
© Mehran University of Engineering and Technology 2024 66

Mehran University Research Journal of Engineering and Technology

https://doi.org/10.22581/muet1982.3005

 2024, 43(3) 66-77

An improved long short-term memory with denoising autoencoder for solving

text classification problems

Amani Saleh Alija *, Nor Adnan Yahaya

Faculty of Information Technology, Malaysia University of Science and Technology, Malaysia

* Corresponding Author: Amani Saleh Alija, Email: amalija647@gmail.com

Received: 30 August 2023, Accepted: 08 May 2024, Published: 01 July 2024

K E Y W O R D S A B S T R A C T

Text Classification

Deep Learning

RNN

LSTM

DAE

 In the past decade, text classification has been a popular research field for

automatically categorizing documents into relevant categories. Predicting

classes for input samples based on their features is the goal of classification. To

limit the dimension of the feature space for precise text categorization, feature

selection approaches are widely used for recognizing important and affective

features while ignoring unimportant, weak, and chaotic components. This paper

proposes a new model referred to as DAE-LSTM for reducing data dimension

through the use of a denoising autoencoder. (Long Short-Term Memory (LSTM)

is one of the popular text classification approaches, particularly when dealing

with sequential datasets. Additionally, the Rectified Linear Unit (Relu)

activation function was used instead of the hyperbolic tangent activation

function (tanh) to improve the accuracy of the model. Four benchmark datasets

were used to evaluate the proposed model against 4 cutting-edge text

classification methods, including conventional Bidirectional LSTM,

Bidirectional GRU, CNN-LSTM, and CNN-GRU. The suggested model has

been found to perform much better than current methods using several kinds of

performance assessment measures.

1. Introduction

Classification is the categorization of objects or

documents for decision-making purposes. It is among

the most cited studies in the field of artificial neural

networks (ANN) [1]. The worldwide web and the

Internet contain a vast quantity of structured and

unstructured digital data. In fact, in the 20th century, a

huge amount of data has already been created since the

early 1960s. Numerous businesses generate vast sums

of digital data daily, and individuals routinely submit

numerous papers online. Digital libraries, blog

archives, discussion boards, news stories, and

biological databases all contain this knowledge. The

accurate categorization of such data is a difficult

undertaking that takes a lot of work. Machine learning,

on the other hand, enables the automatic examination

of data by identifying patterns for categorization with

a minimum of human involvement. Text classification

(TC) is a method that is often used for automatically

classifying an unknown text or document by

recommending the most probable class or predefined

categories it pertains. It is an integral component of

text mining, which employs knowledge engineering

techniques to develop an automatic text classification

system. The fundamental objective of text mining is to

extract pertinent information from textual resources

and perform operations including retrieval,

categorization, and summarization. Combining

machine learning and data mining techniques allows

for the automatic classification and discovery of

patterns in various text types. As the amount of

electronic information and text generated each day

continues to increase, it becomes essential to organize

massive quantities of data for analysis and processing

[2]. Text filtering, text clustering, document

organization, news item classification, web spam,

website classification, data mining, and the search for

mailto:amalija647@gmail.com

© Mehran University of Engineering and Technology 2024 67

intriguing content on the web have all benefited from

TC techniques. Applications for classification

algorithms include sentiment analysis [3], text

clustering [4], [5], spam extraction [6], website

classification [7], disease report finding [8],

generation of text summaries and classification them

[4], [9].

 Many of the most well-known text categorization

techniques have been proposed and widely

implemented. Naive Bayes, Support Vector Machine

(SVM), k-NN, Entropy, and Decision Tree are some

machine learning algorithms used for text

classification [2]. However, there are benefits and

drawbacks to each type of classification algorithm.

Hence, the effectiveness of different categorization

algorithms for different scenes is determined by their

strengths and shortcomings [10]. To show superior

classification performance, recurrent neural networks

(RNNs) have been used in many data mining

applications recently. RNNs have shown good

performance in capturing the semantics for sentiment

classification and are capable of capturing temporal

dependencies in sequence information [11]. RNNs

have the advantage of handling temporal sequential

data with varied lengths, allowing for flexibility in

analyzing varying-length reviews. Long-term memory

(LSTM) and gated recurrent unit (GRU) are 2 variants

of RNN. Text data contains numerous features and is

highly dimensional. A single layer is not effective for

extracting informative features of textual data. Thus,

previous studies have focused on mining the most

valuable features and characteristics from the raw

textual data in existing deep-learning models by

employing numerous layers. Although LSTM is

shown to be effective in text classification tasks, and

many studies have proposed approaches for improving

its accuracy, it still has some flaws and shortcomings.

As such, more effort is needed to make it better.

The main aim of this study is to modify the

fundamental architecture of LSTM to reduce the

complexity and increase its performance, rather than

to improve the overall goal of RNN. Towards this end,

we have accomplished the following. First, there is an

improved dimensionality reduction capability of the

LSTM model using a denoising autoencoder to

address text categorization issues that are due to

LSTM’s inability to capture the feature set with usable

data. Secondly, the proposed equation in this research

uses Rectified Linear Unit (Relu) activation rather

than the hyperbolic tangent activation function

(tanh)in the LSTM architecture. For deep learning

models, Relu has shown good performance as

compared to other sigmoid non-linearities.

2. Related Work

Cai, Y et al [12] put forward 3 methods for sharing

information using recurrent neural networks and use

the multi-task learning framework for concurrent

learning amongst inter-related tasks. A unified system

is created wherein all interrelated tasks are merged and

trained collectively. In the first model, a solitary

shared layer is responsible for all tasks. In contrast, the

second approach incorporates multiple layers that can

access data from other layers to handle different tasks.

A shared layer is employed in the 3rd approach for all

tasks, alongside the allocation of a dedicated layer for

each task. Additionally, a gating mechanism is

introduced to give the model the ability to use the

mutual information selectively. The whole model is

trained simultaneously for all underlying tasks. During

the experiments, 4 benchmark text classification

datasets were utilized for the performance evaluation

of the proposed models. The obtained results indicate

that models can improve the accuracy by combining

the tasks, as demonstrated through the experiments on

these benchmark text classification tasks.

Zhen-Zhong et al [10] conducted a study focusing

on the classification of news articles. Their proposed

approach suggests utilizing a Latent Dirichlet

Allocation-based (LDA) model for news text

categorization. Due to the significantly large size of

news texts, this model leverages a topic model to

reduce the text size while extracting relevant features.

Concurrently, the study also explored the application

of the Softmax regression algorithm, a widely used

classifier for addressing multi-class text-related

challenges in our daily lives. Hence, the proposed new

text classification system can handle a large amount of

text data quickly and predict categorization labels

accurately.

The task of text classification is crucial for various

applications, including information retrieval, and

sentiment analysis. These tasks rely on the accurate

categorization of textual data to enable effective

information retrieval, content filtering, and sentiment

assessment [13]. Due to its significance, text

classification has gained substantial attention from

academia and industry. One key challenge in text

categorization is feature representation, which

commonly follows the bag-of-words (BoW)

paradigm. This approach involves extracting features

such as unigrams, bigrams, n-grams, or carefully

designed patterns to capture the essence of the text.

Researchers have dedicated efforts to address this

problem and enhance feature representation in text

categorization tasks. To handle more discriminative

features, numerous feature selection approaches are

© Mehran University of Engineering and Technology 2024 68

used, including frequency, Mutual Information (MI),

Probabilistic Latent Semantic Analysis (pLSA) [14],

and Latent Dirichlet Allocation (LDA) [15].

Lai et al [16] presented a non-human-designed

recurrent convolutional neural network for text

categorization. For better word representations, they

employed recurrent structures to capture contextual

information, which reduces noise as compared to

window-based artificial neural networks.

Additionally, a max-pooling layer is utilized to

identify the most significant words in text

categorization, thus capturing the essential

components of the texts. The researchers validate their

hypothesis by conducting experiments on four

benchmark datasets. The experimental results

demonstrate that the proposed technique surpasses

existing state-of-the-art methods, particularly on

document-level datasets.

Finally, according to [17], a Deep Text User

Interest System (DTUIS) is a deep learning model that

utilizes Word2Vec and CNN for user interest

classification by combining text classification and

sentiment analysis.

In our study, we have trained a model for

generating a summary of Twitter users' interests

considering their social textual data in 5 categories:

religion, cuisine, fashion, travel, and sports.

Consequently, the researchers can discern the specific

topics that pique consumers' interest. Drawing

inspiration from the remarkable achievements of deep

learning, we also leveraged pre-trained word

embedding models, Word2vec for the underlying

classification problem. This enables the system to

generate vector representations of words, which serve

as inputs for a suitable CNN architecture. By

employing this architecture, the system can perform

deep feature extraction, effectively capturing

significant patterns and features from the text data.

3. Deep Learning Models

Deep learning models evolved from artificial neural

networks and have gained success in many fields. This

section investigates the deep learning models utilized

for text classification tasks.

3.1 Recurrent Neural Network

Recurrent Neural Networks (RNNs) was first

proposed by Hopfeld in 1983 [18]. They are a robust

type of artificial neural network that allows previous

outputs to be utilized as inputs. It is the superior

version of the feed-forward neural network that can

mitigate the problem of a variable-length sequence

utilizing a recurrent hidden state that considers the

prior time sequences during activation [19]. While

performing sequential information, the RNN employs

recurrent hidden states, the activation of which is

highly reliant on the previous time step, and the

existing state has dependency over the current input.

As a result, the present hidden state fully utilized the

previous data. As a result, standardization is achieved.

RNN can handle input of varying lengths and

calculates sequence data in processes that are

dynamic. The standard RNN architecture is given in

Fig. 1. For a given input sequence X = [x1, x2,...

xt...xT] of length T and a process output vector 𝑂𝑡 ,

the hidden state 𝑈𝑜 at time step t is determined using

the following equations:

𝑂𝑡 = 𝜑(𝑊𝑥𝑥𝑡 + 𝑈0ℎ𝑡−1) (1)

𝐻𝑡
𝑙 = 𝜑(𝑤𝑥ℎ𝑡−1

𝑙 + 𝑈𝐻ℎ𝑡−1
𝑙) (2)

where 𝑊𝑥 are the weights connecting input

and hidden layers, and φ represents the activation

function, i.e., sigmoid. UH is the hidden layers weights

matrix and 𝑊𝑥, 𝑈𝑜, are parameters.

Fig. 1. Traditional Structure of RNN

The input unit of the time step is 𝑋𝑡−1, ℎ𝑡 is the

activation state of the step t. 𝑂𝑡 displays the output at

time t; the output is chosen based on the network's

requirements. Weights are the trainable parameters

and denoted by U and W. RNNs, on the other hand,

are difficult to train and suffer from disappearing and

bursting gradients.

3.2 Long Short-Term Memory (LSTM)

The LSTM is a variant of RNN that captures the long-

term dependency. LSTM was introduced by

Hochreiter and Schmidhuber in 1997. In the recurrent

hidden layer of LSTM, there is a gated mechanism and

particular units called memory blocks that assist in

solving the two most prominent difficulties of

standard RNNs, which are: vanishing gradient and

explosion or exploding. Fig. 2 shows the architecture

of LSTM gates.

© Mehran University of Engineering and Technology 2024 69

Fig. 2. The Architecture of LSTM Gates

In LSTM, the information can be added or deleted

to the cell-by-cell state, which is considered the

essence of LSTM. and electricity allows information

to flux over the door technique to perfect this goal.

There are three gates in LSTM as shown in Fig. 2: a

forget gate (𝑓𝑡), an input gate (𝑖𝑡) and an output gate

(𝑜𝑡) through time step t [20]. firstly, forget gates

decide the information to be removed from the cell

state, and what information to update is the

responsibility of the input gate. The output gate

decides the network output. The Eq. (1)-(6) defines the

state of each node in this operation.

𝑓𝑡 = 𝜎(𝑤𝑥𝑓𝑥𝑡 + 𝑈ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (3)

𝑖𝑡 = 𝜎(𝑤𝑥𝑖𝑥𝑡 + 𝑈ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (4)

𝑂𝑡 = 𝜎(𝑤𝑥𝑜𝑥𝑡 + 𝑈ℎ𝑜ℎt−1 + 𝑏0) (5)

𝑎̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑥𝑎̃𝑥𝑡 + 𝑈ℎ𝑎̃ℎ𝑡−1 + 𝑏𝑎̃) (6)

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (7)

𝑐𝑡 = 𝑓𝑡 ∗ 𝑥𝑡−1 + 𝑖𝑡 ∗ 𝑎̃𝑡 (8)

𝑐𝑡𝑖𝑖 represents the memory cell content which was

updated in Eq 8,𝑖𝑥𝑡 represents the current

input,𝑖ℎt−1 represents the previous layer's hidden

state,𝑖𝑓𝑡 represents forget gate’s output, 𝑤 and 𝑈ℎ𝑜are

weights, b is a bias matrix, and𝑖ℎ𝑡 denotes the hidden

state of the next layer, σ denotes the sigmoid activation

function. Weights and bias of the network can be

computed throughout the training phase are 𝑊𝑖 , 𝑊𝑜,

𝑊𝑓 , 𝑊𝑎̃∈ 𝑅𝑚∗𝑝, 𝑈𝑖 , 𝑈𝑜, 𝑈𝑓 , 𝑈𝑎̃∈ 𝑅𝑚∗𝑚, 𝑏𝑖 , 𝑏0,𝑏𝑓

, 𝑏𝑎̃∈ 𝑅𝑚∗1.

𝑊𝑖 , 𝑊𝑜, 𝑊𝑓 , 𝑊𝑎̃ are the parameters between the

input and hidden layers, 𝑈𝑖 , 𝑈𝑜, 𝑈𝑓 , 𝑈𝑎̃ are weights

between hidden and output layers. LSTM network has

a strong patterning capacity for extracting long-term

dependencies between sequence parts and is gaining

prominence.

LSTM is an effective approach adopted in the field

of text classification problems. Previous studies have

improved the accuracy of text classification using

LSTM. However, there is still room for improvement

by removing drawbacks and required efforts to

eliminate the limitation of standard LSTM. The first

drawback is, having the nature of non-application

independent as well as data dimensionality reduction

corresponding to the given textual data [21]. This

results in the incapability to acquire the minute details

when possessing important information. Furthermore,

it also gives a low quality of results when solving the

classification problem. Secondly, LSTM also does not

give accurate results when combined with other text

classification approaches. The major cause of these

issues is the complex representation of the variety of

features that differentiate different classes.

3.3 The Basic Autoencoder

Autoencoder (AE) is one of the essential types of

unsupervised artificial neural networks (ANN) that

play a vital role to reduce the dimensionality of data

which can efficiently press and encode features after

extraction and learn to regenerate the data from the

latent representation as it gives the better latent

representation of the inputs as compared to the inputs

as near to its initial inputs as feasible [22].

AE has two stages encoding and decoding. The

encoding phase generates the latent representation,

and the decoding phase regenerates this new

representation back to its original inputs as closely as

possible. The primary goal of an autoencoder is to

generate high-quality features from large textual data

without any need for reducing the dimensionality.

Currently, conventional AE is a great and efficient

unsupervised model for encoding related information.

The model trained using latent representations

generated by the conventional AE is robust to existing

noise and shows delicate fluctuations in the input

training data. It learns the non-linear relationship in

the data using a nonlinear activation function and

multiple layers. Fig. 3. shown simple representation of

the Autoencoder model architecture.

Fig. 3. Standard Autoencoder Architecture

© Mehran University of Engineering and Technology 2024 70

The autoencoder has two stages: the encoder and

the decoder. The former translates the input features

set into a latent intermediates representation to be

considered as an input to the hidden layer. Its main

objective is to reduce the curse of dimensionality of

the input data and can be represented as:

y = E(m) = 𝑘𝑒(𝑊𝑥+ 𝑏ℎ) (9)

where 𝑘𝑒 is the encoding activation function, 𝑊𝑥

are the weights while b represents the biases

corresponding to the input features, and E(m) refers to

the output of the input layer which is given as input to

the next hidden layer. Similarly, the decoding stage

regenerates the original input using different

parameters from the latent representation as shown in

Eq. (10).

z = F(n) = 𝑘𝑑(𝑊𝑦 + 𝑏𝑟) (10)

where F(n) is the hidden layer output, W represents

input weights of the hidden layer, b represents to the

hidden layer, and 𝑘𝑑 represents the activation

function.

The primary aim of reconstruction is to regenerate

outputs almost similar to the original inputs by

reducing the difference by using the following

parameters:

𝜃= [𝑊, 𝑏ℎ, 𝑏𝑟] (11)

Suppose, Xi = [x1, x2, x3, …xn] is the input

features in the training phase, then following the

reconstruction error can be optimized using the

following function:

JAE (θ)= Σx∈Di
G(x, r) (12)

Also, for a linear representation, where G

represents the reconstruction error, while for a

nonlinear representation, Euclidean distance is used as

a cross-entropy loss for reconstruction. To handle the

overfitting as well as controlling the huge weights

obtained from the above Eq. (12). The Eq. (12) can be

represented in a simple form as:

𝐽𝐴𝐸_𝑊𝑑(𝜃) = 𝛴𝑥∈𝐷𝑖
 G(x, r) +

1

2
(‖𝑤‖)

2

2
 (13)

Here,  represents a weight decay coefficient for

preventing the weights from getting very large.

3.4 The Denoising Autoencoder

Denoising autoencoder (DAE) is a minor modification

to typical AEs that are trained to denoise an artificially

distorted version of their input rather than recreate it

[23]. A DAE must extract more valuable features to

tackle the significantly more challenging denoising

problem, in contrast to an overcomplete regular AE,

which can learn worthless identity mapping with ease.

Reconstructing noisy data from the original data is the

primary function of DAEs. DAEs are used to both

encode noisy data and retrieve the original input data

from the output data that has been rebuilt. Data

encoders that are stacked in various layers create

stacked DAEs [24]. Notably, Xia et al [25]

incorporated a weighted reconstruction loss function

over the traditional DAE for speech-enhancement

system noise categorization. to build the model, they

stacked numerous weighted DAEs. In their trials, they

carried out 50 steps using a variable number of input

nodes, between 50 and 100. White noise with signal-

to-noise ratios (SNRs) of 6, 12, and 18 dB was chosen

from the NTT database and used to train the model,

the un-noisy data consisted of 8 languages. The model

was evaluated on data that was 8 minutes long after

being trained on data that was 1 hour long.

According to Caterini et al [26], DAEs have

attracted the attention of numerous researchers in a

variety of contexts. In addition, by introducing noise

to the training data, it learns a more robust

representation of the input signal and exhibits stronger

generalization ability than conventional encoders. The

denoising autoencoder structure is shown in Fig. 4.

Fig. 4. Denoising Autoencoder Structure

As can be seen from Fig. 4. above, the encoder and

decoder are also the main two parts of the DAE.

Data dimensions are reduced using the encoder.

The coding result y is ultimately acquired through the

actions of the activation function and linear

transformation, which is subsequently input into the

decoder.

𝑦 = 𝑓𝜃(𝑥) = 𝑠(𝑊𝒙̃ + 𝑏) (14)

The primary role of the decoder, which is

represented as the following function, is to map and

reconstruct the data from the hidden layer back to z,

which is represented as the following function:

𝑧 = 𝑓𝜃(𝑦) = 𝑠(𝑤̃𝑦 + 𝑏) (15)

Where W is a weight matrix of 𝑑 × 𝑑 ′ and, b is a

bias parameter. s is the activation function; all the

parameters of the model are obtained by continuous

reverse finetuning to obtain the minimum average

reconstruction error. The expression of reconstruction

error is as follows:

© Mehran University of Engineering and Technology 2024 71

LH =‖x − z‖2 (16)

4. Model Architecture

This section describes the proposed improved model

architecture that integrates DAE into LSTM. This

DAE-LSTM model architecture seeks to solve the

issues and limitations of the standard LSTM linked to

dimensionality reduction as well as the complexity of

text classification problems. In this architecture, we

combine denoising auto-encoder (DAE) layers with

LSTM to improve LSTM’s capability of

dimensionality reduction. The essential computational

process of developing the DAE-LSTM model for text

classification contains four main phases for the

training of both DAE layers and the LSTM model. In

the first stage, the parameter sets of DAE as well as

LSTM are initialized. Subsets of the parameters of

DAE, such as activation functions, and learning rate

are selected and then fed with input data. In the second

stage, the encoding process takes place when

translating input to the latent representation for the

hidden layer as an input. The decoding procedure

happens during information transformation from

hidden to output layers optimizing the reconstruction

error. The information is propagated to the third stage

if the reconstruction error does not exceed the

threshold value. Improved results were obtained based

on a certain threshold value (find the best threshold

value). The model modifies the threshold at each

epoch to achieve the ultimate accuracy; the threshold

did not further grow or drop. During the third stage,

the DAE layer’s output is transformed and becomes

input to the LSTM for learning prominent and useful

features. The embedding of the hidden layers of

LSTM is directed towards the fourth stage, where the

intermediate resultant features vector obtained from

LSTM layers is passed through the Softmax layer for

generating the predictions. Fig. 5. depicts the core

architectural difference between the standard LSTM

and DAE-LSTM model. The conventional LSTM

architecture has already been discussed in Sect. 3.2.

There are two major modifications have been made to

improve the performance of standard LSTM. 1) a

denoising auto-encoder is injected into an LSTM

architecture, 2) tanh is replaced with Relu activation

in candidate state, which the modification shown in

Eq. (17)

𝑎̃𝑡 = 𝑅𝑒𝑙𝑢(𝑤𝑥𝑎̃𝑥𝑡 + 𝑈ℎ𝑎̃ℎ𝑡−1 + 𝑏𝑎̃) (17)

Relu has provided better performance as compared to

other sigmoid nonlinearities for deep learning

approaches. Fig. 5 shows the modification of the

DAE-LSTM model.

Fig. 5. The DAE-LSTM Architecture with Relu Function

5. Experiments

5.1 Dataset

Training a machine learning model for text

classification starts with the process of data collection.

To train and evaluate our proposed DAE-LSTM

model, we have used the 4 publicly benchmark

datasets, i.e., 20 newsgroups, Reuters21578, Amazon

reviews, and IMDB, freely available at UCI machine

learning repository in various formats, i.e., pdf, CSV,

doc, etc. Furthermore, for consistency, these datasets,

as shown in Table 1 below, were selected and split into

training and testing sets for comparing the proposed

model with the four chosen existing models. It is

important to note that in performing the comparison,

we have to retrain these four other models with these

benchmark datasets under our experimental setup.

Table 1

Descriptions summary of our experimental statistics

datasets

Datasets Train

Samp

les

Test

Samp

les

Aver

age

lengt

hs

Clas

ses

Tasks

Amazon

review

300,0

00

125,0

00

156 5 Sentimen

t analysis

IMDB 35,00

0

15,00

0

55 02 Sentimen

t analysis

Reuters2

1578

8088 2700 87 15 Text

classifica

tion

20NG 7500 2500 96 20 Text

classifica

tion

© Mehran University of Engineering and Technology 2024 72

5.2 Flow Chart of the DAE-LSTM Model Development

Process

Fig. 6 shows the flowchart of the process for training

and testing the proposed DAE-LSTM model for

solving text classification problems. This process

comprises three phases. The first phase involves data

preprocessing for experimental purposes where spaces

and punctuation are discarded to extract words.

Keywords are chosen and unnecessary words are

removed from these datasets. Porter stemmer is used

to remove the inflectional form and to make the word

its base form. This step is crucial because the quality

of the input data is very important for training models

using deep learning approaches. In the second phase,

we initialize the parameters for the proposed DAE-

LSTM model. In this phase, denoising auto-encoder

layers were applied for feature reduction purposes

while LSTM layers were used for learning the

prominent features in the training process and

optimizing the model parameters. The integration of

the two introduces a novel technique of long short-

term memory (LSTM) based on DAE that replaces

tanh with the Relu activation function. The third phase

is the validation process. To evaluate the performance

of the proposed model different performance

evaluation metrics are used for solving text

classification issues. These comprise accuracy,

precision, recall, F-measure, specificity, error

rate/convergence, time complexity, and Mean Squared

Error (MSE). DAE-LSTM model has numerous

parameters that can influence its training. Depending

on those parameters, the performance of the model can

vary notably. the training hyperparameters were

chosen in the proposed model DAE-LSTM, as shown

in Table 2. Finally, upon passing this evaluation phase,

a trained and tested DAE-LSTM model was produced

with the configuration ready for deployment in

performing the classification of further unseen texts.

Table 2

Hyperparameter for the DAE-LSTM model

Hyperparameter Values

Learning rate 0.001

Epochs 12

Optimizer adam

Batch size 32

Activation function Relu, softmax

Dropout 0.5

5.3 Experimental Setup

To improve the performance of the proposed DAE-

LSTM model, after cleaning the dataset by pre-

processing techniques such as eliminating stop words

from the sequential input and punctuation, the

information was maintained through the training of

sentence embeddings. Then, the Word2vec model was

used to get 300-dimensional word vectors for all the

words as performed in [27]. Some researchers

implemented well-structured training strategies for

getting word embeddings (word representations) to

improve the accuracy of sentence classification tasks

[28]. Adam algorithm with a learning rate of 0.001 and

a mini-batch of 64 is used during the training phase. In

our research, the common embeddings for all

benchmark datasets are more useful to apply for

getting good generalization ability of the model. The

dropout strategy [29] was applied to avoid the

overfitting problem, with a dropout rate of 0.5. All the

experiments were implemented using Python 3.7 with

Anaconda running on Intel Core i7-3770, 3.40 GHz,

(CPU),” and 8 GB of Random-Access Memory

(RAM). Other required libraries that are used in this

research work are, Sklearn, Numpy, Scipy, Pandas,

and Keras packages, running on Microsoft Windows

10 64-bit operating system. For quick implementation

of the proposed model and comparative traditional

deep learning models executed, an efficient open-

source software library for numerical computational is

applied which allows a simple and fast development

for both Central Processing Unit (CPU) and Graphics

Processing Unit (GPU) support. The performance of

all methods was based on pre-defined assessment

measures as mentioned in the scope of this research.

5.4 Performance Evaluation

There are different performance evaluation metrics

used for solving text classification issues, this research

uses accuracy, precision, recall, F-measure, and error

rate/convergence, to evaluate the performance. The

formulas are as follows.

© Mehran University of Engineering and Technology 2024 73

Fig. 6. The Flowchart of The DAE-LSTM Model Development Process

start

No

Yes

Collection of datasets

Pre-processing data

Network topology

Model

UCI Repository

1. Cleaning

2. Tokenization

3. Stop word removal

4. Transformation

5. Reduction

6. Partitioning

1. No. of input-output nodes

2. No. of hidden layers

3. Recurrence expansion

4. Transfer function

No. of parameters

1. Weights

2. Momentum

3. Learning rate

4. Bias

Initialize the weights and setting

of parameters

5. Random weights

6. Input/output nodes

7. Order of network

8. Transfer function

Training of network

1. Calculate the network output

2. Calculate the network error

3. Update the weights Is error

within

limits?

 End

 Testing of network

Performance evaluation

Softmax classifier

DAE-LSTM TEXT

Classification Model

© Mehran University of Engineering and Technology 2024 74

6. Results and Analysis

In the analysis of the results, the empirical results of

the proposed and comparative approaches were briefly

analyzed based on the selected datasets.

6.1 Accuracy Results of All Models

This section presents improved results of a proposed

(DAE-LSTM) model on the four benchmark datasets

and compares them with the standard text

classification approaches containing BiLSTM,

BiGRU, CNN-LSTM, and CNN-GRU. These four

models were retrained and tested under the same

experiment setup and datasets before comparing them

with the DAE-LSTM model. In the evaluation, we

have also considered other important factors, such as

the curse of dimensionality as well as imbalanced

classes. Evaluation results of the proposed and the

conventional LSTM are shown in separate figures.

Several performance measures are used for

performance evaluation. Table 3 shows the accuracy

of the proposed model as well as other approaches.

These results indicate that with the increase in

complexity and size of data, the proposed model

improves its performance.

The obtained result shows the significance and

effectiveness of the proposed model for complex data

by giving improved accuracy on the benchmark

datasets comparatively as shown in Table 3. The

improvement is due to the model's ability for

robustness to the noise, and high-quality latent

representation generation for giving as an input to the

LSTM. For consistency, each experiment was

repeated 5 times for each of the models. These results

conclude that the proposed model outperforms the

existing models, BiLSTM, BiGRU, CNN-LSTM, and

CNN-GRU.

Table 3

Accuracy of the proposed and existing models (%)

6.2 Precision and Recall

Precision is the ratio of the number of correctly

predicted positive observations to the total the total

positive observations. Recall is the ratio of the number

of correct predictions on positive instances to the total

number of actual class instances. Generally, both

measures are used for binary classification problems,

therefore, we show average measures by first

calculating these metrics for each class individually

and then taking the average of them to obtain the final

values. Table 4 shows the precision while Table 5

shows a recall of the existing as well as proposed

models.

The last row of table 4, shows the improved results

of the proposed model compared to the existing

models. In the first two datasets (reuters21578 and

20newgroup) the CNN-GRU and CNN-LSTM

performed nearly to the proposed DAE-LSTM due to

the less complexity of the datasets. Also, along with

the increase in dataset complexities, the proposed

model exhibits better performance in comparison to

BiGRU, and BiLSTM.

Table 4

Precision-based evaluation of proposed and existing models

on benchmark datasets

Datasets

Models Reuter21578 20NG IMDB Amazon

review

CNN-

GRU

0.85 0.89 0.86 0.80

CNN-

LSTM

0.86 0.89 0.85 0.81

BiLSTM 0.85 0.88 0.83 0.80

BiGRU 0.84 0.86 0.84 0.79

DAE-

LSTM

0.88 0.92 0.89 0.83

Table 5

Recall-based evaluation of proposed and existing models

on benchmark datasets

Datasets

Models Reuter21578 20NG IMDB Amazon

review

CNN-

GRU

0.84 0.89 0.79 0.77

CNN-

LSTM

0.85 0.90 0.80 0.79

BiLSTM 0.84 0.88 0.82 0.81

BiGRU 0.83 0.87 0.87 0.79

ES-GRU 0.87 0.92 0.89 0.82

Datasets BiGR

U

BiLST

M

CNN

-

LST

M

CNN

-

GRU

DAE

-

LST

M

Reuter215

78

0.878

7

0.8760 0.879

5

0.879

0

0.889

3

20newgro

up

0.906

2

0.9013 0.913

4

0.908

9

0.920

3

Amazon

reviews

0.831

9

0.8488 0.850

1

0.854

1

0.860

3

IMDB 0.863

6

0.8699 0.872

1

0.876

5

0.893

7

© Mehran University of Engineering and Technology 2024 75

6.3 Convergence Rate

This section compares the convergence rate of the

proposed model and existing models. “Fig. 7, 10,11,

12, and 13” show the convergence rate of these models

while learning classification for benchmark datasets

for 12 iterations. After 6 iterations, all models

maintain their error rates. The proposed model shows

slightly inferior performance as compared to the

existing models for Amazon review and router21578

datasets. For the complex datasets, i.e., IMDB and

20newsgroup as compared to the other simple

datasets, the proposed model is consistent in

convergence at good value throughout the 12

iterations while others are affected at certain extent.

Fig. 7. Convergence Rate of Models on 20newsgroup

Dataset

Fig. 8. Convergence Rate of All Models on Amazon

Dataset

Fig. 9. Convergence Rate of All Models on Reuter21578

Dataset

Fig. 10. Convergence Rate Of All Models On The IMDB

Dataset

7. Conclusion

Natural Language Processing (NLP) is the common

and pertinent field of text classification. LSTM is one

popular and widely used deep learning model in NLP.

In this study, we proposed an enhanced variant of

LSTM based on a denoising autoencoder, DAE-

LSTM for solving the problems of text classification.

This research has made three contributions. First, the

integrated DAE-LSTM approach for learning the

latent representation of the input features can

significantly reduce dimensions to mitigate the curse

of dimensionality. Secondly, we have also shown the

utility of replacing the tanh with Relu activation and a

Softmax output layer for getting classification outputs

for input data. Finally, the proposed model has gone

through sufficient experiments for comparative

analysis and evaluation to ensure its effectiveness and

applicability. In summary, the proposed model has

been shown to outperform other state-of-the-art

models on four benchmark datasets (20NG, Amazon

review, IMDB, and Reuters21578) and achieved

outstanding classification accuracy with less

execution time. For future work, the proposed model

will be implemented for other text and data mining

problems, such as information retrieval and machine

translation for evaluating its performance in general.

8. References

[1] N. Shahid, T. Rappon, and W. Berta,

"Applications of artificial neural networks in

health care organizational decision-making: A

scoping review", PloS one, vol. 14, no. 2, p.

e0212356, 2019.

[2] Z. Ullah, F. Saleem, M. Jamjoom, and B.

Fakieh, “Reliable prediction models based on

enriched data for identifying the mode of

childbirth by using machine learning methods:

development study”, Journal of Medical

Internet Research, vol. 23, no. 6, pp. e28856,

2021.

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10

ER
R

O
R

 R
A

TE

EPOCHS

20NEWSGROUP DATASET

DAE-LSTM

CNN-LSTM

CNN-GRU

BiLSTM

BiGRU

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 1 0

ER
R

O
R

 R
A

TE

EPOCHS

AMAZON REVIEW DATASET

DAE-LSTM

CNN-LSTM

CNN-GRU

BiLSTM

BiGRU

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

ER
R

O
R

 R
A

TE

EPOCHS

REUTER21578 DATASET

DAE-LSTM

CNN-LSTM

CNN-GRU

BiLSTM

BiGRU

0

0.2

0.4

0.6

0.8

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

ER
R

O
R

 R
A

TE

EPOCHS

IMDB DATASET

DAE-LSTM

CNN-LSTM

CNN-GRU

BiLSTM

BiGRU

© Mehran University of Engineering and Technology 2024 76

[3] D. Alessia, F. Ferri, P. Grifoni, and T. Guzzo,

"Approaches, tools and applications for

sentiment analysis implementation",

International Journal of Computer

Applications, vol. 125, no. 3, 2015.

[4] W. Sharif, N. A. Samsudin, M. M. Deris, and

M. Aamir, “Improved relative discriminative

criterion feature ranking technique for text

classification”, Int. J. Artif. Intell, vol. 15, no.

2, pp. 61-78, 2017.

[5] Y. Zhou and X. Jiang, "Dissecting android

malware: Characterization and evolution",

2012 IEEE symposium on security and

privacy, 2012: IEEE, pp. 95-109.

[6] R. O. Midigo, W. Mwangi, and G. O. Okeyo,

"Biterm for spam filtering in short message

service text", International Journal of

Computer Science Issues (IJCSI), vol. 14, no.

1, p. 79, 2017.

[7] R. Rajalakshmi and C. Aravindan, "Naive

Bayes approach for website classification",

International Conference on Advances in

Information Technology and Mobile

Communication, 2011: Springer, pp. 323-326.

[8] L. Leape et al., "Transforming healthcare: a

safety imperative", BMJ Quality and Safety,

vol. 18, no. 6, pp. 424-428, 2009.

[9] J. Su et al., "Wheat yellow rust monitoring by

learning from multispectral UAV aerial

imagery", Computers and electronics in

agriculture, vol. 155, pp. 157-166, 2018.

[10] S. Zhen-zhong, M. Xiao-ning, W. Wei, and X.

Li-qun, "Deformation prediction model of

concrete arch dam based on improved particle

swarm optimization algorithm", Earth and

Space 2010: Engineering, Science,

Construction, and Operations in Challenging

Environments, 2010, pp. 443-451.

[11] P. Liu, X. Qiu, and X. Huang, "Recurrent

neural network for text classification with

multi-task learning", arXiv preprint

arXiv:1605.05101, 2016.

[12] Y. Cai, Q. Huang, Z. Lin, J. Xu, Z. Chen, and

Q. Li, "Recurrent neural network with pooling

operation and attention mechanism for

sentiment analysis: A multi-task learning

approach", Knowledge-Based Systems, vol.

203, p. 105856, 2020.

[13] C. C. Aggarwal and C. Zhai, "A survey of text

classification algorithms", Mining text data,

pp. 163-222, 2012.

[14] L. Cai and T. Hofmann, "Text categorization

by boosting automatically extracted concepts",

Proceedings of the 26th annual international

ACM SIGIR conference on Research and

development in informaion retrieval, 2003, pp.

182-189.

[15] S. Hingmire, S. Chougule, G. K. Palshikar, and

S. Chakraborti, "Document classification by

topic labeling", Proceedings of the 36th

international ACM SIGIR conference on

Research and development in information

retrieval, 2013, pp. 877-880.

[16] S. Lai, L. Xu, K. Liu, and J. Zhao, "Recurrent

convolutional neural networks for text

classification", Proceedings of the AAAI

conference on artificial intelligence, 2015, vol.

29, no. 1.

[17] A. H. Ombabi, O. Lazzez, W. Ouarda, and A.

M. Alimi, "Deep learning framework based on

Word2Vec and CNN for users interests

classification", 2017 Sudan conference on

computer science and information technology

(SCCSIT), 2017: IEEE, pp. 1-7.

[18] S. Ranjit, S. Shrestha, S. Subedi, and S.

Shakya, "Comparison of algorithms in foreign

exchange rate prediction", 2018 IEEE 3rd

International Conference on Computing,

Communication and Security (ICCCS), 2018:

IEEE, pp. 9-13.

[19] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio,

"Empirical evaluation of gated recurrent neural

networks on sequence modeling", arXiv

preprint arXiv:1412.3555, 2014.

[20] M. Abdel-Nasser and K. Mahmoud, "Accurate

photovoltaic power forecasting models using

deep LSTM-RNN", Neural computing and

applications, vol. 31, pp. 2727-2740, 2019.

[21] K. Murphy and C. Lepers, "Fault Prediction for

Heterogeneous Networks using Machine

Learning: a Survey", Authorea Preprints, 2023.

[22] L. Zhang, G.-J. Qi, L. Wang, and J. Luo, "Aet

vs. aed: Unsupervised representation learning

by auto-encoding transformations rather than

data", in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition, 2019, pp. 2547-2555.

[23] Z. Bao and L. Muñoz-González, "Mitigating

evasion attacks against machine learning

systems through dimensionality reduction and

denoising", 2018.

© Mehran University of Engineering and Technology 2024 77

[24] M. Chen, K. Q. Weinberger, Z. Xu, and F. Sha,

"Marginalizing stacked linear denoising

autoencoders", The Journal of Machine

Learning Research, vol. 16, no. 1, pp. 3849-

3875, 2015.

[25] B. Xia and C. Bao, "Wiener filtering based

speech enhancement with weighted denoising

auto-encoder and noise classification", Speech

Communication, vol. 60, pp. 13-29, 2014.

[26] A. L. Caterini, A. Doucet, and D. Sejdinovic,

"Hamiltonian variational auto-encoder",

Advances in Neural Information Processing

Systems, vol. 31, 2018.

[27] S. JP, V. K. Menon, S. KP, and A. Wolk,

"Generation of cross-lingual word vectors for

low-resourced languages using deep learning

and topological metrics in a data-efficient

way", Electronics, vol. 10, no. 12, p. 1372,

2021.

[28] Q. T. Ain et al., "Sentiment analysis using deep

learning techniques: A review", International

Journal of Advanced Computer Science and

Applications, vol. 8, no. 6, 2017.

[29] S. Wang et al., "Defensive dropout for

hardening deep neural networks under

adversarial attacks", 2018 IEEE/ACM

International Conference on Computer-Aided

Design (ICCAD), 2018: IEEE, pp. 1-8.

