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 In the past decade, text classification has been a popular research field for 

automatically categorizing documents into relevant categories. Predicting 

classes for input samples based on their features is the goal of classification. To 

limit the dimension of the feature space for precise text categorization, feature 

selection approaches are widely used for recognizing important and affective 

features while ignoring unimportant, weak, and chaotic components. This paper 

proposes a new model referred to as DAE-LSTM for reducing data dimension 

through the use of a denoising autoencoder. (Long Short-Term Memory (LSTM) 

is one of the popular text classification approaches, particularly when dealing 

with sequential datasets. Additionally, the Rectified Linear Unit (Relu) 

activation function was used instead of the hyperbolic tangent activation 

function (tanh) to improve the accuracy of the model. Four benchmark datasets 

were used to evaluate the proposed model against 4 cutting-edge text 

classification methods, including conventional Bidirectional LSTM, 

Bidirectional GRU, CNN-LSTM, and CNN-GRU. The suggested model has 

been found to perform much better than current methods using several kinds of 

performance assessment measures. 

 

1. Introduction 

Classification is the categorization of objects or 

documents for decision-making purposes. It is among 

the most cited studies in the field of artificial neural 

networks (ANN) [1]. The worldwide web and the 

Internet contain a vast quantity of structured and 

unstructured digital data. In fact, in the 20th century, a 

huge amount of data has already been created since the 

early 1960s. Numerous businesses generate vast sums 

of digital data daily, and individuals routinely submit 

numerous papers online. Digital libraries, blog 

archives, discussion boards, news stories, and 

biological databases all contain this knowledge. The 

accurate categorization of such data is a difficult 

undertaking that takes a lot of work. Machine learning, 

on the other hand, enables the automatic examination 

of data by identifying patterns for categorization with 

a minimum of human involvement. Text classification 

(TC) is a method that is often used for automatically 

classifying an unknown text or document by 

recommending the most probable class or predefined 

categories it pertains. It is an integral component of 

text mining, which employs knowledge engineering 

techniques to develop an automatic text classification 

system. The fundamental objective of text mining is to 

extract pertinent information from textual resources 

and perform operations including retrieval, 

categorization, and summarization. Combining 

machine learning and data mining techniques allows 

for the automatic classification and discovery of 

patterns in various text types. As the amount of 

electronic information and text generated each day 

continues to increase, it becomes essential to organize 

massive quantities of data for analysis and processing 

[2]. Text filtering, text clustering, document 

organization, news item classification, web spam, 

website classification, data mining, and the search for 
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intriguing content on the web have all benefited from 

TC techniques. Applications for classification 

algorithms include sentiment analysis [3], text 

clustering [4], [5], spam extraction [6], website 

classification [7], disease report finding [8], 

generation of text summaries and classification them 

[4], [9].  

 Many of the most well-known text categorization 

techniques have been proposed and widely 

implemented. Naive Bayes, Support Vector Machine 

(SVM), k-NN, Entropy, and Decision Tree are some 

machine learning algorithms used for text 

classification [2]. However, there are benefits and 

drawbacks to each type of classification algorithm. 

Hence, the effectiveness of different categorization 

algorithms for different scenes is determined by their 

strengths and shortcomings [10]. To show superior 

classification performance, recurrent neural networks 

(RNNs) have been used in many data mining 

applications recently. RNNs have shown good 

performance in capturing the semantics for sentiment 

classification and are capable of capturing temporal 

dependencies in sequence information [11]. RNNs 

have the advantage of handling temporal sequential 

data with varied lengths, allowing for flexibility in 

analyzing varying-length reviews. Long-term memory 

(LSTM) and gated recurrent unit (GRU) are 2 variants 

of RNN. Text data contains numerous features and is 

highly dimensional. A single layer is not effective for 

extracting informative features of textual data. Thus, 

previous studies have focused on mining the most 

valuable features and characteristics from the raw 

textual data in existing deep-learning models by 

employing numerous layers. Although LSTM is 

shown to be effective in text classification tasks, and 

many studies have proposed approaches for improving 

its accuracy, it still has some flaws and shortcomings. 

As such, more effort is needed to make it better. 

The main aim of this study is to modify the 

fundamental architecture of LSTM to reduce the 

complexity and increase its performance, rather than 

to improve the overall goal of RNN. Towards this end, 

we have accomplished the following. First, there is an 

improved dimensionality reduction capability of the 

LSTM model using a denoising autoencoder to 

address text categorization issues that are due to 

LSTM’s inability to capture the feature set with usable 

data. Secondly, the proposed equation in this research 

uses Rectified Linear Unit (Relu) activation rather 

than the hyperbolic tangent activation function 

(tanh)in the LSTM architecture. For deep learning 

models, Relu has shown good performance as 

compared to other sigmoid non-linearities. 

2. Related Work 

Cai, Y et al [12] put forward 3 methods for sharing 

information using recurrent neural networks and use 

the multi-task learning framework for concurrent 

learning amongst inter-related tasks. A unified system 

is created wherein all interrelated tasks are merged and 

trained collectively. In the first model, a solitary 

shared layer is responsible for all tasks. In contrast, the 

second approach incorporates multiple layers that can 

access data from other layers to handle different tasks. 

A shared layer is employed in the 3rd approach for all 

tasks, alongside the allocation of a dedicated layer for 

each task. Additionally, a gating mechanism is 

introduced to give the model the ability to use the 

mutual information selectively. The whole model is 

trained simultaneously for all underlying tasks. During 

the experiments, 4 benchmark text classification 

datasets were utilized for the performance evaluation 

of the proposed models. The obtained results indicate 

that models can improve the accuracy by combining 

the tasks, as demonstrated through the experiments on 

these benchmark text classification tasks. 

Zhen-Zhong et al [10] conducted a study focusing 

on the classification of news articles. Their proposed 

approach suggests utilizing a Latent Dirichlet 

Allocation-based (LDA) model for news text 

categorization. Due to the significantly large size of 

news texts, this model leverages a topic model to 

reduce the text size while extracting relevant features. 

Concurrently, the study also explored the application 

of the Softmax regression algorithm, a widely used 

classifier for addressing multi-class text-related 

challenges in our daily lives. Hence, the proposed new 

text classification system can handle a large amount of 

text data quickly and predict categorization labels 

accurately. 

The task of text classification is crucial for various 

applications, including information retrieval, and 

sentiment analysis. These tasks rely on the accurate 

categorization of textual data to enable effective 

information retrieval, content filtering, and sentiment 

assessment [13]. Due to its significance, text 

classification has gained substantial attention from 

academia and industry. One key challenge in text 

categorization is feature representation, which 

commonly follows the bag-of-words (BoW) 

paradigm. This approach involves extracting features 

such as unigrams, bigrams, n-grams, or carefully 

designed patterns to capture the essence of the text. 

Researchers have dedicated efforts to address this 

problem and enhance feature representation in text 

categorization tasks. To handle more discriminative 

features, numerous feature selection approaches are 
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used, including frequency, Mutual Information (MI), 

Probabilistic Latent Semantic Analysis (pLSA) [14], 

and Latent Dirichlet Allocation (LDA) [15]. 

Lai et al [16] presented a non-human-designed 

recurrent convolutional neural network for text 

categorization. For better word representations, they 

employed recurrent structures to capture contextual 

information, which reduces noise as compared to 

window-based artificial neural networks. 

Additionally, a max-pooling layer is utilized to 

identify the most significant words in text 

categorization, thus capturing the essential 

components of the texts. The researchers validate their 

hypothesis by conducting experiments on four 

benchmark datasets. The experimental results 

demonstrate that the proposed technique surpasses 

existing state-of-the-art methods, particularly on 

document-level datasets. 

Finally, according to [17], a Deep Text User 

Interest System (DTUIS) is a deep learning model that 

utilizes Word2Vec and CNN for user interest 

classification by combining text classification and 

sentiment analysis. 

In our study, we have trained a model for 

generating a summary of Twitter users' interests 

considering their social textual data in 5 categories: 

religion, cuisine, fashion, travel, and sports. 

Consequently, the researchers can discern the specific 

topics that pique consumers' interest. Drawing 

inspiration from the remarkable achievements of deep 

learning, we also leveraged pre-trained word 

embedding models, Word2vec for the underlying 

classification problem. This enables the system to 

generate vector representations of words, which serve 

as inputs for a suitable CNN architecture. By 

employing this architecture, the system can perform 

deep feature extraction, effectively capturing 

significant patterns and features from the text data. 

3. Deep Learning Models 

Deep learning models evolved from artificial neural 

networks and have gained success in many fields. This 

section investigates the deep learning models utilized 

for text classification tasks. 

3.1 Recurrent Neural Network 

Recurrent Neural Networks (RNNs) was first 

proposed by Hopfeld in 1983 [18]. They are a robust 

type of artificial neural network that allows previous 

outputs to be utilized as inputs. It is the superior 

version of the feed-forward neural network that can 

mitigate the problem of a variable-length sequence 

utilizing a recurrent hidden state that considers the 

prior time sequences during activation [19]. While 

performing sequential information, the RNN employs 

recurrent hidden states, the activation of which is 

highly reliant on the previous time step, and the 

existing state has dependency over the current input. 

As a result, the present hidden state fully utilized the 

previous data. As a result, standardization is achieved. 

RNN can handle input of varying lengths and 

calculates sequence data in processes that are 

dynamic. The standard RNN architecture is given in 

Fig. 1. For a given input sequence X = [x1, x2,... 

xt...xT] of length T and a process output vector 𝑂𝑡 , 

the hidden state 𝑈𝑜 at time step t is determined using 

the following equations: 

𝑂𝑡 = 𝜑(𝑊𝑥𝑥𝑡 + 𝑈0ℎ𝑡−1)                                         (1) 

𝐻𝑡
𝑙 = 𝜑(𝑤𝑥ℎ𝑡−1

𝑙 + 𝑈𝐻ℎ𝑡−1
𝑙 )                                    (2) 

where 𝑊𝑥 are the weights connecting input 

and hidden layers, and φ represents the activation 

function, i.e., sigmoid. UH is the hidden layers weights 

matrix and 𝑊𝑥, 𝑈𝑜, are parameters. 

 

Fig. 1. Traditional Structure of RNN 

The input unit of the time step is 𝑋𝑡−1, ℎ𝑡  is the 

activation state of the step t. 𝑂𝑡  displays the output at 

time t; the output is chosen based on the network's 

requirements. Weights are the trainable parameters 

and denoted by U and W. RNNs, on the other hand, 

are difficult to train and suffer from disappearing and 

bursting gradients. 

3.2 Long Short-Term Memory (LSTM) 

The LSTM is a variant of RNN that captures the long-

term dependency. LSTM was introduced by 

Hochreiter and Schmidhuber in 1997. In the recurrent 

hidden layer of LSTM, there is a gated mechanism and 

particular units called memory blocks that assist in 

solving the two most prominent difficulties of 

standard RNNs, which are: vanishing gradient and 

explosion or exploding. Fig. 2 shows the architecture 

of LSTM gates. 
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Fig. 2. The Architecture of LSTM Gates 

In LSTM, the information can be added or deleted 

to the cell-by-cell state, which is considered the 

essence of LSTM. and electricity allows information 

to flux over the door technique to perfect this goal. 

There are three gates in LSTM as shown in Fig. 2: a 

forget gate (𝑓𝑡), an input gate (𝑖𝑡) and an output gate 

(𝑜𝑡) through time step t [20]. firstly, forget gates 

decide the information to be removed from the cell 

state, and what information to update is the 

responsibility of the input gate. The output gate 

decides the network output. The Eq. (1)-(6) defines the 

state of each node in this operation. 

𝑓𝑡 = 𝜎(𝑤𝑥𝑓𝑥𝑡 + 𝑈ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)                                (3) 

𝑖𝑡 = 𝜎(𝑤𝑥𝑖𝑥𝑡 + 𝑈ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)                                 (4) 

𝑂𝑡 = 𝜎(𝑤𝑥𝑜𝑥𝑡 + 𝑈ℎ𝑜ℎt−1 + 𝑏0)                              (5) 

𝑎̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑥𝑎̃𝑥𝑡 + 𝑈ℎ𝑎̃ℎ𝑡−1 + 𝑏𝑎̃)                        (6) 

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)                                                   (7) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑥𝑡−1 + 𝑖𝑡 ∗ 𝑎̃𝑡                                            (8) 

𝑐𝑡𝑖𝑖 represents the memory cell content which was 

updated in Eq 8,𝑖𝑥𝑡   represents the current 

input,𝑖ℎt−1 represents the previous layer's hidden 

state,𝑖𝑓𝑡  represents forget gate’s output, 𝑤 and 𝑈ℎ𝑜are 

weights, b is a bias matrix, and𝑖ℎ𝑡 denotes the hidden 

state of the next layer, σ denotes the sigmoid activation 

function. Weights and bias of the network can be 

computed throughout the training phase are 𝑊𝑖 , 𝑊𝑜, 

𝑊𝑓 , 𝑊𝑎̃∈ 𝑅𝑚∗𝑝, 𝑈𝑖 , 𝑈𝑜, 𝑈𝑓 , 𝑈𝑎̃∈ 𝑅𝑚∗𝑚, 𝑏𝑖 , 𝑏0,𝑏𝑓 

, 𝑏𝑎̃∈  𝑅𝑚∗1.  

𝑊𝑖 , 𝑊𝑜, 𝑊𝑓 , 𝑊𝑎̃ are the parameters between the 

input and hidden layers, 𝑈𝑖 , 𝑈𝑜, 𝑈𝑓 , 𝑈𝑎̃  are weights 

between hidden and output layers. LSTM network has 

a strong patterning capacity for extracting long-term 

dependencies between sequence parts and is gaining 

prominence. 

LSTM is an effective approach adopted in the field 

of text classification problems. Previous studies have 

improved the accuracy of text classification using 

LSTM. However, there is still room for improvement 

by removing drawbacks and required efforts to 

eliminate the limitation of standard LSTM. The first 

drawback is, having the nature of non-application 

independent as well as data dimensionality reduction 

corresponding to the given textual data [21]. This 

results in the incapability to acquire the minute details 

when possessing important information. Furthermore, 

it also gives a low quality of results when solving the 

classification problem. Secondly, LSTM also does not 

give accurate results when combined with other text 

classification approaches. The major cause of these 

issues is the complex representation of the variety of 

features that differentiate different classes. 

3.3 The Basic Autoencoder 

Autoencoder (AE) is one of the essential types of 

unsupervised artificial neural networks (ANN) that 

play a vital role to reduce the dimensionality of data 

which can efficiently press and encode features after 

extraction and learn to regenerate the data from the 

latent representation as it gives the better latent 

representation of the inputs as compared to the inputs 

as near to its initial inputs as feasible [22]. 

AE has two stages encoding and decoding. The 

encoding phase generates the latent representation, 

and the decoding phase regenerates this new 

representation back to its original inputs as closely as 

possible. The primary goal of an autoencoder is to 

generate high-quality features from large textual data 

without any need for reducing the dimensionality. 

Currently, conventional AE is a great and efficient 

unsupervised model for encoding related information. 

The model trained using latent representations 

generated by the conventional AE is robust to existing 

noise and shows delicate fluctuations in the input 

training data. It learns the non-linear relationship in 

the data using a nonlinear activation function and 

multiple layers. Fig. 3. shown simple representation of 

the Autoencoder model architecture.  

 

Fig. 3. Standard Autoencoder Architecture 
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The autoencoder has two stages: the encoder and 

the decoder. The former translates the input features 

set into a latent intermediates representation to be 

considered as an input to the hidden layer. Its main 

objective is to reduce the curse of dimensionality of 

the input data and can be represented as:  

y = E(m) = 𝑘𝑒( 𝑊𝑥+ 𝑏ℎ )                                         (9) 

where 𝑘𝑒 is the encoding activation function, 𝑊𝑥 

are the weights while b represents the biases 

corresponding to the input features, and E(m) refers to 

the output of the input layer which is given as input to 

the next hidden layer. Similarly, the decoding stage 

regenerates the original input using different 

parameters from the latent representation as shown in 

Eq. (10). 

z = F(n) = 𝑘𝑑( 𝑊𝑦 + 𝑏𝑟)                                        (10) 

where F(n) is the hidden layer output, W represents 

input weights of the hidden layer, b represents to the 

hidden layer, and  𝑘𝑑 represents the activation 

function. 

The primary aim of reconstruction is to regenerate 

outputs almost similar to the original inputs by 

reducing the difference by using the following 

parameters: 

𝜃= [ 𝑊, 𝑏ℎ, 𝑏𝑟 ]                                                         (11) 

Suppose, Xi = [x1, x2, x3, …xn] is the input 

features in the training phase, then following the 

reconstruction error can be optimized using the 

following function: 

JAE (θ)=  Σx∈Di
G(x, r)                                                (12) 

Also, for a linear representation, where G 

represents the reconstruction error, while for a 

nonlinear representation, Euclidean distance is used as 

a cross-entropy loss for reconstruction. To handle the 

overfitting as well as controlling the huge weights 

obtained from the above Eq. (12). The Eq. (12) can be 

represented in a simple form as: 

𝐽𝐴𝐸_𝑊𝑑(𝜃) = 𝛴𝑥∈𝐷𝑖
 G(x, r) + 

1

2
(‖𝑤‖)

2

2
                  (13) 

Here,  represents a weight decay coefficient for 

preventing the weights from getting very large. 

3.4 The Denoising Autoencoder 

Denoising autoencoder (DAE) is a minor modification 

to typical AEs that are trained to denoise an artificially 

distorted version of their input rather than recreate it 

[23]. A DAE must extract more valuable features to 

tackle the significantly more challenging denoising 

problem, in contrast to an overcomplete regular AE, 

which can learn worthless identity mapping with ease. 

Reconstructing noisy data from the original data is the 

primary function of DAEs. DAEs are used to both 

encode noisy data and retrieve the original input data 

from the output data that has been rebuilt. Data 

encoders that are stacked in various layers create 

stacked DAEs [24]. Notably, Xia et al [25] 

incorporated a weighted reconstruction loss function 

over the traditional DAE for speech-enhancement 

system noise categorization. to build the model, they 

stacked numerous weighted DAEs. In their trials, they 

carried out 50 steps using a variable number of input 

nodes, between 50 and 100. White noise with signal-

to-noise ratios (SNRs) of 6, 12, and 18 dB was chosen 

from the NTT database and used to train the model, 

the un-noisy data consisted of 8 languages. The model 

was evaluated on data that was 8 minutes long after 

being trained on data that was 1 hour long.  

According to Caterini et al [26], DAEs have 

attracted the attention of numerous researchers in a 

variety of contexts. In addition, by introducing noise 

to the training data, it learns a more robust 

representation of the input signal and exhibits stronger 

generalization ability than conventional encoders. The 

denoising autoencoder structure is shown in Fig. 4. 

Fig. 4. Denoising Autoencoder Structure 

As can be seen from Fig. 4. above, the encoder and 

decoder are also the main two parts of the DAE. 

Data dimensions are reduced using the encoder. 

The coding result y is ultimately acquired through the 

actions of the activation function and linear 

transformation, which is subsequently input into the 

decoder. 

𝑦 = 𝑓𝜃(𝑥) = 𝑠(𝑊𝒙̃ + 𝑏)                                          (14) 

The primary role of the decoder, which is 

represented as the following function, is to map and 

reconstruct the data from the hidden layer back to z, 

which is represented as the following function: 

𝑧 = 𝑓𝜃(𝑦) = 𝑠(𝑤̃𝑦 + 𝑏)                                             (15) 

Where W is a weight matrix of 𝑑 × 𝑑 ′ and, b is a 

bias parameter. s is the activation function; all the 

parameters of the model are obtained by continuous 

reverse finetuning to obtain the minimum average 

reconstruction error. The expression of reconstruction 

error is as follows: 
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LH =‖x − z‖2                                                                   (16) 

4. Model Architecture  

This section describes the proposed improved model 

architecture that integrates DAE into LSTM. This 

DAE-LSTM model architecture seeks to solve the 

issues and limitations of the standard LSTM linked to 

dimensionality reduction as well as the complexity of 

text classification problems. In this architecture, we 

combine denoising auto-encoder (DAE) layers with 

LSTM to improve LSTM’s capability of 

dimensionality reduction. The essential computational 

process of developing the DAE-LSTM model for text 

classification contains four main phases for the 

training of both DAE layers and the LSTM model. In 

the first stage, the parameter sets of DAE as well as 

LSTM are initialized. Subsets of the parameters of 

DAE, such as activation functions, and learning rate 

are selected and then fed with input data. In the second 

stage, the encoding process takes place when 

translating input to the latent representation for the 

hidden layer as an input. The decoding procedure 

happens during information transformation from 

hidden to output layers optimizing the reconstruction 

error. The information is propagated to the third stage 

if the reconstruction error does not exceed the 

threshold value. Improved results were obtained based 

on a certain threshold value (find the best threshold 

value). The model modifies the threshold at each 

epoch to achieve the ultimate accuracy; the threshold 

did not further grow or drop.  During the third stage, 

the DAE layer’s output is transformed and becomes 

input to the LSTM for learning prominent and useful 

features. The embedding of the hidden layers of 

LSTM is directed towards the fourth stage, where the 

intermediate resultant features vector obtained from 

LSTM layers is passed through the Softmax layer for 

generating the predictions. Fig. 5. depicts the core 

architectural difference between the standard LSTM 

and DAE-LSTM model. The conventional LSTM 

architecture has already been discussed in Sect. 3.2. 

There are two major modifications have been made to 

improve the performance of standard LSTM. 1) a 

denoising auto-encoder is injected into an LSTM 

architecture, 2) tanh is replaced with Relu activation 

in candidate state, which the modification shown in 

Eq. (17) 

𝑎̃𝑡 = 𝑅𝑒𝑙𝑢(𝑤𝑥𝑎̃𝑥𝑡 + 𝑈ℎ𝑎̃ℎ𝑡−1 + 𝑏𝑎̃)                       (17) 

Relu has provided better performance as compared to 

other sigmoid nonlinearities for deep learning 

approaches. Fig. 5 shows the modification of the 

DAE-LSTM model. 

 

Fig. 5. The DAE-LSTM Architecture with Relu Function 

5. Experiments 

5.1 Dataset 

Training a machine learning model for text 

classification starts with the process of data collection. 

To train and evaluate our proposed DAE-LSTM 

model, we have used the 4 publicly benchmark 

datasets, i.e., 20 newsgroups, Reuters21578, Amazon 

reviews, and IMDB, freely available at UCI machine 

learning repository in various formats, i.e., pdf, CSV, 

doc, etc. Furthermore, for consistency, these datasets, 

as shown in Table 1 below, were selected and split into 

training and testing sets for comparing the proposed 

model with the four chosen existing models. It is 

important to note that in performing the comparison, 

we have to retrain these four other models with these 

benchmark datasets under our experimental setup. 

Table 1 

Descriptions summary of our experimental statistics 

datasets 

Datasets Train 

Samp

les 

Test 

Samp

les 

Aver

age 

lengt

hs 

Clas

ses 

Tasks 

Amazon 

review 

300,0

00 

125,0

00 

156 5 Sentimen

t analysis 

IMDB 35,00

0 

15,00

0 

55 02 Sentimen

t analysis 

Reuters2

1578 

8088 2700 87 15 Text 

classifica

tion 

20NG 7500 2500 96 20 Text 

classifica

tion 
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5.2 Flow Chart of the DAE-LSTM Model Development 

Process 

Fig. 6 shows the flowchart of the process for training 

and testing the proposed DAE-LSTM model for 

solving text classification problems. This process 

comprises three phases. The first phase involves data 

preprocessing for experimental purposes where spaces 

and punctuation are discarded to extract words. 

Keywords are chosen and unnecessary words are 

removed from these datasets. Porter stemmer is used 

to remove the inflectional form and to make the word 

its base form. This step is crucial because the quality 

of the input data is very important for training models 

using deep learning approaches. In the second phase, 

we initialize the parameters for the proposed DAE-

LSTM model. In this phase, denoising auto-encoder 

layers were applied for feature reduction purposes 

while LSTM layers were used for learning the 

prominent features in the training process and 

optimizing the model parameters. The integration of 

the two introduces a novel technique of long short-

term memory (LSTM) based on DAE that replaces 

tanh with the Relu activation function. The third phase 

is the validation process. To evaluate the performance 

of the proposed model different performance 

evaluation metrics are used for solving text 

classification issues. These comprise accuracy, 

precision, recall, F-measure, specificity, error 

rate/convergence, time complexity, and Mean Squared 

Error (MSE). DAE-LSTM model has numerous 

parameters that can influence its training. Depending 

on those parameters, the performance of the model can 

vary notably. the training hyperparameters were 

chosen in the proposed model DAE-LSTM, as shown 

in Table 2. Finally, upon passing this evaluation phase, 

a trained and tested DAE-LSTM model was produced 

with the configuration ready for deployment in 

performing the classification of further unseen texts.   

Table 2 

Hyperparameter for the DAE-LSTM model 

Hyperparameter Values 

Learning rate 0.001 

Epochs 12 

Optimizer adam 

Batch size 32 

Activation function Relu, softmax 

Dropout 0.5 

5.3 Experimental Setup 

To improve the performance of the proposed DAE-

LSTM model, after cleaning the dataset by pre-

processing techniques such as eliminating stop words 

from the sequential input and punctuation, the 

information was maintained through the training of 

sentence embeddings. Then, the Word2vec model was 

used to get 300-dimensional word vectors for all the 

words as performed in [27]. Some researchers 

implemented well-structured training strategies for 

getting word embeddings (word representations) to 

improve the accuracy of sentence classification tasks 

[28]. Adam algorithm with a learning rate of 0.001 and 

a mini-batch of 64 is used during the training phase. In 

our research, the common embeddings for all 

benchmark datasets are more useful to apply for 

getting good generalization ability of the model. The 

dropout strategy [29] was applied to avoid the 

overfitting problem, with a dropout rate of 0.5. All the 

experiments were implemented using Python 3.7 with 

Anaconda running on Intel Core i7-3770, 3.40 GHz, 

(CPU),” and 8 GB of Random-Access Memory 

(RAM). Other required libraries that are used in this 

research work are, Sklearn, Numpy, Scipy, Pandas, 

and Keras packages, running on Microsoft Windows 

10 64-bit operating system. For quick implementation 

of the proposed model and comparative traditional 

deep learning models executed, an efficient open-

source software library for numerical computational is 

applied which allows a simple and fast development 

for both Central Processing Unit (CPU) and Graphics 

Processing Unit (GPU) support. The performance of 

all methods was based on pre-defined assessment 

measures as mentioned in the scope of this research. 

5.4 Performance Evaluation 

There are different performance evaluation metrics 

used for solving text classification issues, this research 

uses accuracy, precision, recall, F-measure, and error 

rate/convergence, to evaluate the performance. The 

formulas are as follows.  
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Fig. 6. The Flowchart of The DAE-LSTM Model Development Process 
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6. Results and Analysis 

In the analysis of the results, the empirical results of 

the proposed and comparative approaches were briefly 

analyzed based on the selected datasets. 

6.1 Accuracy Results of All Models 

This section presents improved results of a proposed 

(DAE-LSTM) model on the four benchmark datasets 

and compares them with the standard text 

classification approaches containing BiLSTM, 

BiGRU, CNN-LSTM, and CNN-GRU.  These four 

models were retrained and tested under the same 

experiment setup and datasets before comparing them 

with the DAE-LSTM model. In the evaluation, we 

have also considered other important factors, such as 

the curse of dimensionality as well as imbalanced 

classes. Evaluation results of the proposed and the 

conventional LSTM are shown in separate figures. 

Several performance measures are used for 

performance evaluation. Table 3 shows the accuracy 

of the proposed model as well as other approaches. 

These results indicate that with the increase in 

complexity and size of data, the proposed model 

improves its performance. 

The obtained result shows the significance and 

effectiveness of the proposed model for complex data 

by giving improved accuracy on the benchmark 

datasets comparatively as shown in Table 3. The 

improvement is due to the model's ability for 

robustness to the noise, and high-quality latent 

representation generation for giving as an input to the 

LSTM. For consistency, each experiment was 

repeated 5 times for each of the models. These results 

conclude that the proposed model outperforms the 

existing models, BiLSTM, BiGRU, CNN-LSTM, and 

CNN-GRU. 

Table 3 

Accuracy of the proposed and existing models (%) 

6.2 Precision and Recall 

Precision is the ratio of the number of correctly 

predicted positive observations to the total the total 

positive observations. Recall is the ratio of the number 

of correct predictions on positive instances to the total 

number of actual class instances. Generally, both 

measures are used for binary classification problems, 

therefore, we show average measures by first 

calculating these metrics for each class individually 

and then taking the average of them to obtain the final 

values. Table 4 shows the precision while Table 5 

shows a recall of the existing as well as proposed 

models. 

The last row of table 4, shows the improved results 

of the proposed model compared to the existing 

models. In the first two datasets (reuters21578 and 

20newgroup) the CNN-GRU and CNN-LSTM 

performed nearly to the proposed DAE-LSTM due to 

the less complexity of the datasets. Also, along with 

the increase in dataset complexities, the proposed 

model exhibits better performance in comparison to 

BiGRU, and BiLSTM. 

Table 4 

Precision-based evaluation of proposed and existing models 

on benchmark datasets 

Datasets 

Models Reuter21578 20NG IMDB Amazon 

review 

CNN-

GRU 

0.85 0.89 0.86 0.80 

CNN-

LSTM 

0.86 0.89 0.85 0.81 

BiLSTM 0.85 0.88 0.83 0.80 

BiGRU 0.84 0.86 0.84 0.79 

DAE-

LSTM 

0.88 0.92 0.89 0.83 

Table 5  

Recall-based evaluation of proposed and existing models 

on benchmark datasets 

Datasets 

Models Reuter21578 20NG IMDB Amazon 

review 

CNN-

GRU 

0.84 0.89 0.79 0.77 

CNN-

LSTM 

0.85 0.90 0.80 0.79 

BiLSTM 0.84 0.88 0.82 0.81 

BiGRU 0.83 0.87 0.87 0.79 

ES-GRU 0.87 0.92 0.89 0.82 

Datasets BiGR

U 

BiLST

M 

CNN

-

LST

M 

CNN

-

GRU 

DAE

-

LST

M 

Reuter215

78 

0.878

7 

0.8760 0.879

5 

0.879

0 

0.889

3 

20newgro

up 

0.906

2 

0.9013 0.913

4 

0.908

9 

0.920

3 

Amazon 

reviews 

0.831

9 

0.8488 0.850

1 

0.854

1 

0.860

3 

IMDB 0.863

6 

0.8699 0.872

1 

0.876

5 

0.893

7 
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6.3 Convergence Rate 

This section compares the convergence rate of the 

proposed model and existing models. “Fig. 7, 10,11, 

12, and 13” show the convergence rate of these models 

while learning classification for benchmark datasets 

for 12 iterations. After 6 iterations, all models 

maintain their error rates. The proposed model shows 

slightly inferior performance as compared to the 

existing models for Amazon review and router21578 

datasets. For the complex datasets, i.e., IMDB and 

20newsgroup as compared to the other simple 

datasets, the proposed model is consistent in 

convergence at good value throughout the 12 

iterations while others are affected at certain extent. 

 

Fig. 7. Convergence Rate of Models on 20newsgroup 

Dataset

 

Fig. 8. Convergence Rate of All Models on Amazon 

Dataset 

 

Fig. 9. Convergence Rate of All Models on Reuter21578 

Dataset 

Fig. 10. Convergence Rate Of All Models On The IMDB 

Dataset 

7. Conclusion 

Natural Language Processing (NLP) is the common 

and pertinent field of text classification. LSTM is one 

popular and widely used deep learning model in NLP. 

In this study, we proposed an enhanced variant of 

LSTM based on a denoising autoencoder, DAE-

LSTM for solving the problems of text classification. 

This research has made three contributions. First, the 

integrated DAE-LSTM approach for learning the 

latent representation of the input features can 

significantly reduce dimensions to mitigate the curse 

of dimensionality. Secondly, we have also shown the 

utility of replacing the tanh with Relu activation and a 

Softmax output layer for getting classification outputs 

for input data. Finally, the proposed model has gone 

through sufficient experiments for comparative 

analysis and evaluation to ensure its effectiveness and 

applicability. In summary, the proposed model has 

been shown to outperform other state-of-the-art 

models on four benchmark datasets (20NG, Amazon 

review, IMDB, and Reuters21578) and achieved 

outstanding classification accuracy with less 

execution time. For future work, the proposed model 

will be implemented for other text and data mining 

problems, such as information retrieval and machine 

translation for evaluating its performance in general. 
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