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 With the rapid changes in technology, the Internet of Things (IoT) has also 

emerged with many diverse applications. A massive amount of data is generated 

and processed through the IoT-based sensors from these applications every day. 

This sensor-based data is categorized as either structured or unstructured data. 

Structured data is simpler to process, while the processing of unstructured data is 

complex, due to its diverse modalities. In IoT applications such as autonomous 

navigation, environmental monitoring and smart surveillance, semantic 

segmentation is required, and it relies on detailed scene understanding. The single-

modal data like RGB, thermal or depth images fails to provide this detailed 

information independently. This research proposes a robust solution by fusing the 

multimodal data and employing a deep learning-based hybrid architecture that 

incorporates a generative model with a deep convolutional network. The unified 

model fuses RGB, thermal and depth images for semantic segmentation to 

improve the accuracy and reliability. The successful results validate the 

effectiveness of the proposed technique. 

1. Introduction 

The origin of the Internet of Things (IoT) was to 

connect electronic devices for uninterrupted 

communication and data gathering. The evolution of 

smart IoT gained momentum after 2014, driven by the 

development of wireless sensor networks, reshaping 

various industries, and prompting the adoption of IoT 

platforms for economic expansion [1].  

The potential increase in the IoT-based devices that 

lead to IoT applications is anticipated to reach around 

75 billion by 2025 and could potentially escalate to 

approximately 140 billion by 2030 if the observed 

growth rate persists [1-2]. The IoT sector is supported 

by the integration of emerging technologies like Edge, 

Fog, and Cloud Computing. These technologies 

enhance data processing, decision-making, and 

analytics, signifying the importance of data fusion in 

many IoT-based applications [3]. 

The IoT applications generate a massive amount of 

data from various sources. To use the data for the 

decision-making process or analytics, the integration 

or fusion of the data is required. Thus, the integration 

of the data for extracting useful information from 

different sources becomes a significant hurdle in IoT 

systems, requiring effective approaches to fuse, 

process, and extract valuable information successfully 

[4]. 

Various IoT applications have a distributed and 

heterogeneous environment, particularly with diverse 

systems and data represented in various feature spaces, 

posing a substantial challenge in data fusion [5-7]. 

Specifically, in semantic segmentation-based 

applications, unimodal data like RGB, thermal, or 

depth alone, often fails to provide detailed scene 

understanding. RGB data usually struggles in poor 

lighting conditions, while thermal and depth 
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modalities lack color and texture information 

independently. These limitations in working with 

unimodal data decrease the segmentation accuracy of 

the overall system and highlight the need to use fused 

multimodalities to improve IoT applications that 

require robust scene interpretations [8-10]. 

Challenging issues such as heterogeneity in data 

frames, data size expansion, and network unreliability 

make analyzing IoT data difficult and impact the 

efficiency and accuracy of various applications [11-

12]. Various mathematical theories and probability-

based approaches exist for data fusion but with very 

complex models [13-20]. With the advancement of 

technology, multimedia data experiences explosive 

growth, spanning text, image, audio, and video 

modalities. The conventional model for processing 

that type of data struggles to accommodate the 

progressively diverse nature of multimedia data [21-

22]. These challenges are particularly becoming more 

critical in IoT applications like autonomous vehicles, 

smart surveillance and environmental monitoring, 

where accurate and reliable segmentation is highly 

required [23-24]. 

This massive amount of raw data requires 

intelligent management, forming the foundation for 

multimodal learning in a novel data fusion paradigm. 

The data can be combined from multiple sources and 

forms into a unified form, known as multimodal data 

fusion, facilitating simplified data representation for 

further processing. Effective multimodal data fusion is 

dependent upon the choice of an appropriate fusion 

technique [25]. General fusion techniques are broadly 

classified as: data-level fusion, involving 

synchronization, buffering, de-noising, and 

normalization; feature-level fusion (Early fusion), 

including feature normalization and selection; and 

decision-level fusion, applied after classifiers [26-28].  

The challenges posed by multimodal data, 

characterized by high volume, variety, and veracity, 

highlight the need for advanced data fusion methods. 

Using deep diverse neural architectures in multimodal 

fusion techniques can lead to improved outcomes [29-

30]. Deep neural architectures such as Convolutional 

Neural Networks (CNN), Recurrent Neural Networks 

(RNN), and generative models such as auto-encoders 

and Generative Adversarial Networks (GAN), using a 

hierarchical computational model, capture multilevel 

abstract representations of data for improved fusion 

[31]. 

Research in the medical domain, with late fusion-

based deep learning models to fuse multimodal data, 

has been carried out for the analysis of various disease 

patterns [32-34]. These studies explain that combining 

fusion models like late fusion with advanced neural 

networks like deep neural networks (DNNs) and 

convolutional neural networks (CNNs) significantly 

increases the accuracy of medical images and 

electronic health records.  

Fusion methods, especially the data and feature 

levels, are gaining popularity for industrial diagnosis, 

and show a preference for Deep Neural Networks 

(DNNs) with the concatenation of both data and 

features fusion. However, it is challenging to manage 

the computational efforts and maintain the data quality 

during data processing [35]. 1D CNN models are also 

being used for the integration of multimodal and 

multiresolution signals in image applications. Yet, 

their limitation to 1D signals prompts the necessity for 

a denser model [36]. 

In IoT-based segmentation applications, the 

integration of diverse sensing modalities like 3D Light 

Detection and Ranging (LiDARs), RGB-Depth (RGB-

D), and thermal cameras significantly enhances scene 

understanding by reducing uncertainty, especially in 

complex scenarios. By combining the data from these 

different visual, LiDAR, and thermal, provides richer 

spatial and contextual information and significantly 

improves the performance of learning models 

compared to using unimodal approaches [37-39]. 

This research presents an integrated fused encoder-

decoder-based fully CNN architecture to facilitate the 

fusion of multi-modal data. The research primarily 

uses the power of Convolutional Neural Networks 

(CNNs) and generative models (Variational Auto-

Encoder (VAEs)) to develop an integrated fused 

feature, extracting complex patterns from three 

distinct sources: colour, thermal, and depth sensor-

based images. The goal is to achieve an effective 

multimodal fusion technique to address the limitations 

of unimodal data in semantic segmentation for IoT 

applications. 

The remainder of the paper is organized as follows: 

A description of the proposed model is explained in 

Section 2, Sections 3 and 4 discuss the results and 

conclusions, and future work is presented in Section 5. 

2. Unified Fusion Model 

To resolve the multimodal data integration problem in 

IoT application of semantic segmentation through 

RGB, thermal and depth sensor-based images have 

been considered. 

The proposed model follows a generative 

approach, integrating an auto-encoder with deep 

CNNs. The model is influenced by the VGG-16 

architecture, with modifications in the last two fully 

connected layers. The auto-encoder is used to 
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compress the multimodal data into a latent space 

before decoding it for final segmentation. 

The proposed scheme is divided into two main 

sections, both sections apply convolutional neural 

networks by integrating encoding and decoding 

approaches. 

2.1 CNN Encoder 

The encoder part of the proposed model uses the 

concept of concurrency on multiple data modalities. 

Each modality is encoded as a separate network. The 

encoder concurrently extracts features from different 

modalities and fuses them into a unified framework.  

The fusion is applied at the feature level to 

integrate the multimodal data into the unified 

framework. Fusion occurs in two stages. In the first 

stage, the model performs a summation operation on 

the feature maps of the RGB and thermal images to 

aggregate their features. In the second stage, the 

summated result is concatenated with the depth values 

of the image.  

The overall fused feature map is then passed 

through the max pooling layer followed by a 

convolutional layer to further extract the features. As 

the neural network progresses into deeper layers, the 

output passes through more convolutional and pooling 

layers.  

The model applies batch normalization after each 

convolutional layer to minimize covariance. The 

normalized output is then passed to the ReLU 

activation function. The proposed encoder is shown in 

the Fig. 1.

 

Fig. 1. Unified Fused CNN-based Encoder

2.2 CNN Decoder 

The decoder part of the proposed technique performs 

the un-pooling (Max), deconvolution, and batch 

normalization and applies the SoftMax activation 

function for the final segmentation. The proposed 

decoder is shown in Fig. 2. 

 

Fig. 2. Unified Fused CNN Based Decoder 

2.3 Unified Fusion Algorithm 

The detailed methodology is defined as: 

- Input Parameters: VAP Trimodal People 

Segmentation Dataset from Kaggle has been 

taken. The collected data have 3 data 

modalities: RGB images (680x480), Thermal 

images (680x480), and Depth sensor data 

(1000-3300). 

- Pre-processing: Normalized (depth images) 

and synchronized collected data (Registration 

File) to create a standardized dataset for 

effective fusion. 

- Fused Deep Convolutional Encoder-Decoder: 

Integrated CNN and Autoencoder to get Fused 

Deep Convolutional Encoder-Decoder 
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Implemented concurrent encoding of data 

modalities. 

- Feature Level Fusion: Applied feature-level 

fusion using both summation and 

concatenation based on modalities. 

- Model Training: Trained and optimized the 

model using the pre-processed dataset and 

validated the model's performance through 

testing. 

- Evaluation: Evaluated the model using 

performance metrics (accuracy).   

Accuracy = Number of Correct 

Predictions/Total number of predictions. 

3. Results 

An open access, multimodal dataset, named “VAP 

Trimodal People Segmentation” has been used for the 

training, testing and validation of the proposed 

technique. This dataset contains data from three 

different peoples of different activities captured from 

multimodal cameras, RGB, Thermal and depth 

sensors. The data set contains 5724 annotated frames 

for three scenes in the indoor setting. 

Well-known performance metrics precision (P), 

recall (R), general Accuracy (GA) and class average 

accuracy (CAA) have been used to evaluate the overall 

performance of the trained model and its results across 

09 classes.  The proposed network is evaluated 

through extensive simulations. The training process 

was conducted for 50 epochs and was ended based on 

the validation loss. 

Precision (P) is calculated as: 

P= 
𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑑

𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑑+𝐹𝑎𝑙𝑠𝑒 𝑃𝑟𝑒𝑑
 

Where precision (P) provides the estimation of the 

proportion of correct predictions among all positive 

predictions. 

GA= 
1

𝑁
∑ 𝑃𝑁

𝑖=1  

Where, N=number of classes, and general accuracy 

(GA) represents the overall mean precision across all 

classes. 

Recall (R) is calculated as: 

R=
𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑑

𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑑+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔
 

Where recall (R) is calculated to evaluate the 

proportion of correctly identified values vs actual 

values in the dataset. 

CAA= 
1

𝐾
∑ 𝑅𝐾

𝑖=1  

Where, N=number of classes, and class average 

accuracy (CAA) represent the mean recall across all 

classes.  

The proposed scheme is compared with Seg-Net 

Basic [39] and used as a baseline comparison. Also, 

segmentation using only RGB images (unimodal) has 

been implemented to compare and validate the results 

of the multimodal approach. 

Table 1 shows the class-wise comparison of the 

quantitative results on the VAP Trimodal dataset for 

all three approaches, Seg-Net basic, Unimodal and 

proposed Unified Multimodal scheme, using 

precision, recall, general accuracy, and class average 

accuracy. The results demonstrate the improvement 

achieved by integrating the multimodal data for 

semantic segmentation.

Table 1  

Comparison of quantitative results on the VAP Trimodal dataset 

Class Model 
Precision 

(P)% 
Recall (R)% GA % CAA % 

Table Unimodal (RGB only) 78.2 73.5 - - 

 Seg-Net Basic 90.1 83.2  - 

 Proposed Unified Fusion 93.2 76.3 - - 

Laptop Unimodal (RGB only) 72.4 69.0 - - 

 Seg-Net Basic 83.2 68.5 - - 

 Proposed Unified Fusion 91.4 79.0 - - 

Long Chair Unimodal (RGB only) 68.5 62.0 - - 

 Seg-Net Basic 40.2 44.7 - - 

 Proposed Unified Fusion 84.2 81.3 - - 

Chair Unimodal (RGB only) 36.0 31.4 - - 

 Seg-Net Basic 92.2 85.3 - - 

 Proposed Unified Fusion 95.3 92.1 - - 

Stand Unimodal (RGB only) 45.3 46.1 - - 

 Seg-Net Basic 55.0 50.2 - - 
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 Proposed Unified Fusion 75.2 72.8 - - 

Pot Unimodal (RGB only) 58.4 54.5 - - 

 Seg-Net Basic 75.0 71.3 - - 

 Proposed Unified Fusion 80.3 77.1 - - 

Window Unimodal (RGB only) 71.3 63.8 - - 

 Seg-Net Basic 82.7 79.3 - - 

 Proposed Unified Fusion 93.6 90.5 - - 

Ceiling Unimodal (RGB only) 50.2 45.0 - - 

 Seg-Net Basic 55.0 50.1 - - 

 Proposed Unified Fusion 78.5 75.4 - - 

Light 

Unimodal (RGB only) 45.0 39.5 - - 

Seg-Net Basic 55.0 50.1 - - 

Proposed Unified Fusion 78.5 75.4 - - 

 

Unimodal (RGB only) - - 58. 9 53.9 

Seg-Net Basic - - 60.2 79.6 

Proposed Unified Fusion - - 80.6 85.3 

Fig. 3a represents the accuracy of the model 

throughout the training and testing phases, which 

clearly shows the model’s performance over time and 

epochs. Fig. 3b represents the loss calculations for the 

training and validation processes. 

 

Fig. 3a. Accuracy Of Model During Training And Testing 

Phase 

 

Fig. 3b. Loss During Training And Testing Phase 

4. Conclusion 

The paper presents a solution for fusing multimodal 

data from RGB, Thermal, and Depth sensors to 

improve semantic segmentation accuracy.  The 

proposed fusion technique worked at the feature level, 

to fuse the feature maps of three modalities, which will 

effectively increase the overall accuracy of semantic 

segmentation. 

The unified fused model employs a deep 

Convolutional Neural Network (CNN) architecture, 

incorporating a generative model (Autoencoder-

Decoder). The feature maps from RGB and Thermal 

modalities are initially fused using a summation, 

which then then combined with depth information to 

further refine the segmentation process.  

The unified fused model has efficiently performed 

semantic segmentation and offered remarkable results 

in comparison with existing fusion-based approaches. 

5. Future Work 

The positive outcomes achieved through the 

simulation validate the approach and methodology. 

However, further refinement is necessary to ensure the 

model's adaptability and reliability across diverse 

environmental conditions. The proposed model can be 

enhanced for numerous real-world scenarios like 

varying lighting, dynamic object movements and 

discrepancies in sensors. 
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