

clusters are referred to as baseclusters, and intersecting 

core micro-clusters act as cluster heads, collectively 

forming baseclusters. The clusterhead structure 

updates the information if any new microcluster is 

formed or any details about core micro-clusters 

change, we call this updated or new microcluster 'C'. 

Similarly, if any changes in the core micro-cluster, or 

new creation of the microcluster or its center are 

changed, then the cluster head structure and the 

baseclusters are updated accordingly. The CASDSD 

algorithm enables online updates to the baseclusters 

by modifying the clusterhead. 

To update the edge list or for the modification of the 

edge list of these core microclusters as described in 

algorithm 2, identify all core micro-clusters 

intersecting with C.  Eq. (3) [14] is employed to 

calculate the distance of intersection, denoted by 'd'. 

The count of baseclusters will be updated to a new 

value for the emerging cluster of the edge list. 

distance’ = Radius + Radius’/2 if Radius ≥Radius’ 

Radius’ + Radius’/2 if Radius’>Radius                     (3) 

Algorithm 2: Update the Cluster 

 

 

3.2.2 Anomaly detection stage 

Cumulative processing of two datastreams occurs 

when the next phase of anomaly detection is triggered, 

Si' (Si'1, Si'1+1, ..., Si'1+n) and Si'+1(Si'1+n+1, 

Si'1+n+2, ....., Si'1+2n). 

During this cumulative processing phase, only 

regular clusters are left in memory while potential 

microclusters are transferred to the storage. The 

reserved regular clusters symbolize recurring patterns 

that undergo ongoing updates to adapt to evolving and 

changing data patterns. The use of buffering 

techniques prevents potential micro-clusters from 

being mistakenly labeled as inner outliers, thereby 

considerably enhancing the precision of the detection 

accuracy. Furthermore, a modified way to call an 

outlier is presented, where the term "outlier" now 

includes not just inner anomalies as called in 

BOCEDS [6] but also outer anomalies as base clusters 

based on a limited number of the data points.  

As we load the incoming data into memory with 

each new sample, we expect that the cores previously 

generated in Si' will have sufficient time to await the 

arrival of samples from Si'+1, facilitating their 

transformation into core microclusters. However, for 

the core microclusters exclusively generated in Si'+1, 

even if they are not outliers, there may not be enough 

time for these samples to wait until they form core 

microclusters. Buffering is presented to address this 

problem. 

The microclusters in Si' +1 with min-densities 

lower than the Min-Threshold are stored and buffered. 

As the data in the subsequent two blocks of streaming 

data are associated with the microclusters, those with 

a minimum density equal to or more than the Min-

Threshold will be stored in memory, while those with 

       Using eq1 and eq2 to update the center and the  

        radius. 

       [end] 

Stage 3:  search the nearest microcluster L’, (L’ ϵ     

            MC) 

Suppose distance d among si’ and C’ < the 
radius of C’ 

jump to  step 4 

 else 

jump to step 5 

 [End] 

  Stage 4: renew the mD of L’, mDnew = mD + 1 

if (Radius/2  < (si’, C) < Radius)   

renew L’ using Eq. 1 and Eq. 2 

[End] 

Stage 5: generate a new microcluster L’ (mD, C, 
R,    

              EL’, B) 

            mD = 1,  C = L’, R = RadiusMinimum, EL’      

             = {}, B =0 

 

Begin: core microcluster, Imc 

While new core micro-cluster is formed or the 

center of an existing core micro-cluster C is 

altered  

 

do 

Stage 1: for every L’ which is the other 

microcluster(core) in Imc, then, 

Calculate the distance between L and L’ 

Calculate the intersecting distance denoted as d’ 

between L and L’ in Imc using eq (3) 

If d ≤ d’, then sum the L’ and L in edge list of L 

and L’  

[end] 

Stage 2: If any changes are made to the edge list 

of a micro-cluster, adjust the count of base 

clusters throughout the entire cluster. 

 [end] 
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a minimum density below the Min-Threshold will be 

ignored. 

During the anomaly detection stage, outliers can be 

classified as inner and outer outliers. The 

identification of a max-density (MD) in a base-cluster 

serves as the criterion for determining whether the 

base-cluster is regular, aligning with the assumption 

proposed by [5]. As per this assumption, attacks form 

a smaller proportion of the total data traffic that can be 

differentiated from regular data patterns. 

During the increment stage, three processes take 

place: i) clearing the buffer, ii) storing the prospective 

microclusters in the storage, and iii) eliminating 

anomalies. 

i) Algorithm 3: Buffer Removal 

ii) Algorithm 4: Saving Prospective Microclusters  

iii) Algorithm 5: Deletion of Outliers 

We call the microcluster an outlier if they identified as 

an Outlier-microcluster and if the Base-clusters max-

density value is less than the Outlier-Threshold. The 

maximum density of a base cluster is determined by 

the sum of all the minimum densities of its core 

microclusters. When baseclusters are identified as 

anomalies, they are removed from memory, leading to 

a reduction in the count of baseclusters.  

4. Datasets 

4.1 UNSW-NB 15 Dataset 

To streamline computation, symbolic features were 

excluded, and min-max normalization was applied to 

the numerical features. The dataset was divided into 

blocks of 500 samples, with each block designated as 

Sb = 500. 

4.2 NSL-KDD Dataset 

The second chosen dataset for our experiment is the 

NSL-KDD dataset. Out of the total 125,973 samples,  

67,342 were classified as normal data, while 58,631 

were attacks. The NSL-KDD dataset exhibits a 

significant imbalance similar to the KDD dataset. 

4.3 Results and Findings 

i)  UNSWNB-15 

The CADSD parameters for the UNSWNB-15 

datasets are configured as follows: Min-Threshold is 

set to 9, Outlier-Threshold to 18, RadiusMax to 0.315, 

and RadiusMin to 0.313. Within a predetermined 

timeframe, we examine 1000 data samples, which are 

represented by two data stream blocks. Three metrics 

are used to evaluate the effectiveness of detection: 

accuracy, false positive rate (FPR), and detection rate 

(DR).  

By modifying the Min-Threshold from 6 to 10 and 

the outlier-threshold from 14 to 23, we examine how 

these threshold adjustments influence the DR and FPR 

of the proposed CADSD. With RadiusMax set to 3.15 

and RadiusMin set to 0.313, Table 2 illustrates the 

sensitivity of the Min-Threshold and Outlier-

Threshold under various configurations. 

When the outlier-threshold is set below 16, the 

detection rate drops, indicating that some attack 

Input: Prospective microclusters, Pmc 

If Pmc is not Null 

Set Pmc = Null 

[end-if statement] 

Input: For all microclusters  

Select every outlier microclusters Otmp-outlier 
from datastream S i+1,  O tmp-outlier  ⸦ Omc 

For every outlier microcluster O in  

Otmp-utlier, do 

Add the O into the buffer Pmc = Pmc U O 

End 

 i_Imc in O_i, do  

 I_I_mc = (i-1)_Imc U i_Imc  

 [End If statement] 

[End For Statement] 

Outlier = Omc U i_Imc 

Stage 3: for every core microcluster  I  in i_Imc, 
do 

  Delete the microcluster I 

 Delete the microcluster I from EL' which 
contains the core microcluster I.  

[End statement] 

Decrease the number of  baseclusters. 

End 

Input:  For each microcluster,  

Stage 1: Search all the outlier-microclusters, 
O(mc) in memory  

 Remove O(mc) 

Stage 2: for each base-cluster Oi  do  

 If MD of  Oi outlier < outlier_threshold 

  Select all the core microcluster  
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samples might not be noticed. This is most likely the 

result of incorrectly classifying as normal base-

clusters base-clusters with a high number of  samples 

exceeding the Outlier-Threshold (considered as real 

outliers). It is advisable to establish the minimum 

value of the Outlier-Threshold considering the size of 

the largest outlier base clusters. Moreover, choosing a 

Min-Threshold below 8 results in a diminished 

detection rate, as it may incorrectly identify some 

regular clusters as outliers. Increasing the Min-

Threshold from 8 to 10 leads to an increase in false 

positives. Additionally, regular micro-clusters may 

lack adequate data to swiftly change into core micro-

clusters. Therefore, finding the optimal configuration 

for Min-Threshold and Outlier-Threshold should 

consider the maximum size of the outlier base clusters 

and the minimum size of the core microcluster. 

In this scenario, 99% for DR and 10% for FPR, 

show slight variations around respectively while 

adjusting the Outlier-Threshold from 16 to 23 and the 

Min-Threshold from 8 to 11. The optimal outcomes 

99.35% detection rate and a 9.34 % false positive rate 

can be obtained by setting the Min-Threshold to 9 and 

the Outlier-Threshold to any value in [15,16,17]. 

The influence of RadiusMax and RadiusMin on the 

UNSWNB-15 dataset in various configurations is 

shown in Table 3, where the Min-Threshold is set to 9 

and the Outlier-Threshold is set to 18. If RadiusMin is 

set below 0.3115, the detection rate falls. This might 

be because base-clusters produce erroneous regular 

patterns because regular micro-clusters lack sufficient 

samples to form core micro-clusters. Additionally, 

since RadiusMax is used to guarantee the smoothness 

and separation of the micro-clusters, setting it to a high 

value is not advised. When RadiusMin is changed 

from 0.31 to 0.315 and RadiusMax from 0.315 to 0.33, 

the system performs well.Setting RadiusMax between 

0.315 and 0.32 results in a detection rate of 99.12%.  

When RadiusMin is configured at 0.313 and 

RadiusMax is set to 0.315, this setup results in the 

lowest false positive rate of 6.9% among 

configurations, while achieving a 99.12% detection 

rate. The minimum false positive rate of 5.9% is 

attained when RadiusMin is set to 0.31 and 

RadiusMax is set to 0.315. The detection rate of 

98.82% is obtained when RadiusMax is set between 

0.325 and 0.33. 

When RadiusMin is set to 0.313 and RadiusMax is 

set to 0.315, it produces the optimal results, yielding a 

99.35% detection rate and a 9.34% false positive rate. 

As depicted in Fig. 3, with the configuration of Min-

Threshold = 9, Outlier-Threshold = 18, RadiusMin = 

0.313, and RadiusMax = 0.315, the DR and FPR over 

time exhibit fluctuations. The system experiences the 

highest false positive rate during the first 10,000 

samples of operation. But eventually, the FPR drops 

until the 60001–70000 sample period. Following that, 

the level of the trend off and then start to slightly 

fluctuate at 7.5%. Thus, after a specific number of 

sample executions by the system, the FPR can increase 

to 70.5%. Furthermore, on the UNSWNB-15 dataset, 

the system's detection rate and false positive rate are 

6.9% and 99.12%, respectively, with the parameters 

Min-Threshold = 9, Outlier-Threshold = 18, 

RadiusMin = 0.313, and RadiusMax = 0.315. The 

accuracy of the system is 91.6%, which is an 

additional assessment metric (i.e. accuracy measure) 

to verify the system's functionality. 

Table 2 

Sensitivity of min-threshold and outlier-threshold under different configurations 

 

 Outlier-Threshold 

Min-Th   14 15 16 17 18 19 20 21 22 23 

7 
DR 28.5 70.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 

FPR 4.9 4.9 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 

8 
DR 64 86.6 88.4 92.6 92.6 92.6 92.6 91.2 91.2 92.1 

FPR 5.1 6.5 6.9 5.6 5.6 5.6 5.6 7 7.2 7.3 

9 
DR 64 90.2 90.5 99.12 99.12 99.12 99.12 93.6 94.6 95.3 

FPR 5.2 6.5 6.5 6.9 6.9 6.9 6.9 6.2 6.2 6.2 

10 
DR 64 70 70 95.2 95.2 95.2 95.2 99.1 99.1 99.1 

FPR 6.5 7.5 7.5 8.4 8.4 8.4 8.4 9.4 10.2 12.4 

11 
DR 64 80.4 80.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4 

FPR 8.5 8.9 8.9 12.5 12.8 12.9 12.9 12.9 12.9 12.9 
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Table 3 

Influence of radius-max and radius-min on the UNSW-NB15 dataset 

Radius-Minimum 

Radius 

Max 
 0.31 0.3115 0.312 0.3125 0.313 0.3135 0.314 0.3145 0.315 0.3155 

0.315 
DR 65.5 96.12 90.12 99.12 99.12 99.12 99.12 99.12 99.12 99.12 

FPR 5.9 6.2 6.2 6.95 6.9 7.2 7.5 6.99 6.98 7.1 

0.32 
DR 67.5 99.1 90.12 99.12 99.12 99.12 99.12 99.12 99.12 89.4 

FPR 6.2 6.5 6.67 7.2 7.4 7.69 7.8 7.92 8.1 8.2 

0.325 
DR 64.1 97.36 97.36 97.36 97.36 97.36 97.36 97.36 97.36 87.36 

FPR 6 6.59 6.4 6.99 6.2 6.65 6.64 6.63 6.63 6.61 

0.33 
DR 64 78.1 98.82 98.82 98.82 98.82 98.82 98.82 98.82 98.82 

FPR 7.8 8.82 8.8 8.39 8.39 8.35 8.45 8.45 8.6 8.9 

 

Fig. 3. The Proposed CADSD Method’s DR and FPR 

Over The UNSWNB-15 Dataset 

Table 4 provides a comparison of different 

approaches based on their technique (online/offline), 

approach, attack type, accuracy, DR, and FPR [18]. 

The comparison includes seven offline models and 

one hybrid model. The offline approaches discussed in 

[19,20,21,22] are examined, and no online approach 

utilizing the UNSW-NB15 dataset was identified in 

the literature. Apart from [23], which is a hybrid 

technique achieving a 100 percent detection rate, the 

proposed model surpasses all other approaches in 

terms of detection rate and stands out as an online 

approach. 

The UNSWNB-15 dataset's evolving normal 

patterns, which are excellent for outlier detection, are 

highly suitable. The suggested method's accuracy is 

comparable to other approaches. Compared to earlier 

techniques, the proposed CADSD has a greater false 

positive rate (FPR) [20,21]. All these techniques make 

use of the UNSWNB-15 dataset, which differs greatly 

in terms of attack and normal data. Conversely, the 

proposed CADSD does not require human labeling 

and can identify attacks directly, making it more 

practical for use in real-world scenarios. Although 

they cannot be used online, the techniques in [19,20] 

are fully offline and can yield good results for FPR. 

In Table 4, the suggested Cluster-based Anomaly 

Detection using the Streaming Data (CADSD) 

approach shows a detection rate that is nearly 

comparable to other methods. This is explained by the 

UNSWNB-15 dataset's evolving normal patterns, 

which are ideal for identifying outliers. The relatively 

high false positive rate for CADSD, however, suggests 

the potential occurrence of some normal samples 

being mistakenly classified as attack samples. 

Many normal data instances of the program are 

misclassified as attacks during the early stages, given 

that normal patterns are being established from the 

beginning. Since other unsupervised techniques are 

trained on complete static datasets, their false positive 

rates are lower than CADSD's. 

Table 4 

The table compares methods based on different configurations on the UNSW-NB15 dataset 

` Technique Approach 
Offline/ 

Online 
Accuracy DR FPR 

proposed 

CADSD 

Clustering for 

streaming data 
Unsupervised Online 90% 99.12% 6.90% 

2023 

[17] 
IDS-INT Supervised Hybrid  99.2% 100% - 

2023 [8] MSRC Unsupervised Offline 95.06% 94.59% 4.96% 
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ii) NSL-KDD 

In Section 4.3.1, the RadiusMin and RadiusMax 

parameters are set to 0.4 and 0.45, respectively, on 

NSL-KDD.  based on the sensitivity test.  The Outlier-

Threshold is set to 14 and the Min-Threshold to 3. The 

suggested CADSD achieves a DR of 90%, an FPR of 

7.2%, and an accuracy of 91% with these parameter 

settings.  

The performance comparison between the 

suggested CADSD and other systems is displayed in 

Table 5. Regarding accuracy and detection rate, 

supervised methods [22] and the hybrid supervised 

and unsupervised method [24] perform better than the 

proposed CADSD. It still produces superior results for 

accuracy and detection rate than [25]. Furthermore, 

because supervised methods need precise classifiers to 

be trained over an extended period using labeled data, 

they cannot be applied to online applications.  The 

accuracy of the suggested CADSD and the 

unsupervised offline methods are comparable 

[19,26,27,28]. 

Even though Vaiyapuri et al. [26]  in comparison 

to the suggested CADSD, [27] has a higher detection 

rate than CADSD it also has a high FPR. Furthermore, 

when assessed the proposed CADSD outperforms the 

two-layer structure method [11] regarding the 

detection rate on the NSL-KDD dataset. Although 

their FPR are comparable, the proposed CADSD's 

false alarm rate is marginally higher. Nevertheless, it 

is necessary to highlight that the proposed CADSD 

can directly identify attacks without any pre-training 

of data. In contrast, the two-layer structure method 

[11] necessitates manual cluster labeling, designating 

new clusters as either normal or attack clusters. 

The data presented in Table 5 indicates that 

supervised methods outperform unsupervised 

methods in terms of accuracy. The CADSD method 

proposed exhibits a superior detection rate compared 

to the two-layer structure method [11]. This implies 

that density-based microclusters are more effective in 

detecting anomalies than evolving Gaussian Mixture 

Models (GMMs) when applied to the NSL-KDD 

dataset. 

Table 5 

The table compares methods based on different 

configurations on the NSL-KDD dataset 

Artic

le 

Metho

d 

Approa

ch 

Offl

ine 

/On

line 

Accu

racy 
DR FPR 

prop

osed 

CAD

SD 

Cluster

ing for 

streami

ng data 

Unsupe

rvised 

Onl

ine 
91% 

90.0

0% 

7.20

% 

2018 

[51] 

GMM  

based 

increm

ental 

clusteri

ng 

Unsupe

rvised 

Onl

ine 
- 98% 2% 

2022 

[21] 

RT-

IDS 

Supervi

sed 

Onl

ine 

81.8

7% 

70.7

1% 
- 

2019 

[28] 

Autoen

coder 

Unsupe

rvised 

Offl

ine 

91.7

4% 

84.6

8% 
- 

2019 

[29] 

Autoen

coder 

Unsupe

rvised 

Offl

ine 

87.2

%-

92.4

% 

89.7

3%-

92% 

7.04

%-

24.2

1% 

2020 

[30] 

Autoen

coder 

Unsupe

rvised 

Offl

ine 

91.4

6% 
97% 

13.4

0% 

2020 

[35] 

K-

means 

Unsupe

rvised 

Offl

ine 

80.9

1%-

90.2

0% 

- 

5.2

%-

8.2

% 

2021 

[23] 

Rando

m 

Forest, 

Logisti

c 

Regres

Hybrid 
Offl

ine 
93% 94% 

9.60

% 

2020 [31] Autoencoder Unsupervised Offline 93.40 - - 

2024 

[15] 
DCRNN Supervised Offline 99.06% 98.99% 1.49% 

2021 [25] 

 

  

Decision Tree Supervised Offline 76.38% 96.12% - 

SVM Supervised Offline 68.65% 92.71% - 

ELM Supervised Offline 76.51% 92.75% - 

SDAE-ELM3 Supervised Offline 72.38% 87.42% - 
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sion, 

SVM 

2021 

[25] 

 

  

Decisi

on 

Tree 

Supervi

sed 

Offl

ine 

93.1

5% 

93.2

7% 
- 

SVM 
Supervi

sed 

Offl

ine 

93.0

5% 

93.0

2% 
- 

ELM 
Supervi

sed 

Offl

ine 

94.0

4% 

93.1

8% 
- 

SDAE-

ELM3 

Supervi

sed 

Offl

ine 

93.5

6% 

93.1

0% 
- 

The four techniques mentioned in Reference [22] 

are offline methods that require prior knowledge of 

dataset labeling for training classifiers. CADSD 

surpasses these techniques in terms of accuracy, DR, 

and FPR. Furthermore, CADSD  technique is online 

and does not necessitate pre-training of classifiers. On 

the other hand, the approach proposed by Meenal et al. 

[24] is a hybrid of supervised and unsupervised 

methods, demonstrating superior accuracy and false 

positive rate compared to CADSD. However, it is not 

suitable for online applications due to its lower 

detection rate compared to CADSD and the 

requirement for long-term learning in its supervised 

stage for dataset labeling. 

The CADSD algorithm produces the best detection 

rate results, as Table 6 demonstrates. Due to typical 

patterns fluctuating continuously and anomalies are 

quickly found and eliminated, accuracy is increased. 

5. Limitations of the Proposed Algorithm 

Although the suggested method offers notable 

benefits, there are inherent limitations that warrant 

additional evaluation. One possible concern is the 

approach operates under the presumption that the 

normal dataset constitutes most of the overall dataset. 

The most challenging situation occurs when there is a 

significant surge of attack data samples within one 

specific time period. In such cases, clusters formed by 

these particular samples might be mistakenly 

categorized as regular clusters, resulting in a 

noticeable decrease in the algorithm's efficacy. Yet 

another constraint of the suggested CADSD method is 

the need to predefine parameters of the system, 

including the inner outlier threshold and outer outlier 

threshold, relying on expert knowledge. Furthermore, 

the method still demonstrates significant memory 

usage. Subsequent efforts could focus on minimizing 

memory usage and automatically adapting the 

predefined thresholds to accommodate various 

applications for detecting network intrusion. 

6. Conclusion and Future Work 

A novel real-time method for detecting network 

anomalies is capable of adapting and evolving normal 

network patterns as the incoming network stream 

undergoes changes and developments. Additionally, 

the method incorporates micro-clustering, an essential 

element in identifying inner outliers through the 

establishment of a minimum threshold of density and 

the combining of micro-clusters to form intersections 

within base-clusters. The recognition of outer outliers 

within the base clusters is facilitated by the 

implementation of a global cluster threshold. To avoid 

the unintentional removal of temporary micro-clusters 

as legitimate anomalies, storage is used for holding 

these prospective micro-clusters until the subsequent 

data points are reached. Finally, two separate data 

streams are formed in the outliers detection stage, 

improving the overall effectiveness of CADSD in real-

time anomaly detection in network data streams. 

Outliers are preserved as prospective micro-clusters 

within the next stream, which includes the latest data 

samples. If the stored micro-clusters within the buffer 

exhibit a lower density than the specified minimum 

threshold density, they are retained in memory during 

the processing of the next data stream otherwise they 

are eliminated from the memory. The use of this 

buffering technique significantly improves detection 

performance. The efficacy of the suggested technique 

has been successfully showcased through 

experimentation with two widely recognized network 

packet-based datasets: UNSWNB-15 and, NSL-KDD. 

Looking ahead, future work could focus on 

addressing the identified limitations by exploring 

adaptive thresholding mechanisms that dynamically 

adjust based on network conditions. Additionally, 

integrating advanced machine learning techniques, 

such as deep learning models, could enhance the 

system's ability to detect complex anomalies and 

reduce false positives. As technological advancements 

continue, further improvements in algorithm 

efficiency and the incorporation of hardware 

accelerators like GPUs and FPGAs could significantly 

boost the performance and scalability of the proposed 

method. These enhancements will ensure the method 

remains robust and effective in the face of evolving 

cyber threats. 
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