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 The quality of GNSS-based navigation services is highly influenced by the type 

of operating environment. The urban environments with buildings and structures 

pose substantial challenges for GNSS navigation accuracy.  To address this 

challenge, we propose a data-driven approach Environment Adaptive Navigation 

(EAN) because complex mathematical models for GNSS environments are 

impractical for real-time use due to their processing load. This data-driven 

approach analyzes real-time GNSS data to understand how the environment 

affects performance and optimize receiver settings for each scenario. Keeping 

this in view, raw GNSS data was collected through field trials including the three 

environments: clear sky, partially degraded, and highly degraded. We then 

analyzed this data to pinpoint factors affecting accuracy, such as the number of 

available satellites and standard error measurements. The proposed solution, the 

EAN algorithm, tackles these limitations of the GNSS due to the urban 

environments and improves the navigation performance. This data-driven 

approach analyzes real-time GNSS data to identify the specific environment 

(clear, partially degraded, or highly degraded). Based on this assessment, EAN 

dynamically adjusts receiver settings, like tracking loop bandwidth, to achieve 

optimal performance under those conditions. Integrating the EAN model into 

GNSS receivers allows for real-time environment detection and adaptive 

configuration. This EAN-based GNSS receiver holds significant promise for 

safety-critical applications like Intelligent Transportation Systems (ITS). Precise 

navigation is crucial for functionalities within ITS, such as route optimization 

and autonomous vehicle operation. The effectiveness of the EAN-based receiver 

was validated through a field experiment demonstrating a notable increase in 

tracked satellites and a substantial reduction in outages within a highly degraded 

environment. 

1. Introduction 

An accurate, precise and seamless navigation 

information is indispensable for a wide array of 

applications, especially in urban environments where 

precise navigation, emergency response, geo-fencing, 

Intelligent Transportation Systems, environmental 

monitoring and other location-based services require 

precise location data. [1]–[3]. Although GNSS provide 

ubiquitous coverage and GNSS data in real-time, but 

its performance degrades substantially in urban 
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canyon due to satellite signal blockage, multipath, and 

non-line-of-sight (NLOS) reception [4]–[7]. These 

signal impairments collectively reduce accuracy and 

availability of GNSS-based navigation in urban 

environments, hindering the performance of location-

based applications [8]. Existing studies for mitigation 

[9]–[13] such as NLOS detection and multipath 

exclusion can enhance the positional accuracy under 

particular situations, but their effectiveness is limited. 

For example reducing the multipath or NLOS 

measurements can enhance the positioning accuracy in 

partially degraded environments. However, this 

technique may rise the service interruptions in densely 

urban environment [14]–[16]. This type of the method 

may cause service interruptions in highly dense urban 

contexts due to reduced satellite visibility and limited 

satellite availability. 

The traditional mathematical modelling of the 

environment in the context of GNSS is very complex 

due to its inherent randomness. While detailed 3D 

models exist in literature, those models have high 

computational load and are incapable of being 

employed in real-time GNSS receivers. Keeping this 

in view, a data-driven approach is adopted in the 

paper, which is the main contribution of this paper. 

The contribution of the paper is as follows: 

- Initially to assess the GNSS performance 

across various contexts, real-time GNSS data is 

logged through rigorous field experimentation. 

The data acquired includes satellite 

availability, continuity, dilution of precision 

(DOP), and statistical accuracy measurements. 

- Secondly, a data-driven approach is applied to 

GNSS raw data to interpret the potential 

anomalies that affect the GNSS in three distinct 

environments: open-sky, partially degraded 

with some obstructions, and highly degraded 

with minimal line-of-sight (LOS) reception.  

- Based on the detailed assessment, a data-driven 

EAN algorithm is proposed to enhance the 

navigation accuracy. EAN algorithm optimize 

the receiver settings i.e. tracking bandwidth in 

real-time based on detected environment. 

In a data-driven approach, decisions are made 

based on the data. The initial stage of data-driven 

approaches involves data analytics to analyze and 

interpret the data. Based on this, we have applied a 

data-driven approach on real-time GNSS data under 

different environments to interpret and quantify the 

stochastic behavior of the different environments. 

After detailed performance assessment, a data-driven 

environment adaptive navigation (EAN) algorithm is 

proposed to enhance the navigation accuracy. This 

approach utilized the real-time data from GNSS 

receiver to characterize the surroundings. Based on the 

environmental features detection by EAN algorithm 

like signal blockage, multipath, and NLOS reception 

the receiver can then optimize the settings in real-time. 

The optimization involves adjusting the parameters 

like noise bandwidth to enhance the processing of 

GNSS signals and restricts the consequences of 

deterioration. The EAN algorithm aims to enhance the 

positioning accuracy and reduce the limitations of 

traditional mitigation strategies specifically in 

complex urban scenarios. 

Fig. 1. Three Distinct Environments for GNSS 

Performance Evaluation. (a) Open Sky Environment With 

Minimal Obstructions (b) Partially Degraded Environment 

With Some Building Blockage (c) Highly Degraded 

Environment With Significant Building Blockage And 

Limited Line-Of-Sight (LOS) Reception 

2. Field Experimentation and Methodology 

To precisely estimate the severity of GNSS 

inaccuracies in constrained environments, field 

experimentation is carried out on three different, pre-

surveyed and carefully selected sites having different 

obstruction/blockage levels, as shown in Fig. 1 above. 

The three chosen sites reflect a wide range of GNSS 

reception conditions: open sky, slightly degraded, and 

severely degraded.  

- Clear Open Sky Environment (Fig. 1(a)): This 

site, located on the roof of Academic Block-3, 

Sukkur IBA University, provides an 

uninterrupted view of the sky, reducing signal 

blocking and promising optimal reception 

conditions. 

- Partially Degraded Environment (Fig. 1(b)): 

This site, located at the 1st Floor of Academic 

Block-3, Sukkur IBA University, presents a 

partially obstructed environment with a mix of 

line-of-sight (LOS) and non-line-of-sight 

(NLOS) reception. 

- Highly Degraded Environment (Fig. 1(c)): 

This site, located inside the Academic Block-3, 

Sukkur IBA University, represents a 

challenging environment with a high 

probability of signal blockage and minimal 

LOS reception. 

This study utilized a rigorous field experiment 

design to assess GNSS performance across diverse 
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environments. Three separate trials were conducted, 

each lasting six hours. During each trial, a PolaRx5S 

multi-constellation GNSS receiver continuously 

collected navigation data at 10 Hz from all four GNSS 

constellations (GPS, GLONASS, BeiDou, and 

Galileo), providing a high-resolution record for 

analysis. Following data acquisition, GNSS 

performance was evaluated by analyzing key quality 

parameters: satellite availability (number of tracked 

satellites), satellite continuity (ability to maintain a 

valid position fix considering tracking and outage 

events - minimum of seven satellites required for 3D 

fix), positioning precision (PDOP, influenced by 

satellite geometry), and positioning accuracy (DRMS, 

a 2D horizontal accuracy measure). In practical world 

scenarios these measures plays an important part and 

utilized to extract the environmental factors that 

impact on GNSS performance. The PDOP and DRMS 

values can be estimated as 

PDOP = √𝜎𝑥
2 + 𝜎𝑦

2 + 𝜎𝑧
2                              (1) 

DRMS = √𝜎𝑥
2 + 𝜎𝑦

2                             (2) 

where, σ2 is the variance of estimated coordinates (x, 

y, z).  

 

 Fig. 2. GNSS Performance in Clear Open-Sky, Partially Degraded, And Highly Degraded Environment: (a) Satellite 

Availability and Outages; (b) PDOP; (c) Accuracy (DRMS)

3. GNSS Performance Evaluation in Different 

Environments  

In this section, the results used for performance 

assessment of multi-constellation GNSS receiver 

across three diverse scenarios: clear open sky, partially 

degraded and highly degraded. The key GNSS quality 

parameters assessed are satellite availability (SW), 

continuity, Position Dilution of Precision (PDOP), and 

Distance Root Mean Square (DRMS) error. 

The number of tracked satellites (satellite availability) 

significantly varied across the different environments, 

as shown in Fig. 2(a).  In the open sky environment, 

the receiver consistently acquired and tracked a high 

number of satellites (average of 38, ranging from 32 

to 43). This abundance of satellites, exceeding the 

minimum requirement of seven for a 3D position fix, 

ensures reliable positioning throughout the 

observation period. However, as the environmental 

conditions become more challenging, satellite 

availability deteriorates.  In the partially degraded 

environment, the average number of tracked satellites 

drops to 24. While this is sufficient for a position fix, 

it represents a significant decrease compared to the 

open sky scenario.  Importantly, no outages were 

observed in the partially degraded environment, 

indicating continuous tracking of the available 

satellites. The situation becomes most critical in the 

highly degraded environment. Here, the average 

number of tracked satellites plummets to just 5.  This 

limited availability, coupled with frequent outages 

(resulting in a positioning solution for only 57% of the 

observation period), renders GNSS positioning 
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unreliable and potentially unusable for safety-critical 

applications. 

The blockage of GNSS signals by obstructions not 

only reduces satellite availability but also degrades the 

satellites' geometric distribution, quantified by PDOP. 

Lower PDOP values (less than 1) indicate a favourable 

constellation geometry with well-distributed satellites 

in the sky. Conversely, higher PDOP values signify a 

poor geometric distribution. Fig. 2(b) illustrates the 

PDOP values across the environments.  In the open 

sky scenario, the PDOP values were consistently 

below 1, reflecting an excellent satellite geometry. 

The partially degraded environment exhibited fair 

PDOP values (average of 1.77).  However, the highly 

degraded environment suffered from a severe increase 

in PDOP, with average and maximum values of 8.25 

and 14.1, respectively. PDOP values exceeding 6 

indicate poor satellite geometry and significantly 

contribute to degraded positioning accuracy. 

Following the assessment of satellite continuity 

and geometry, the accuracy of the reported position 

was analyzed for all three cases. Positioning accuracy 

is highly dependent on the number and geometric 

distribution of tracked satellites. As expected, the 

significant satellite availability and excellent 

geometry in the open sky environment resulted in 

good positioning accuracy. Conversely, severe 

inaccuracies were observed in the highly degraded 

environment. The statistical accuracy, measured by 

DRMS, for all three environments is shown in Fig. 

2(c). The radius of the confidence region depicted in 

Fig. 2(c) is directly related to positioning uncertainty.  

As the error increases, the radius of the confidence 

region expands. In the open sky case, the DRMS was 

found to be 0.96 meters.  Approximately 70% of the 

position fixes fell within a 0.5-meter radius of the true 

position, which is considered an acceptable accuracy 

level for many navigation applications. However, in 

the partially and highly degraded environments, 

DRMS values increased significantly to 4.40 meters 

and 17.7 meters, respectively. These large errors 

indicate that the GNSS receiver's performance 

becomes unreliable in such challenging environments. 

Overall, these results clearly demonstrate the 

significant impact of environmental factors on GNSS 

performance. As the level of obstruction increases, 

satellite availability decreases, outages become more 

frequent, PDOP values worsen, and DRMS errors 

increase, leading to degraded positioning accuracy. 

4. Environment Adaptive Navigation 

With the growing reliance on GNSS for safety-critical 

applications requires dependable and precise 

positioning across diverse environmental conditions 

[11], [17]–[19]. Many researchers have explored the 

environment recognition using factors like signal 

strength, number of satellites, and DOP (Dilution of 

Precision) to identify the environment (indoors, 

outdoors, etc.).   

Some studies [7, 10, 14] achieved this with a single 

GNSS constellation, focusing on classifying 

environments rather than improving accuracy. Others 

[13, 20] used dual constellations and showed accuracy 

improvements of up to 15%. Table 1 enlists the 

previous studies of the environment recognition. The 

prior performance assessment clearly demonstrated a 

substantial impact of environmental factors on GNSS 

performance. Even minimal deviations in accuracy 

can lead to significant legal or financial consequences 

[20]–[22]. The limitations of the previous studies are 

as: 

- However, these approaches may not be 

sufficient with the emergence of new GNSS 

constellations (BeiDou and Galileo) that 

significantly increase the number of available 

satellites. 

- Relying solely on CNR or similar metrics can 

be inaccurate because environmental impact 

varies with frequency, and monitoring CNR for 

each frequency in a multi-constellation system 

that can increase the processing load on the 

receiver.  

- Additionally, these studies are based on 

complex mathematical models and  3D models, 

which are computationally extensive and may 

not be practically feasible to incorporate in real 

GNSS designs. 

The key quality indicators exhibited significant 

variations between open sky, partially degraded, 

and highly degraded environments. These 

observations highlight the need for additional 

mechanisms to mitigate inaccuracies and maintain 

the required navigation performance in challenging 

environments. This paper proposes a data-driven 

Environment Adaptive Navigation (EAN) 

algorithm designed to enhance the availability and 

accuracy of positioning solutions. The primary 

principle of EAN is data-driven environment 

detection using GNSS measurements. This 

technique takes use of the inherent changes in 

GNSS quality metrics across different contexts. 

The EAN algorithm can use these changes to 

determine thresholds or statistical connections for 

environment categorization. The complete 

flowchart of the EAN algorithm is shown in Fig. 3. 

The process initiates with the signal acquisition and 

tracking, then certain parameters as in Table 2 are 

extracted and feed to the EAN algorithm for 
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environment detection. The EAN method uses a 

data-driven strategy for environment 

characterization, as illustrated in Table 1. The table 

outlines thresholds for key GNSS quality 

indicators, including satellite availability (SA), 

satellite geometry (PDOP), and accuracy (DRMS). 

These thresholds are determined by study of a large 

GNSS dataset that includes a variety of 

environmental conditions. In real-time operation, 

the EAN algorithm continuously tracks and 

compares live GNSS data to the specified 

thresholds. Based on which thresholds are met, the 

EAN algorithm can then classify the surrounding 

environment as open sky, partially degraded, or 

highly degraded.  

 

 

Fig. 3. The Complete Workflow of The Proposed EAN Algorithm 

Table 1 

Environment characterization literature 

Parameter Environment 

Characterization 

Constellation Performance Improved Source 

Year 

CNR, CNR Sum Indoor/Outdoor Single Not Discussed [07] 

2020 

Signal Strength, No. of 

Satellites 

Indoor/Intermediate/Outdoor Single Not Discussed [14] 

2018 

Signal Strength, No. of 

satellites, DOP, Blockage 

coefficient 

Urban/Suburban/Indoor/Open 

sky 

Single Not Discussed [10] 

2020 

CNR, Height Urban/Suburban/Indoor/Open 

sky 

Dual 15% [20] 

2013 

CNR, Satellite Geometry Urban/Nominal Dual Not Discussed [13] 

2022 

Once the environment is detected by EAN, an 

optimal mitigation strategy as per detected 

environment can be initiated to enhance the GNSS 

performance. While this study utilizes a post-

processing approach for environment detection, the 

strategy can be directly incorporated into the GNSS 

receiver during real-time operation.  

To establish the effectiveness of the EAN 

algorithm, a field experiment was conducted at a 

highly degraded site. This experiment involved 



© Mehran University of Engineering and Technology 2024 180 

adjusting the receiver's tracking loop parameters based 

on the environment detected by EAN. GNSS receivers 

utilize tracking loops, such as Phase Locked Loops 

(PLLs) and Delay Locked Loops (DLLs), to maintain 

signal lock with detected satellites. These loops 

precisely estimate the carrier frequency and code 

phase of the received signal. 

Table 2 

The environment characterization model of EAN 

S.N

o 

Satellite 

Availabilit

y 

Satellite 

Geometr

y 

Accurac

y (m) 

Environme

nt 

Detection 

01 SA ≥ 30 PDOP 

≤1.5 

DRMS 

≤2 

Open Sky 

02 15 ≤ SA < 

30 

1.5<PDO

P ≤1.5 

2<DRM

S ≤6 

Partially 

Degraded 

03 SA < 15 PDOP >3 DRMS 

>6 

Highly 

Degraded 

A crucial factor influencing their performance is 

the noise bandwidth, which controls the trade-off 

between noise filtering and tracking precision. The 

performance of these loops is highly dependent on the 

noise bandwidth, which controls the amount of noise 

and tracking precision. A tracking loop with a large 

noise bandwidth exhibits a higher capability of 

satellite acquisition but with low precision while small 

noise bandwidth leads to precise tracking. However, 

the main drawback of small noise bandwidth is that a 

tracking loop becomes very sensitive and cannot 

handle larger dynamics in different environments. The 

EAN algorithm overcomes these limitations by 

proposing adaptive noise bandwidth settings. By 

leveraging the environment detection capability, EAN 

can adjust the noise bandwidth based on the 

surrounding conditions. For instance, in a highly 

degraded environment with weak signals and potential 

dynamics, the EAN algorithm might recommend a 

wider noise bandwidth to prioritize satellite 

acquisition while managing noise to a certain extent. 

Conversely, in a stable open-sky environment with 

strong signals, a narrower noise bandwidth might be 

chosen to achieve the highest possible tracking 

precision. Table 3 presents the specific tracking loop 

settings, including the chosen noise bandwidth, 

employed for the highly degraded environment during 

the field experiment. The GNSS performance 

evaluation results at the highly degraded site with and 

without EAN are shown in Fig. 4. As the figure 

illustrates, significant improvements were observed in 

all the aforementioned metrics due to the optimal 

bandwidth settings recommended by the EAN model. 

At the highly degraded site, the limited satellite 

visibility and reliance on fixed/compact bandwidth 

settings (without EAN) resulted in substantial outages. 

This may be due to the inability of the fixed bandwidth 

to effectively handle the signal variations of such 

environments. 

Fig. 4. GNSS Performance in A Degraded Environment with and Without EAN model: (a) Satellite Availability and Outages; 

(b) PDOP; (c) Accuracy (DRMS). 

Table 3 

Receiver parameters settings 

Parameter Without EAN With EAN 

DLL Bandwidth (Hz) 0.25 1.0 

PLL Bandwidth (Hz) 15.0 15.0 

CNR Mask (dB) 10.0 10.0 

 Conversely, EAN-enabled receivers achieved a 

significant increase in the average number of tracked 

satellites (Avg = 09) and a substantial reduction in 

outages (i.e., 6%). Furthermore, the EAN model led to 

a reduction in the average PDOP value (to 7.66) and 

an improvement in DRMS accuracy by 2 meters. 

These enhancements indicate that the EAN-enabled 

receivers achieved not only better satellite visibility 
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but also more precise positioning within the highly 

degraded environment. 

5. Conclusion 

This paper investigated the environmental impact on 

GNSS accuracy through field experiments in 

contrasting environments (open sky, partially 

degraded, highly degraded). The results confirmed 

significant accuracy variations depending on the 

surroundings. To address these challenges, a novel 

Environment Adaptive Navigation (EAN) algorithm 

was proposed. EAN utilizes real-time GNSS 

measurements for environment detection and adjusts 

receiver settings (tracking loop bandwidth) to 

optimize performance. This data-driven approach 

prioritizes satellite acquisition in challenging 

environments and enhances tracking precision in 

favourable conditions. Field validation demonstrated 

that the EAN-based receiver significantly improved 

GNSS performance, particularly in highly degraded 

environments. This improvement highlights the 

potential of the EAN algorithm for mitigating 

environmental effects on GNSS accuracy.  

Future research should focus on examining the 

effectiveness of this method in scenarios with more 

complex and complicated environments. Furthermore, 

the development of a more robust EAN algorithm, 

potentially leveraging machine-learning techniques, 

could enhance the capability to detect and mitigate 

GNSS signal anomalies. Additionally, the integration 

of artificial neural networks presents a promising 

future direction for data exploration and minimizing 

the impacts of random environmental errors in 

navigation and ultimately results in subsequent 

improvements in navigation performance. 
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