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 In the rapidly evolving field of computer vision, the need for advancements in 

object detection is paramount. For a variety of reasons, including security, 

maritime surveillance, and environmental monitoring, the identification and 

categorization of ships in aerial pictures is an essential component. In this study, 

two distinctive approaches are proposed to improve the accuracy of ship detection 

and categorization in satellite imagery. In the beginning, the dataset for ship 

detection that was provided by Airbus was separated into five distinct categories: 

oil tanker, bulk carrier, container ship, sand carrier, and general ship class. Setting 

up this division was done with the idea of increasing the precision of the ship 

classification in the imagery. Moreover, we deployed the YOLO-C3GTR model, 

which is part of our Object Detection framework and helped us to distinguish ships 

using the technique of Object Detection. The application of the methodology that 

we have proposed has the potential to significantly improve the precision of these 

systems when they are used in real-world scenarios and to make a novel addition 

to the field of ship identification and classification. We have used multiple 

algorithms of YOLOv5 tested on this dataset like TPHYOLOv5, YOLOv5x, 

YOLOv5l and our proposed architecture YOLO-C3GTR and it surpassed all the 

existing approaches by the mAP of 0.83. Furthermore, we intend to perform 

additional research in this field while simultaneously working to improve our 

technique. A comparison was made between the performance of the model and that 

of other deep learning approaches. The model was evaluated and trained with the 

categorized dataset. 

1. Introduction 

Artificial intelligence methods are gaining popularity 

throughout the world due to their ability to provide 

accurate predictions and save time. In addition to being 

used in many fields, Artificial Intelligence/Machine 

Learning has been used in the medical sector [1], energy 

sector [2], banking sector [3], transportation sector [4] 

https://doi.org/10.22581/muet1982.3186
mailto:ranausman@nuaa.edu.cn


© Mehran University of Engineering and Technology 2024    206 

and numerous other fields. Algorithms such as deep 

learning and statistical methods [5], [6], LR, SVR, 

LSTM [7], and transformer on hybrid systems for 

hydrogen production from renewable energy [8] and 

forecasting of energy production for hybrid solar-wind 

systems [9] have been incorporated. As artificial 

intelligence integrates effortlessly with object 

identification[10], a unique narrative arises. Object 

identification is an important topic in the field of 

computer vision and has garnered significant academic 

focus over the last several decades. The detection 

approach necessitates localizing items using bounding 

boxes and accurately assigning the appropriate class to 

each proposition. Over the last several years, several 

advanced convolutional neural networks (CNNs), 

including SOLO [11], SSD [12], CoupleNet [13] and 

RefineSSD [14], have shown remarkable effectiveness 

in object identification. Deep learning techniques, 

including You Only Look Once (YOLO) [15], RCNN 

[16], Fast RCNN [17], Faster RCNN [18], and Mask 

RCNN [19], have been widely used. These algorithms 

have shown commendable performance across several 

natural picture datasets. Deep-learning algorithms have 

been used to recognize objects in remote-sensing 

photos.  

    Ship detection is an indispensable application in 

preserving marine security, where traffic control, oil 

spillage, and sea pollution surveillance are carried out. 

Utilization of ship detection supplies vital data for 

strategic planning. Operating as an example of object 

detection, it has mastered the strategies of general 

detection and yet it still struggles with size variation and 

the presence of small units. Some illustrations in Fig. 1 

are the case in point. 

Fig. 1. Depiction Of Several Instances of Size Variation 

(In the First Row) And Problems Posed by Small Objects (In 

the Second Row) 

This research focused on the identification and 

categorization of 5 different types of ships: oil tankers, 

bulk carriers, container ships, sand carriers, and other 

unclassified ships. The various categories of ships have 

unique characteristics that set them apart. Oil tankers, 

for example, are usually large, flat-bottomed vessels 

with cylindrical tanks used for transporting oil. In 

contrast, bulk carriers are ships designed for carrying 

unpackaged bulk cargo like grains, coal, and ores. 

Contrarily, containers are designed to be easily changed 

between various forms of transportation, making 

container ships ideal for the transportation of these 

standardized cargo units.  

    In addition, we made accurate adjustments to the 

Airbus Ship Detection dataset to match the ship 

categories we were focussing on. By manually 

annotating images with bounding boxes, this updated 

approach showed ship positions and classes. Based on 

this strategy, the YOLO-C3GTR model recognized and 

classified ships, accurately representing the required 

ship types. 

     The capability of our ship identification and 

classification method has a wide range of applications in 

the real world. An illustration of this would be assisting 

port authorities in the regulation of marine traffic and 

the identification of security threats such as piracy and 

smuggling. In addition to this, it can monitor ships that 

unlawfully dump cargo. The identification of ship 

categories for search and rescue operations is another 

way that it helps with environmental surveillance.      

Ships were accurately identified and categorised 

using YOLO-C3GTR. YOLO uses a single network to 

detect and classify objects.     

Contributions: 

1. The Airbus Ship Detection Dataset was 

classified into five main classes: general ships, 

oil tankers, bulk carriers, sand carriers, and 

container ships. 

2. We have deployed a YOLO-C3GTR framework 

that has received particular instructions to detect 

and classify such types of ships. 

3. Our solution has the potential to contribute to 

the management of maritime traffic, support 

search and rescue missions, and facilitate 

environmental monitoring through the 

identification and tracking of ships. 
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2. Related Work  

2.1 Object Detection in Computer Vision  

Object detection can be said to be a field of computer 

vision which is considered to be one of the most difficult 

jobs in the world of computer vision. In recent years 

deep learning researchers have shown great success with 

convolutional neural networks (CNNs), which have 

become the most favoured model for semantic 

segmentation [20], [21], image classification [22], [23], 

object detection [18], [24], and many other applications. 

The deep learning-based anchor-based object 

identification techniques are either one-stage or two-

stage categories. Object detection by two-stage 

detection algorithms employs two different phases to 

accomplish the purpose of detection. The basis of the 

stages process is the box discovery of a preselected set 

or the use of a CNN network. Next, the selector boxes 

are sent for classification and regression operations. The 

two-stage process offers an important plus point in the 

form of highly precise outcomes. There are only two 

steps for single-stage object detection techniques where 

it is the first step that performs detection. The main 

concept that the one-stage approach employs is taking a 

variety of samples from different pixels in the image. 

Numerous sampling scales and aspect ratios are being 

employed and, afterwards, the utilization of 

Convolutional Neural Networks (CNN) to extract the 

features. One of the main advantages of using the one-

stage technique is the fact that processing is extremely 

fast as the whole process is accomplished in one step 

only. On the other hand, a major disadvantage of 

prolonged intensive sampling is the augmented 

complexity of the training. Such a situation can be due 

to a notable deficiency between positive and negative 

examples, which undermines the slight accuracy of the 

model.  

    The R-CNN family is the most famous two-step 

object detection method. R-CNN is an original object 

detection technique using CNN, which first creates 

regional suggestions from selective search [16].  The 

CNN model receives the previous ones and classifies 

them according to their groups. One of the main 

modifications made in the Fast R-CNN [17] is a more 

efficient version of R-CNN [16], that further improves 

object detection performance. Contrasting to the 

traditional feature extraction process in which global 

features are extracted from whole original input photos, 

our proposed method allows for extracting features from 

each regional proposal. Faster R-CNN [18] is a later 

upgrade of Fast R-CNN, distinguished by several novel 

contributions. The Faster R-CNN design is based on the 

regional proposal network (RPN) that proposes objects 

by itself, hence allowing us to purely implement object 

detection tasks using neural networks. In the same turn, 

by employing Reverse Polish Notation (RPN), the load 

of computations is considerably lightened down and the 

speed of calculations is noticeably elevated. Mask R-

CNN [15], [19] is a keener variant of Faster RCNN 

which uses ROI-Align to generate more precise 

abstraction for each proposal. Concurrently, it 

completes a different branch of work doing the segment 

task. Among these approaches, one can mention the 

most widely used techniques in single-stage object 

identification include YOLO [15] and SSD [12]. The 

algorithms of YOLO v4 [25] actively identify the 

dispersion of the bounding box in comparison with the 

box that precedes it which implies that the training 

process will be much more convenient. YOLO v4 

employs multi-scale prediction to detect and produce the 

results whether the object is small or large. As opposed 

to You Only Look Once (YOLO), SSD achieves 

detection by implementing Convolutional Neural 

Networks that do not require an extra classifier to predict 

the target after the final layer. 

    The aforementioned methods exemplify the 

contemporary state of the object identification domain, 

signifying that the current object identification 

technique has reached a highly developed level. 

2.2 Ship Detection in Remote Sensing Images 

Ship detection techniques now in use are often enhanced 

iterations of traditional object identification algorithms. 

Ref. [26] analysed the attributes of satellite images and 

enhanced the detection accuracy of YOLO v2 [27] for 

identifying objects in distant sensing. Tang et al. [28] 

used wavelet coefficients derived from the compressed 

domain of JPEG2000, together with a combination of 

deep neural network (DNN) and extreme learning 

machine (ELM), to address the ship identification issue 

in remote sensing photos. Zou et al. [29] introduced 

SVD Net, a model that combines CNN with the singular 

value decomposition (SVD) technique. Li et al. [30] 

included hierarchical selective filtering layers onto 

Faster R-CNN [18] to address the challenges arising 

from varying ship sizes. Yang et al. [31] introduced a 

ship detection system that used saliency segmentation 

and the local binary pattern (LBP) descriptor to 

differentiate ship characteristics. The R-CNN 

architecture incorporates a unique layer that is capable 

of maintaining rotation invariance, specifically designed 

to address the issue of objects with varying orientations 
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[32]. Liu et al. [33] enhanced the ship detection accuracy 

by modifying the dimensions of anchor boxes, 

estimating the localization uncertainties of bounding 

boxes, using soft non-maximum suppression, and 

rebuilding a combined loss function. Zhao et al. [34] 

introduced the attention-receptive pyramid network 

(ARPN) as a solution for detecting ships at many scales. 

Nevertheless, the current ship recognition methods may 

not possess the capability to address the challenge of 

detecting several types of ships with little training data 

in remote sensing photos. 

3. Methodology 

3.1 Dataset Description 

In 2018, Airbus Defense and Space made the Airbus 

Ship Detection Dataset available. This is a 

comprehensive collection of satellite photos specifically 

designed for ship detection purposes. This system 

comprises about 2 million image chips. Every individual 

is 256 by 256 pixels in size and occupies an approximate 

area of 0.065 square kilometres. These images were 

acquired by the WorldView-2 satellite, which is capable 

of distinguishing features as small as 0.5 meters. The 

expansive assemblage of aquatic features spans an area 

of over 1.4 million square kilometres. The information 

was gathered under various meteorological and 

illumination circumstances. 

Table 1 

Dataset Description of Airbus Ship Detection Challenge  

Train Images  

Test Images  

Dimension  

Horizontal Resolution  

Vertical Resolution 

Bit Depth  

192,559 

15,606 

768x768 pixels 

96dpi 

96dpi 

24 

    The dataset consists of pixelated images labelled to 

indicate whether a ship is present or not. This 

classification facilitates the dataset's utilization in tasks 

related to object detection. Additionally, the collection 

provides coordinates that enable tracking of vessels. 

Airbus offers a range of free resources and methods for 

acquiring and utilizing the data for non-commercial 

purposes. However, an Airbus license is mandatory for 

any industrial application. 

    The Airbus Ship Identification Dataset which is relies 

very much on researchers and developers for the 

development and refinement of automatic ship 

identification systems. For the generation of this dataset, 

the "You Only Look Once" (YOLO) neural network was 

selected, which is state-of-the-art for the object 

detection task. The main function of this network model 

is to forecast object clustering margins and the 

probability of inclusion utilizing a single neural 

network. YOLO is considered outstanding for its high 

speed and accuracy, which makes it the optimal choice 

for real-time applications, most notably monitoring 

marine and maritime traffic. The dataset then provides a 

rich variety of visual cues and performs competently in 

ship identification, which makes it a fine resource for the 

development and evaluation of the algorithm. High 

accuracy and widespread applicability increase the role 

of this instrument in the diagnostic process. 

 

Fig. 2 Airbus Ship Detection Dataset 

3.2 Dataset Annotation for Object Detection Technique 

The tool that is mostly used to annotate the images is 

makesense.ai. To make ship images be classified into 

five groups, all of the images were self-annotated as 

presented in Fig. 3. We are excited about the findings of 

the new technique, and we proved that the technique is 

very effective in determining and also classifying 

satellite images. 

 

Fig. 3 Annotation of Ship Detection Dataset 
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    With great care and attention to detail, we expertly 

annotated a total of two thousand images, putting into 

practice all of the previously developed methodologies. 

The technique consisted of completing a thorough study 

of each image to identify certain kinds of ships, properly 

drawing the limits of those ships, and classifying them 

according to the relevant categories based on those 

boundaries. 

    We have done a thorough analysis of the 

characteristics of each image to ensure the accuracy of 

the annotations. This analysis includes several factors 

like sightline, perspective and lighting. Moreover, we 

have made efforts to minimize the possibility of errors. 

We have achieved this goal by conducting each 

annotation carefully and by making necessary 

modifications. 

3.3 Dataset Classification  

The collection of datasets is divided into five distinct 

kinds of ships, which are as follows: oil tankers, bulk 

carriers, container ships, carriers, and general ships (also 

known as unclassified ships): 

3.3.1 Oil tankers  

These ships are purposefully designed for the 

conveyance of oil or petroleum products and are 

frequently referred to as huge cargo ships.  

 

Fig. 4. Oil Tankers 

    These colossal vessels are characterized by their 

tremendous scale, commonly spanning somewhere 

between 100,000 to 320,000 deadweight tonnage, and 

by hulls that either assume a cylindrical or bulbous form. 

 

3.3.2 Bulk carriers  

These ships are constructed to transport substantial 

amounts of various commodities, including wheat, coal, 

iron ore, and cement, among others.  

 

Fig. 5. Bulk Carriers 

Notable features of these vessels include open 

compartments that are vast and may be partitioned into 

many sections, as well as hull designs that are 

straightforward and angular. 

3.3.3 Container ships  

Container ships are specifically designed ships used for 

the transportation of standardized shipping containers.  

 

Fig. 6. Container Ships 

    These containers are stored in spacious cargo holds 

that are segregated into compartments. The sizes of 

these vessels differ greatly, with some smaller feeder 

ships potentially transporting a few hundred containers 



© Mehran University of Engineering and Technology 2024    210 

while the largest ultra-container vessels can carry over 

twenty thousand containers.  

3.3.4 Sand carriers  

The ships were built with the express goal of delivering 

aggregates and sand, and they are fully equipped to do 

so.  

 

Fig. 7. Sand Carriers 

    Because they have a shallow draft, they can operate 

close to the shore. Additionally, the shapes of their hulls 

are maintained simple. 

3.3.5 General ships (Unclassified ships)   

General ships are a broad category that encompasses a 

wide range of vessels that do not fall into any particular 

classifications or specializations. 

 

Fig. 8 General Ships (Unclassified Ships) 

    Boats that are used for fishing, small cruise ships, 

private vessels, and other types of seagoing vessels 

might be included in this category. 

3.4 YOLOv5 (Object Detection Algorithm) 

YOLOv5 is a state-of-the-art object detection model 

based on a single-stage architecture that predicts the 

bounding boxes and class probabilities of objects in an 

image in a single pass. The model is trained using a large 

dataset of labelled images and employs a novel loss 

function that combines both localization and 

classification losses. The mathematical equations for the 

loss function are: 

𝐿𝑏⊗ =  λ𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 −𝐵

𝑗=0
𝑆2

𝑖=0

ŷ𝑖)2] + λ𝑐𝑜𝑜𝑟𝑑 ∑ ∑ [𝐵
𝑗=0

𝑆2

𝑖=0 (√𝑤𝑖 − √ŵ𝑖)
2

+ (√ℎ𝑖 −

√ĥ )
2

]                                                                         (1)                                                          

𝐿𝑜𝑏𝑗 = ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗𝐵

𝑗=0
𝑆2

𝑖=0 (𝐶𝑖 − Ĉ𝑖)
2
                            (2)      

𝐿𝑛𝑜𝑜𝑏𝑗 = λ𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗𝐵

𝑗=0
𝑆2

𝑖=0 (𝐶𝑖 − Ĉ𝑖)
2

         (3) 

𝐿𝑐𝑙𝑎𝑠𝑠 = ∑ 1𝑖
𝑜𝑏𝑗 ∑ (𝑝𝑖(𝑐) − 𝑝̂(𝑐))

2
𝑐∊classes

𝑆2

𝑖=0           (4) 

    Where 𝐿𝑏⊗, 𝐿𝑜𝑏𝑗, 𝐿𝑛𝑜𝑜𝑏𝑗, 𝐿𝑐𝑙𝑎𝑠𝑠 represent the 

localization, objectness, no-objectness, and 

classification losses, respectively. The 1𝑖𝑗
𝑜𝑏𝑗

 and 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 

terms are indicator functions that determine whether an 

object is present or not in a particular grid cell, while 

λ𝑐𝑜𝑜𝑟𝑑, λ𝑛𝑜𝑜𝑏𝑗, λ𝑐𝑙𝑎𝑠𝑠 are hyperparameters that control 

the relative importance of the different loss terms. To 

enhance the capability of accurately classifying and 

identifying objects in images, the model has been 

constructed with these loss functions optimized during 

the training phase. In Fig. 9. the architecture of YOLOv5 

is explained in detail.  

 

Fig. 9. Architecture of YOLOv5 
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    The pre-configured modes like Yolov5x, Yolov5s, 

and Yolov5l of the Yolov5 framework are known 

standouts, and they vary from each other concerning size 

and complexity. It would be the customer to decide 

which version most favours him because of his own 

specific needs for accuracy and performance since the 

versions tactfully differ regarding amount of layers and 

functionalities they offer. The newest edition of Yolo, 

YOLO v5, enables the designing of personal models for 

follow-up. These models may be built by using a 

customized dataset from which it is then trained and 

fine-tuned to fulfil a particular application. Users could 

leverage this capability to give the algorithms a 

preference towards detecting given elements and as well 

achieving efficiency adjusted based on their hardware.  

    YOLOv5 yields remarkable results in object detection 

as it integrates advanced deep learning techniques and is 

optimized to deliver the best possible performance. The 

model's success is based on a special loss function which 

is skilfully managing localization, objectness, no-

objectness, and classification losses Consequently, the 

model achieves a high level of precision in recognizing 

and sorting objects in the images. 

3.5 YOLO-C3GTR (Proposed Architecture) 

The member YOLOv5x model is altered to develop 

the YOLO-C3GTR version of the model which includes 

two C3TR modules at the end of the neck and backbone 

and a combination of CBAM and C3Ghost modules at 

different places within the neck. The transition layer 

enlarges the network as well as increases its capability 

to obtain the high-level features, and the C3TR module 

is a boosted version C3 module. The CBAM module 

acts as a feature-attention mechanism adding on to the 

accuracy of object recognition by highlighting features 

of importance.  

 The C3TR module, out last in the neck and backbone 

module, is formed by three convolutional layers. The 

primary purpose of this element is to increase the 

model's ability to understand intricate relationships and 

traits found in the input data. This further improves the 

accuracy level in recognising items in the tasks where 

such elements are involved. 

    The implementation of the C3TR units connected to 

each of the two layers of CBAM and the two C3 

modules replaced by C3Ghost was performed. The 

priority mechanism realized through CBAM layers, 

strengthens the model's ability to focus on the salient 

elements in the input data. These layers act as filters that 

either emphasise or diminish the features depending on 

their significance. By having CBAM elements, the 

model can highly focus on the most significant input 

features that may result in improved precision. 

    The goal of bringing about the C3Ghost module is the 

reduction of memory usage by the model and the 

maintenance of the precision. The C3Ghost module is 

based on ghost convolution, which is cheaper than the 

traditional convolutional filter, so we use some of them 

instead. By doing this, parameters are declined in the 

model allowing for an easier training process and 

decreasing the possibility of overfitting. The use of the 

C3Ghost module is good because it facilitates the 

implementation of different feature maps with a less 

computational-intensive representation method. This is 

because it is possible to somewhat mirror the expensive 

"Ghost feature maps" and with such techniques, costlier 

feature maps can be replaced. 

    The implementation of these modifications does have 

the benefit of both a step-up of the model's efficiency via 

a decrease in parameters and computation level and a 

step-up of the model's capability to understand complex 

features and patterns in the input data. The addition of 

the C3TR module to the model serves as a deeper 

structure, and hence, the chances of accuracy 

improvement in object detection improve. Another 

functionality of CBAM layers is that it improves the key 

element of the attention mechanism thus the model 

focuses on the most significant part of the inputs. The 

last benefit of C3Ghost in the training process is the 

usage of less memory. The result is a simplified training 

process with a reduced risk of overfitting. 

 The following is a description of the submodules 

utilized in the proposed architecture: 

3.5.1 C3TR  

The C3TR module is an adjusted version of the neck 

segment of the YOLOv5x model which is formed by the 

combination of the C3 module and the TR module which 

is an improved Transformer module. In the C3 module, 

the traditional convolutional module presents the three 

convolutional layers with a 3x3 kernel size for the 

extraction of the image's features. 

    The TR module likewise TR module is a variation of 

the self-attention mechanism found in the Transformer 

model. For this module, the attention heads of the 

network are accounted for the directing the focus of the 

system at the diverse regions of the input map is the 

main function. Among all these heads, each attention 

headfirst evaluates the importance and relevance of 

input features and then considers these features as 

weighted sums on the query vector. 

    The task of C3TR is to pass the C3 linear output to the 
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TR module and here the self-attention is applied using 

the feature maps. The final output comes about when the 

Convolutional 3-layer output is combined with the 

Transposed Convolutional layer output and another 

Convolutional layer is passed through it. 

 

Fig. 10. Schematic of YOLO-C3GTR Proposed Architecture 

    Fig. 11. Architecture of C3TR 

    The C3TR module boasts several benefits in contrast 

to the regular C3 module. It provides the capability to 

the model to focus on particular areas of the feature map 

which helps to strengthen its ability to perceive complex 

feature relationships. Firstly, it reduces the amount of 

parameters in the model allowing for a better 

generalization and prevention of over-fitting, instead of 

using separate C3 and TR modules. Not only that, but it 

has also shown higher performance in many object 

detection tasks, which creates a functional addition to 

the YOLOv5x model. 

Fig. 12. Architecture of Convolution Block Attention 

Module 

3.5.2 Convolution block attention module (CBAM) 

For moving in the direction of overcoming its 

problems in detecting objects, the custom model YOLO-

C3GTR is based on the Convolutional Block Attention 

Module (CBAM), which is an attention mechanism. 

This system incorporates an adaptive attention 

mechanism that enables the network to selectively 

emphasize essential data elements while getting rid of 

insignificant ones. These steps are accomplished in two 

stages. A channel attention block can compute attention 
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maps for each channel thus delivering the importance of 

a particular feature map per channel. Also, the strategy 

of computing the spatial attention maps in the feature 

map endeavours to express the weights for every pixel. 

The negation of CBAM layers in the YOLO-C3GTR 

model improves the attention mechanism of the model 

and makes it concentrate upon the most significant parts 

of the input datum. 

The CBAM component in YOLO-C3GTR becomes 

the highlight of the model for better object recognition 

ability of the model by providing it with the capability 

to recognize main features and patterns in the input data. 

By fusion, this level of recognition becomes more 

detailed and precise, and consequently, it aids in the 

better performance of the networks in object recognition 

tasks. 

3.5.3 C3 ghost  

The C3Ghost module is a modified version of the C3 

module, which is dedicated to usage in CNNs with the 

purpose of accomplishing object recognition and 

categorization. One of the key functionalities of this 

optimized version is to improve the accuracy of the 

standard C3 module while simultaneously lowering its 

computational load. 

    The C3 module or the convolutional neural networks 

module serves as the core component for which there are 

three convolution layers. This layer is not only made to 

implement a filter set but is also intended to select 

various characteristic features of the data. However, an 

exaggeration of the C3 module lies in data processing, 

especially when working with huge input images or 

elaborated data.  

Fig. 13. Architecture of C3Ghost  

    The problem is resolved by selecting the 'C3Ghost' 

module option that replaces certain feature maps with 

cheaper "ghost" feature maps. Opposed to a separate 

filter bank for every feature map, ghost feature maps 

come to the user by randomly picking a portion of the 

filters and then copying them repeatedly. The C3Ghost 

module may utilize fewer filters that nevertheless 

preserve the same level of capability in terms of 

representation if such a method is applied. Therefore, a 

load of the module's computational burden is dropped. 

    The CNN may need fewer parameters and 

calculations if the C3Ghost module is used in place of 

the conventional C3 module. As a result, there may be 

less chance of overfitting and an easier-to-manage 

training procedure. 

3.6 Experimental Setup  

Our study focuses on ship identification and 

classification to enhance current methods in this area. To 

achieve this objective, we meticulously annotated 2000 

photos from the Airbus Ship Detection Dataset, 

categorizing them into five specific ship types: oil 

tankers, bulk carriers, container ships, sand carriers, and 

unclassified ships. In order to ensure the efficacy of our 

deep learning models, we initially divided our dataset 

into two separate sets - a training set comprising 70% of 

the images, and a validation set containing the remaining 

30%. This labelling process represents an innovative 

contribution to the field. Subsequently, we trained our 

labelled images using various deep learning models, 

such as TPH-Yolo v5, Yolo v5x and our proposed 

architecture YOLO-C3GTR. 

3.6.1 Hyperparameter Tuning 

Table 2 

List of hyperparameters used to train all models. 

Hyperparameters Values 

Initial Learning Rate  0.01 

Momentum  0.937 

Weight Decay  0.0005 

Box Loss Gain  0.05 

CLS Loss gain  0.3 

IOU Training Threshold  0.2 

Image Transition  0.1 

Image Scaling 0.9 

Image Flip 0.5 

  

The performance of a deep learning model is greatly 

affected by the hyperparameters utilized during training. 

In the case of the YOLO-C3GTR model, an initial 

learning rate of 0.01 has been employed to dictate the 

rate at which the optimizer adjusts the network's weights 

during backpropagation. A high learning rate may result 

in rapid convergence, ultimately yielding subpar 

outcomes, whereas a low learning rate can prolong the 

convergence process, thereby increasing the duration of 

training. 
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The momentum value of 0.937 assists the optimizer 

in avoiding local minima and expedites the convergence 

process. A weight decay of 0.0005 mitigates the risk of 

overfitting by introducing a penalty term to the loss 

function that discourages large weights. Additionally, 

the box loss gain of 0.05 and class loss gain of 0.3 dictate 

the relative impact of localization and classification 

losses on the overall loss function. Moreover, the IOU 

training threshold of 0.2 controls the minimal 

intersection-over-union (IOU) required between 

predicted and ground truth boxes for them to be 

identified as valid detection. 

To improve the robustness of the model, we have 

used data augmentation techniques such as translating 

the picture by a factor of 0.1, scaling the image by a 

factor of 0.9, and horizontally flipping the image by a 

factor of 0.5. These alterations result in improvements 

to the training pictures, therefore improving the model's 

capacity to apply knowledge to unfamiliar material. By 

carefully choosing and fine-tuning these 

hyperparameters, we have ensured that the YOLO-

C3GTR model achieves optimal performance in the 

assigned job. 

 Fig. 14. Flow Diagram of Experimental Process 

 

3.7 Evaluation Metrics 

3.7.1 Recall  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                          (5) 

 The equation above may be explained as the count of 

accurately anticipated positive classes out of the total 

number of positive classes. Maximizing the recall is 

important. 

3.7.2 Precision  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                   (6) 

The equation above can be clarified by examining the 

ratio of accurately predicted positive classes to the total 

number of classes anticipated as positive. Maximizing 

accuracy is essential in this circumstance. 
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3.7.3 F-measure  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
                            (7) 

It will not be always easy to contrast two models with 

a low precision rate and high recall or the other way 

around. In order then to compare, we have to use F-

Score. F-score assists in the measuring of recall and 

precision all at once. Instead of Arithmetic Mean, it uses 

Harmonic Mean by exiling the extreme values more.  

3.7.4 Mean average precision (mAP) 

In object detection, Mean Average Precision (MAP) is a 

commonly used evaluation metric to assess the 

performance of a model. MAP measures how well a 

model can identify and locate objects of interest in an 

image. It is calculated by first computing the average 

precision (AP) for each class of object, which represents 

the precision and recall trade-off for a specific class. AP 

is then averaged across all classes to obtain the final 

MAP score. Mathematically, MAP can be expressed as: 

𝑀𝐴𝑃(𝑄) =  
1

|𝑄|
∑

1

𝑚𝑗

|𝑄|
𝑗=1 ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑗𝑘

𝑚𝑗

𝑘=1 )           (8) 

 where Q is a set of queries, mj is the number of 

relevant documents for query j, and Rjk is the set of 

ranked retrieval results from the top result until you get 

to document k. 

3.7.5 Loss function  

The loss function used in an object detection task using 

YOLO (You Only Look Once) algorithm can be defined 

as follows: 

(a) Localization Loss: 

∑ ∑ 1𝑖𝑗𝑜𝑏𝑗𝐵
𝑗=0

𝑆2

𝑖=0 [(𝑝̂𝑖𝑗 − 𝑝𝑖𝑗)2 + (𝑏̂𝑥, 𝑖𝑗 − 𝑏𝑥, 𝑖𝑗)2 +

(𝑏̂𝑦, 𝑖𝑗 − 𝑏𝑦, 𝑖𝑗)2 + (𝑏̂𝑤, 𝑖𝑗 − 𝑏𝑤, 𝑖𝑗)2 + (𝑏̂ℎ, 𝑖𝑗 −

𝑏ℎ, 𝑖𝑗)2]                                                                      (9)                                                       

 It is the localization loss. It computes the sum of the 

squared differences between the predicted and true 

values for the bounding box parameters (x,y,w,h) and the 

confidence score (p) of each grid cell ij where an object 

is present 1𝑖𝑗𝑜𝑏𝑗 = 1 

(b) Classification Loss:  

λ ∑ ∑ 1𝑖𝑗𝑜𝑏𝑗(ĉ𝑖𝑗 − 𝑐𝑖𝑗)2𝐵
𝑗=𝑜

𝑆2

𝑖=0                                    (10) 

It is the classification loss. It computes the sum of 

squared differences between the predicted and the true 

class probabilities (c) of each grid cell ij where an object 

is present. The hyperparameter λ controls the weight of 

the loss term. 

 

(c) Background Loss:  

∑ ∑ 1𝑖𝑗𝑛𝑜𝑜𝑏𝑗(ĉ𝑖𝑗 − 𝑐𝑖𝑗)2𝐵
𝑗=𝑜

𝑆2

𝑖=0                                 (11) 

It is the background loss. It computes the sum of squared 

differences between the predicted and true class 

probabilities of each grid cell ij where an object is not 

present  1𝑖𝑗𝑜𝑏𝑗 = 1. This statement customizes the 

model to predict a high confidence score in situations 

where there is no item present in the cell. 

Concisely, this loss function considers the relative 

significance of localization, classification, and 

background losses to train the model efficiently in 

properly detecting and classifying objects in the input 

picture. 

4. Results and Discussion  

Our recommended architecture, the YOLO-C3GTR 

model, obtained an F1 score of 0.79, precision accuracy 

of 0.81, and recall of 0.78. The results demonstrate the 

strong accuracy and recall of the model, confirming its 

effectiveness in correctly identifying and categorizing 

ships in the dataset with low rates of false positives and 

false negatives. The F1 score of 0.79 demonstrates that 

the YOLO-C3GTR model effectively achieves a 

harmonious equilibrium between recall and accuracy, 

rendering it a highly suitable option for tasks involving 

the identification and classification of ships. 

Table 3 

Ship Detection comparison results on Airbus Dataset  

Architecture  Precision  Recall  F1 Score  mAP0.5 

TPH-YOLOv5 0.68 0.11 0.18 0.363 

YOLOv5x 

YOLOv5l 

0.79 

0.80 

0.77 

0.78 

0.77 

0.78 

0.805 

0.816 

YOLO-C3GTR 0.81 0.78 0.79 0.835 

     

The YOLO-C3GTR model (see Fig. 15) registers the 

highest mean average precision (mAP) value of 0.835 

among all the models. The precise ship recognizing, and 

classification algorithms of this model can be confirmed 

by its high mean average precision (mAP) score factor. 

The outstanding mean average precision (mAP) score of 

the YOLO-C3GTR model is an indication of its 

capability to classify and label the ships accurately in the 

dataset to minimize the risk of false positives and 

negative detection. 

     It is shown in the image comparison that the mAP for 

the YOLO-C3GTR model is 0.835, while for YOLOv5x 

the mAP is 0.805, which makes the model of YOLO-

C3GTR better than the YOLOv5x model by 
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approximately 3.5 %. On the other hand, the TPHYOLO 

v5 model has its worst mAP value amongst the 

compared models and it is at 0.363. The above findings 

reveal that the YOLO-C3GTR model is the best model 

for detecting and categorising the ship class in this 

dataset. 

Fig. 15. Results Comparison of Different Object Detection Architectures for Airbus Ship Detection Dataset. (a) F1 Score, (b) 

Precision, (c) Recall, (d) mAP 

 

 

Fig. 16. Results Of Predicted Ship Classes Through The 

YOLO-C3GTR Model 

 

Fig. 17. Confusion Matrix of YOLO-C3GTR 

    The metrics of precision, recall, and F1 score are 

commonly utilized for binary classification tasks, and 

they do not have a direct correlation with mAP. 

Nonetheless, in object detection assignments, precision 

and recall are determined individually for each class, 

and subsequently, the Average Precision (AP) is 
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computed for each class. The map represents the average 

of AP values across all classes. 

5. Conclusion 

Our study aimed to enhance the identification and 

categorization of ships through the utilization of 

advanced learning models. We manually labelled 2000 

images from the Airbus Ship Detection Dataset and 

categorized them into five distinct ship types. Despite 

training our labelled dataset with various deep-learning 

models, we found that they did not meet our desired 

standards for accuracy and speed. We implemented a 

novel architecture called YOLO-C3GTR, which 

integrates changes including C3TR modules after the 

backbone and neck, CBAM and C3Ghost modules at 

various locations in the neck, and the substitution of 

certain C3 modules with C3Ghost. 

    The YOLO-C3GTR model demonstrated superior 

performance in both accuracy and speed compared to the 

other models assessed. The regarded model has proven 

to be superlative as it accomplished an accuracy rate of 

84% when its resilience was tested with an independent 

dataset. Apart from that, we also performed calculations 

for accuracy, recall, F1-score, and mAP which resulted 

in values of 0.81, 0.78, 0.79, and 0.835, respectively. 

Additionally, it showed more rapid inference 

capabilities than the other model, making it possible to 

execute for real-time ship classification and 

identification. 

    The study offers multiple ways of sophisticating the 

ship's detection and categories considering the 

employment of deep learning models. Survey the 

different components and framework selection, 

including EfficientDet and RetinaNet, within our 

framework, could be the way forward. These models 

have been shown to work well for other cognate object 

identification problems, and hence, seem to be a suitable 

candidate for adapting to the ship recognition and 

classification task. Subsequently, this creates the 

possibility of hyperparameters investigation, and the 

idea is to find the best values that can lead to better 

accuracy and speed. Besides, looking at the enlargement 

of the annotated dataset as a potential for improving our 

model performance, namely, to correctly classify less 

typical designs of ships is a very promising idea. 
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