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 Fluid flow through porous media in intricate geometries has been a fascinating 

and challenging area of study in applied mathematics and engineering. This 

area has immense significance in several sectors, such as petroleum, food 

processing, pharmaceuticals, groundwater flow, and nuclear reactors. This 

research investigates the behavior of Newtonian fluids in a conduit filled with 

a permeable medium under combing and separating stream configurations. The 

finite element method with the Taylor-Galerkin/Pressure-Correction method is 

applied in the present study. The stream consists of two reversible setups and 

two unidirectional streams of linear fluids within a channel filled with porous 

materials, featuring a sudden gap. To obtain steady solutions, a time-dependent 

numerical approach is employed. The study examines the effect of intensifying 

inertia, porosity, and variations in flow rates. 

1. Introduction 

Numerical simulations and analysis of fluid stream 

within a passage filled with non-porous media. 

Understanding the behavior of fluid flows and the 

associated pressure variations is essential in various 

engineering and scientific applications [1][2][3]. The 

effect of inertia on stream formation, and pressure are 

of particular interest. The significance of inertia in 

examining the movement and behavior of fluid within 

the channel. By varying the Reynolds number, which 

is a dimensionless factor encoding the proportion of 

inertial to viscous forces, we can analyze the effect of 

inertia on the observed stream structures, and 

variation in the pressure [4][5][6]. The study of flows 

in channels has great importance due to its 

widespread applications in various industries such as 

chemical, biomedical, and mechanical engineering. 

The behavior of Newtonian fluids in channels is 

characterized by the presence of unidirectional and 

reverse flows. Understanding the dynamics of such 

flows is critical to optimizing fluid transportation 

processes and reducing energy consumption 

[5][7][8]. Over the past half-century, the study of 

smooth fluid movement through intricate channels 

and pipes containing permeable and non-permeable 

ingredients has endured a critical and intriguing in the 

CFD area, particularly in various managing industries 

[9][7][10]. Due to the intricate stream behavior of 

non-linear liquids, which exhibit complex rheologic 

acreages, and the intricacy of the fields implicated, 

industrial problems become more challenging to 

tackle. Hence, these complexities stimulate and 
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challenge mathematicians and scientists. Many 

scientists [11][12] analysis the behavior of 

electrically conducting, incompressible, and 

isothermal Newtonian fluid-flow in unsteady tank 

drainage was investigated. By employing both 

perturbation and Adomian decomposition methods, 

the researchers obtained an analytical solution, 

finding that the results from both methods agreed. 

The study provides explicit expressions for key 

parameters such as velocity field, flow rate, average 

velocity, and time required for complete drainage, 

offering valuable insights into the dynamics of fluid 

drainage in such systems. The study discusses a 

number of industrial scenarios, however the author 

focuses mostly on a select few. Within the petroleum 

industry, there are industries that process crude oil. 

The authors also address several reactors associated 

with the previously listed uses [13][14][15]. 

Numerous investigations have delved into the 

dynamics of unidirectional and inverse streams of 

Newtonian fluids within passages [2][16]. 

Researchers experimentally scrutinized the 

characteristics of single-dimensional flow of a linear 

fluid in a rectangular channel, revealing that the 

flow's velocity profiles conformed well to laminar 

flow theory [17][18][19]. Further, Afonso [1] delved 

into the behavior of reverse flows within a horizontal 

channel, observing the initiation of reverse flow by a 

small disruption approaching the inlet, which 

subsequently evolved interested in a enduring vortex. 

The examination of these streams within intricate 

areas, including obstructions, corners, and curved 

surfaces, holds particular interest because of its 

relevance to real-world applications [20][21]. The 

influence of porous media on fluid streams is also 

significant, with profound implications in disciplines 

for instance geology, environmental engineering, and 

oil extraction.  

The behavior of incompressible laminar fluid 

streams in complicated fields, by and with no porous 

media, has been the subject of several recent 

investigations [5][2][22]. The advancement of state-

of-the-art computing systems has facilitated the 

development of sophisticated numerical algorithms, 

enabling practical imitations to examine complex 

fluid dynamics within areas holding permeable 

materials, a practice widely recognized and endorsed 

by global institutions [23]. The CFD approach is 

anticipated to demonstrate distinctive attributes 

owing to its capability for constraint-based 

simulations. Significant progress has been made over 

the last three decades in improving our understanding 

of numerical doubts and the nature of streams, 

including unsteady and turbulent behaviors [24]. 

Mathematical modelling of stream behaviors, such as 

mixing and separation, was pioneered by Cochrane 

[25], with subsequent experimental and numerical 

solutions employing finite difference methods. 

Baloch [5] and Afonso [26] further explored these 

phenomena employing finite element and finite 

volume techniques, respectively. Mingling and split 

phenomena in rectangular passages and pipes, with or 

without porous media, exhibit a range of fascinating 

stream phenomena, including singularities at acute 

bends and flow transitions. Investigations have also 

examined optimized values of hydrodynamic forces 

in convergent-divergent channels, integrating line 

surfaces at the outer surfaces of obstacles [27][28]. 

Studies by Cochrane [25], Dharejo [29], Khokhar [6], 

Afonso [26], and Echendu [2] have collectively 

observed diverse flow phenomena within the same 

domain. Baloch [5] explored combining and splitting 

streams of extremely flexible fluids utilizing a time-

dependent finite element technique, employing 

Taylor-Petrov-Galerkin algorithms due to the fluids' 

elastic nature [30]. Furthermore, to achieve second-

order correctness in incompressibility, Baloch [5] 

utilized the pressure-correction approach. The Phan-

Thien and Tanner (PTT) constitutive model [31] was 

used in experiments to study Newtonian fluid streams 

with equal stream rates in arms and viscoelastic 

streams. Studying various physical parameters and 

stream situations, shear-thinning behavior was 

observed as well as the effects of changing the space 

between plates [32]. The study by Rahman [34][35] 

examined hydrodynamic forces experienced by two 

partially heated circular cylinders positioned between 

grooved channels. According to Afonso [1], the 

effects of inertia on flow rate can be mitigated by 

creeping flow or flow with limited inertia. Linear and 

viscoelastic liquids have been studied in recent 

numerical simulations [33]. The study focuses on 

numerical simulations and analysis of fluid streams 

within passages filled with non-porous media, crucial 

for understanding fluid behavior in various 

engineering and scientific applications. By varying 

the Reynolds number, which indicates the ratio of 

inertial to viscous forces, the findings analyses the 

influence of inertia on stream structures and pressure 

variations. The study aims to examine the influence 

of inertia on flow patterns and stress in Newtonian 

fluid streams within conduits containing permeable 

media. It also seeks to analyse how fluid streams 

behave under various flow rates and configurations, 

including both reversed and unidirectional flows. 

 



 

© Mehran University of Engineering and Technology 2024  48 

2. Problem Specification 

The schematic features of the two flow glitches under 

consideration, namely (a) repeal stream and (b) 

unidirectional stream, (c) Reversed stream, and (d) 

unidirectional stream are shown in Fig. 1[a - d]. Two 

thin-plate inserts are installed to separate the channel 

into two portions. The inserts are spaced apart by a 

gap width β and are aligned horizontally in exactly 

the center axis line of the geometry. The parting gap 

β is 3L with L being the characteristic length equal to 

the height of each input conduit arm. The plates are 

considered α=0.0254L thick. To simulate a fully 

developed entrance and exit flow, a conduit with a 

length of 23L is chosen as being adequately long. The 

aforementioned criteria have made it possible to 

compare the numerical predictions directly to 

experimental data as well as to numerical results from 

the literature [23][25][1][5].   

 
(a) Flow Diagram Showing Two Inlets and Two Exits 

(Reverse Flow) 

 
(b) Two Inlets and One Outlet In A Unidirectional 

Flow 

 
(c) Two Inlets And One Outlet For Opposite Flow 𝐺3 

 

(d) One Inlet and One Outlet In A Unidirectional Flow 

 𝐺4 

 
(e) Finite Mesh Element 

Fig. 1. Geometrical Parameters of The Computational 

Domain and Mesh 

 In this study, triangular elements generated by 

uniform conformal mapping are used to discretize the 

flow domain. There is a minimum element size of 

0.003 times the characteristic length L in the vicinity 

of the gap region. There are 1328 elements and 2853 

nodes in the finite element mesh applied to the 

domain. The boundaries of these nodes comprise 392 

and the vertex nodes comprise 763. For analysis, the 

mesh provides a total of 6469 degrees of freedom. 

Reference [21] conducted pioneering work on the 

selection of time-steps. A time-stepping scheme that 

is most employed in this study is a procedure that 

relies on a size of mesh layout determined by the 

smallest radius of encirclement across the triangular 

elements. To determine the time step based on the 

mesh layout, one common approach is to use the 

Courant-Friedrichs-Lewy (CFL) condition. This 

condition ensures numerical stability by limiting the 

time step based on the maximum velocity and the grid 

spacing in the mesh. The CFL condition is given by: 

∆𝑡 ≤
𝐶∆𝑥

𝑢𝑚𝑎𝑥
  

 Where ∆t is the time step, C is a stability factor 

(typically less than 1), ∆x is the grid spacing (mesh 

size), u_max is the maximum velocity in the domain. 

The time step is chosen such that it satisfies the CFL 

condition for stability. This means that the time step 

is limited by the smallest grid spacing and the 

maximum velocity in the domain, ensuring that no 

information travels more than one grid cell per time 

step. 

3. Mathematical Formulation 

In a conduit with a permeable medium, Newtonian 

fluid is flowing unsteadily, incompressible, and 

laminar. It is due to the sudden imposing of a pressure 

gradient that causes the unsteadiness of the fluid flow. 

With governing equations based on mass and 

momentum transport (Darcy-Brinkman) [6], 

Newtonian fluids can move through a porous material 

if it is thought to be identical and isotropic. An exact 

solution was obtained based on the governing 

equations, aiming to analyze velocity under gravity 

and hydrostatic force[28]. The second law of motion 

is applied to the x-component of the transport 

equation: 

∑𝐹𝑥 = 𝜌𝑎𝑥      (1) 

Where,  𝑎𝑥 defines the acceleration and in x-

direction, the force 𝐹𝑥 equal to: 

𝐹𝑥 = ∇.  𝜎 + 𝜌𝑔∇ℎ     (2) 

Where 𝜎 presents Cauchy’s stress tensor, the 

stress tensor is a measure of traction on any surface. 
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Gravity and height represented by𝑔, ℎ. Surface 

forces are represented by the first term, while second 

body forces are represented by the second term of Eq. 

(2). 

𝑎𝑥 =
𝐷𝑣

𝐷𝑡
=  (

𝜕𝑣

𝜕𝑡
+  (𝑣.  ∇)𝑣)    (3) 

In Eq. (3), the time is t, 
𝐷𝑣

𝐷𝑡
 is the material time 

derivative. The momentum equation is expressed in 

general vector notation as follows [5]: 

𝜌 (
𝜕𝑣

𝜕𝑡
+  (𝑣.  ∇)𝑣) = ∇𝜎 + 𝜌𝐹     (4) 

It is possible to decompose stress tensor into the 

sum of the following equations for incompressible 

fluids:  

𝜎 = −𝑝𝛿 + 𝑇          (5) 

Here, pressure for isotropous fluid is p, 𝑇  is extra 

stress tensor, and 𝛿  represents the components of unit 

tensor.  Newtonian viscous fluids are incompressible, 

so extra-stress is proportional to strain rate is defined: 

𝑇 = 2𝜇𝐷     (6) 

In Eq. (6) dynamic viscosity is 𝜇 and rate of 

deformation tensor 𝐷 is defined as [5]: 

𝐷 =  
1

2
 (

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
)       (7) 

In general notation: 

𝐷 =
1

2
[∇𝑣 + (∇𝑣)†]     (8) 

Where, † is transpose of tensor, in extended 

matrix:  

𝐷 =
1

2

[
 
 
 
 2

𝜕𝑢

𝜕𝑥
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) 2

𝜕𝑣

𝜕𝑦
(
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)

(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) (

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) 2

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

  (9) 

The deformation rate tensor 𝑑 depends linearly on 

the extra stress tensor 𝑇 without the use of body force 

and utilizing the Eq. (4) and (5) into Eq. (6) gives 

Navier-Stokes equation as follows: 

𝜌
𝜕𝑣

𝜕𝑡
= ∇. (2𝜇𝑑) − 𝜌(𝑣. ∇)𝑣 − ∇𝑝             (10) 

Newtonian fluid 𝜇 assumed to be a constant. 

Hence, Eq. (10) becomes. 

𝜕𝑣

𝜕𝑡
=  𝜇∇2𝑣 − (𝑣. ∇)𝑣 − ∇𝑝              (11) 

Where,∇ vector differential operator that is known 

as a gradient and ∇2is a Laplacian operator. The 

characteristic velocity 𝑣𝑐, length 𝐿𝑐 and the time scale 

of  
𝐿𝑐

𝑣𝑐
. are chosen to raise the non-dimensionalities.  

The governing equations are effectively transformed 

into a non-dimensional form. The 

dimensionless elements 𝑥∗, 𝑣∗, 𝑝∗ and 𝑡∗ are specified 

by the inclusion of appropriate scales denoted as: 

𝑥 = 𝐿𝑐𝑥
∗,   𝑣 = 𝑣𝑐𝑣

∗,     𝑝 =  𝜌𝑣𝑐
2𝑝∗, and   𝑡 =

𝐿𝑐

𝑣𝑐
𝑡∗ 

For concern of simplicity and devoid of vagueness 

all identify notations might be abandoned and Eq. 

(12) could be identified non-dimensionally as [5] : 

𝜕𝑣

𝜕𝑡
=

1

𝑅𝑒
∇2𝑣 − (𝑣. ∇)𝑣 − ∇𝑝              (12) 

Where, 𝑅𝑒 is a Reynolds number and extracted as: 

𝑅𝑒 = 
𝜌𝑣𝑐𝐿𝑐

𝜇
                (13) 

3.1 Initial and Boundary Conditions 

To accomplish the problem requirement, it is needed 

to set initial and boundary conditions. Eq. (12) is 

extended by boundary condition specified as:  

𝑣(𝑥, 0) = 𝑣0(𝑥)                                                    (14) 

Subject to 

∇ ⋅ 𝑣0 = 0                                                               (15) 

A no-slip condition is applied to the monochrome 

walls of the geometry, as well as the plates embedded 

at the center, in which all components of the velocity 

field become zero. As described in Eq. (16) and (17), 

a steady Poiseuille stream profile is enforced at both 

inlet and outlet sectors of the conduit in both sections. 

Different boundary conditions are applied when 

different flow rates or directions are encountered. In 

order to simplify the process, a pure estimate is 

employed, which has been shown not to compromise 

solution accuracy and makes frequent entry into flow 

regions possible. The transient simulation of constant 

inertia begins from stationary conditions and finds a 

steady-state result. Earlier steady-state solutions are 

used as the initial terms for higher variable values to 

expedite calculation times. This relates to objects at 

together inlets: 

𝑢(𝑦) = 𝑈𝑚(𝑦– 𝑎)(𝑏– 𝑦) 𝑎𝑡 𝑥 =  0     (Lowest left 

arm)                 (16) 

𝑢(𝑦) =  -V𝑚{𝑦 − (𝑏 + 𝛼)}(2𝑏 + 𝛼 –  𝑦) 𝑎𝑡 𝑥 =

23𝐿                                        (Top right arm) (17) 

The wall of the numerical domain has a height of 

𝑏 − 𝑎, and its bottom and upper coordinates are 

defined by Eq. (16) and Eq. (17), with 𝛼 = 0.0254 

denoting the plate's thickness. With a fair length of 

23𝐿, the canal guarantees flow at both inlets and 

exits. L in this case denotes the channel's precise 
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length. The bottom left arm, with 𝑎 = 0 and 𝑏 = 1, 

was affected by the flow at the entrance. The extreme 

velocity attained in the channel arm center for equal 

flow rates is represented by 𝑈𝑚 = 𝑉𝑚, whereas the 

values for uneven flow rates are represented by 𝑈𝑚 

and 𝑉𝑚, which stand for 1:1.5 and 1:2, respectively. 

To make certain consistency with the static 

pressure 𝑝 = 0, normal traction-free conditions are 

maintained at the outlet of both geometries. The 

stream fields are approached numerically, with 

careful monitoring of the flow regions to ensure that 

they do not adversely affect the global accuracy of the 

solutions. The top of the form 𝑣 = 0 assumes no 

crossover flow at both entrances and exits. 

3.2 Governing Equations for Porous Medium 

Let the case of a two-dimensional Euclidean space 

bounded by a spatial domain, which can be denoted 

as → 𝑅2. In this domain, the boundary is piecewise 

smooth. There is also a time domain [0, I], where 𝑥 

indicates the spatial coordinate and t indicates the 

time coordinate. To describe the flow behavior of 

incompressible, isothermal, and isotropic fluid across 

homogeneous porous media without body forces, we 

can use the mass conservation, and Darcy-Brinkman 

momentum transport equations. Both channels and 

pipes can be modeled using these equations. Flow 

behavior can be described by the following equation: 

𝜌
𝜕𝑣

𝜕𝑡
= ∇. (2𝜇𝑑) − 𝜌(𝑣. ∇)𝑣 − ∇𝑝 −

𝜔𝜇

𝜅
𝑣           (18) 

According to the given equations, the variables 

represent the following quantities: 

𝑣(𝑥, 𝑡) represents the vector field at time t in the 

spatial domain 𝛺. The isotropic pressure per unit 

density is represented by 𝑝(𝑥, 𝑡) in spatial domain 𝛺 

at a given time. 𝜇 and 𝜌 indicate viscosity, and density 

of the fluid, correspondingly. 𝜅 refers to permeability 

of porous media within the domain. The porosity of 

the porous media in the domain is described by 𝛺. 

Assuming that the flow is hydro dynamically fully 

developed, and the transverse and radial orientations 

of the conduit or pipe have no impact on the velocity. 

Utilizing the incompressibility, the flow can be 

articulated by means of a transverse direction 

function and an expression for axial velocity. It is 

possible to derive Eq. (19) using Eq. (12) and Eq. (18) 

with the view to acquire the dimensionless manner of 

the equation. 

𝜕𝑣

𝜕𝑡
=

1

𝑅𝑒
∇2𝑣 − (𝑣. ∇)𝑣 − ∇𝑝 −

1

𝑅𝑒𝐷𝑎
𝑣                 (19) 

Here, 𝐷𝑎 =  
𝜅𝜌𝑣𝑐

𝜔𝜇𝐿𝑐
 denotes the Darcy’s non-

dimensional number. 

The results of this study demonstrate that the fully 

developed flow is independent of the axial direction 

of the pipe or channel in terms of hydrodynamic 

velocity. There is a unidirectional flow indicated by 

the continuity equation, and its behavior is only 

reflected by its axial velocity expression. According 

to the steady-state solutions obtained in this study, 

porous media exhibit a velocity profile as follows: 

𝑢(𝑦) = 𝑈𝑚𝑎𝑥 [1 −
𝑐𝑜𝑠ℎ

𝑦−𝑎

√𝐷𝑎
+𝑠𝑖𝑛ℎ

𝑏−𝑦

√𝐷𝑎

𝑠𝑖𝑛ℎ
𝑏−𝑎

√𝐷𝑎

]                   (20) 

In Eq. (20) at bottom inlet at 𝑥 = 0, 𝑈𝑚𝑎𝑥 = 𝑈𝑚, 

for 𝑎 = 0, and 𝑏 = 1. However, at top right inlet      

𝑥 = 23𝐿, 𝑈𝑚𝑎𝑥 = 𝑉𝑚 and here 𝑎 = 1.0254 and 𝑏 =

2.0254.  

3.3 Taylor–Galerkin/Pressure–Correction Scheme 

This scheme is a numerical method for resolution 

partial differential equations (PDEs), intensely those 

arising in fluid dynamics. In this method, the solution 

is expressed as a series expansion based on basis 

functions. Choosing these basis functions such that 

they approximate the governing equations is the key 

to success. This method was developed by the 

mathematicians George I. Taylor and Boris Galerkin 

[34]. The main goal of the Taylor-Galerkin scheme is 

to develop a time-stepping approach that is efficient 

and highly accurate in portraying both transient and 

steady-state solutions to fluid stream problems. The 

algorithm was originally obtained by Donea [34] to 

address time-dependent streams of Newtonian fluids 

while implicitly addressing the issue of 

incompressibility. It is possible to discretize time 

within the procedure by utilizing Taylor series 

expansions. To ensure second-order temporal 

accuracy, a two-step predictor-corrector scheme is 

implemented, integrating the Lax-Wendroff 

approximation. The algorithm also achieves higher-

order correctness for time derivatives and dependable 

spatial derivatives, providing notable improvements 

in accuracy and stability over Euler-Galerkin and 

Finite Difference methods [34][30]. Computational 

Fluid Dynamics (CFD) simulations commonly use 

pressure-correction schemes to solve Navier-Stokes 

equations. Two steps are involved in the process: the 

Predictor Step and the Corrector Step. Originally 

proposed by Chorin [35] and later modified by Fortin 

[13], the Pressure-correction/projection method 

segregates the pressure and velocity fields and uses 

linearized momentum analysis to achieve generally 

second-order accuracy and stability. Several related 

techniques have been developed using this method, 

including the TGPC algorithm [36] [37], which has 
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been applied to this research. In finite difference 

research, similar approaches can also be observed [5] 

[38] [39]. Experimental and numerical studies have 

been conducted on the algorithm in terms of non-

Newtonian fluids, both on a semi-implicit and fully 

implicit basis. The semi-implicit algorithm provides 

numerical accuracy as well as computational 

efficiency for flows dominated by diffusion, making 

it a viable option for a variety of problems. This study 

employs a semi-implicit variant of the TGCP 

algorithm, as demonstrated in this paper. 

3.4 Semi–Implicit Time–Stepping Scheme 

A semi-implicit time-stepping method is a numerical 

approach operated to solve partial differential 

equations (PDEs) that contain rigid and non- rigid 

terms. Using three Jacobi mass-matrix iterations, this 

method aims to obtain an exact result. When 

implementing a semi-implicit method for Newtonian 

problems, typical time steps are ∆𝑡 ≤ 0.1. According 

to references [40][41], steady state solutions should 

be achieved by allowing a relative increment 

tolerance of 10−1 times the time step. 

3.4.1 Cartesian co-ordinates 

An analysis of the literature indicates that explicit 

schemes in numerical simulations can be costly 

because their gradual convergence rate makes 

managing large time steps difficult. The present 

research uses a semi-implicit version of the TGCP 

algorithm directly to its strength and ability to recover 

correctness, stability, efficiency, and convergence 

rate at higher time steps [5][30][42]. Although fully 

implicit algorithms are frequently more expensive, 

they may not necessarily lead to improved numerical 

stability. To achieve a balance between accuracy, 

stability, and computational efficiency, the Crank-

Nicolson treatment is selectively applied only to the 

viscous and diffusive modules and Darcy's modules 

in this study. It is proposed in [6] to use a semi-

implicit methodology for solving the TGCP. It is 

possible to extend the temporal domain (𝑡𝑛, 𝑡𝑛+1)  

into a bifurcated method by using Taylor series 

expansion. Using the primitive variables (𝑣𝑛, 𝑝𝑛) at 

𝑡 = 𝑡𝑛, an initial forward difference scheme is 

implemented to calculate the velocity vector field at 

transitional time step (𝑛 +
1

2
). Permitting to [43], this 

methodology adheres to the finite element concept. 

The central difference method is employed to verify 

the primitive variables (𝑣𝑛+1, 𝑝𝑛+1) at the concluded 

time step  (𝑡 = 𝑡𝑛+1). The Crank-Nicolson technique 

is managed to address the incompressibility 

constraint associated with the pressure term, which 

results in two additional steps. Utilizing the data 

obtained from the initial step, the second step 

involves determining a velocity vector field that is 

non-divergent. In the third stage, a pressure 

differential must be obtained at the full-time step 

(𝑡 = 𝑡𝑛+1). The fourth step involves calculating a 

divergence-free velocity vector field (𝑣𝑛+1) using the 

pressure difference information gathered in the third 

step. Here is the algorithm for integrating the 

temporal difference into the semi-discrete Darcy-

Brinkman equation: 

Stage–1a: Determine a velocity field that is free 

from divergence 𝑣𝑛+
1

2 at partial time step 𝑛 +
1

2
 from 

the Provided the preliminary information for the 

velocity vector field.𝑣𝑛and pressure𝑝𝑛 at initial level 

𝑛: 

(
2

∆𝑡
−

1

2𝑅𝑒
∇2 +

1

2𝑅𝑒𝐷𝑎
) (𝑣𝑛+

1

2 − 𝑣𝑛) = [
1

Re
∇2𝑣 −

(𝑣. ∇)𝑣 − ∇𝑝 −
1

Re D𝑎
𝑣]

𝑛
                          (21) 

Stage-1b: Determine the middle non–solenoidal 

speed field 𝑣∗ velocity vector fields 𝑣𝑛+
1

2 calculated 

at pressure 𝑝𝑛, and time step 𝑛 +
1

2
 at distinguish time 

step 𝑛 when employing Crank–Nicolson conduct on 

pressure: 

(
1

∆𝑡
−

1

2Re
∇2 +

1

Re D𝑎
) (𝑣∗ − 𝑣𝑛) = [

1

Re
∇2𝑣 − ∇𝑝 −

1

Re D𝑎
𝑣]

𝑛
− (𝑣. ∇)𝑣𝑛+

1

2                  (22) 

Stage–2: To determine the pressure variation 

(𝑝𝑛+1 − 𝑝𝑛) at the entire time step interval 

(𝑡𝑛, 𝑡𝑛+1), it is necessary to resolve the non-

divergence free velocity vector 𝑣∗ by using the 

Poisson equation. 

𝜃∇2(𝑝𝑛+1 − 𝑝𝑛) =
1

∆𝑡
∇. 𝑣∗              (23) 

Stage–3: The methodology for computing the 

solenoidal rate field 𝑣𝑛+1  at the end of a single time 

step (𝑛 + 1) is presented in this work in its third and 

final step. This procedure makes use of data from 

phases (1b and 2), as well as the intermediate velocity 

field 𝑣∗ and pressure difference (𝑝𝑛+1 − 𝑝𝑛). This 

step is determined by the equation that follows: 

2

∆𝑡
(𝑣𝑛+1 − 𝑣∗) = −∇(𝑝𝑛+1 − 𝑝𝑛)             (24) 

In this equation, a time step index is denoted by. 

Crank-Nicolson time discretization (𝜃 = 0.5) is used 

for this analysis as suggested in previous studies 

[5][44][42]. The first temporal fractional stage is 

enhanced by adding a midpoint. The inclusion of this 

factor facilitates the transition from a first-order 
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projection scheme to a second-order projection 

scheme, improving the final solution's accuracy. 

3.4.2 Cylindrical polar co–ordinates 

Several factors determine which algorithm is best for 

numerical simulation, including accuracy, 

convergence rate, efficiency, and stability. Several 

studies demonstrate that semi-implicit methodologies 

achieve better convergence rates than explicit 

methodologies [5] [40] [42] [45]. The use of implicit 

techniques enhances numerical stability without 

requiring excessive computational resources. Here 

are the details of Darcy's discrete semi-implicit 

equations: 

Stage–1(a): 

 [
2

∆𝑡
𝑀 +

1

𝑅𝑒
(
𝑆𝑟𝑟

2
+

𝑀

𝐷𝑎
) ] (𝑉

𝑟,𝑗

𝑛+
1

2 − 𝑉𝑟,𝑗
𝑛 ) =

[−
1

𝑅𝑒
{𝑆𝑟𝑟 + 𝑆𝑟𝑧}𝑉𝑟,𝑗 − 𝐽1

†𝑃𝑘]
𝑛

− 𝑁(𝑉)𝑉𝑟,𝑗
𝑛 −

1

𝑅𝑒𝐷𝑎
𝑀𝑉𝑟,𝑗

𝑛                                  (25) 

[
2

∆𝑡
𝑀 +

1

𝑅𝑒
(
𝑆𝑧𝑧

2
+

𝑀

𝐷𝑎
) ] (𝑉

𝑧,𝑗

𝑛+
1

2 − 𝑉𝑧,𝑗
𝑛 ) =

[−
1

𝑅𝑒
{𝑆𝑟𝑧

† + 𝑆𝑧𝑧}𝑉𝑧,𝑗 − 𝐽2
†𝑃𝑘]

𝑛
− 𝑁(𝑉)𝑉𝑧,𝑗

𝑛 −
1

𝑅𝑒𝐷𝑎
𝑀𝑉𝑧,𝑗

𝑛                    (26) 

Stage–1(b): 

[
1

∆𝑡
𝑀 +

1

𝑅𝑒
(
𝑆𝑟𝑟

2
+

𝑀

𝐷𝑎
) ] (𝑉𝑟,𝑗

∗ − 𝑉𝑟,𝑗
𝑛 ) = [−

1

𝑅𝑒
{𝑆𝑟𝑟 +

𝑆𝑟𝑧}𝑉𝑟,𝑗 − 𝐽1
†𝑃𝑘

𝑛]
𝑛

− 𝑁(𝑉)𝑉
𝑟,𝑗

𝑛+
1

2 −
1

𝑅𝑒𝐷𝑎
𝑀𝑉𝑟,𝑗

𝑛      (27)        

[
1

∆𝑡
𝑀 +

1

𝑅𝑒
(
𝑆𝑧𝑧

2
+

𝑀

𝐷𝑎
) ] (𝑉𝑧,𝑗

∗ − 𝑉𝑧,𝑗
𝑛 ) = [−

1

𝑅𝑒
{𝑆𝑟𝑧

† +

𝑆𝑧𝑧}𝑉𝑧,𝑗 − 𝐽2
†𝑃𝑘

𝑛]
𝑛

− 𝑁(𝑉)𝑉
𝑧,𝑗

𝑛+
1

2 −
1

𝑅𝑒𝐷𝑎
𝑀𝑉𝑧,𝑗

𝑛      (28)       

Stage–2: 

𝐾(𝑄𝑛+1) = −
2

∆𝑡
(𝐽1𝑉𝑟,𝑗 + 𝐽2𝑉𝑧,𝑗)                   (29) 

Stage–3: 

𝑀(𝑉𝑟,𝑗
𝑛+1 − 𝑉𝑟,𝑗

∗) =
∆𝑡

2
𝐽1

†(𝑝𝑛+1 − 𝑝𝑛)            (30) 

𝑀(𝑉𝑧,𝑗
𝑛+1 − 𝑉𝑧,𝑗

∗) =
∆𝑡

2
𝐽2

†(𝑝𝑛+1 − 𝑝𝑛)            (31) 

𝑆 = ∫ {
𝜕𝜙𝑖

𝜕𝑥

𝜕𝜙𝑗

𝜕𝑥
+

𝜕𝜙𝑖

𝜕𝑦

𝜕𝜙𝑗

𝜕𝑦
} 𝑑𝛺 is a momentum 

diffusion matrix,  𝐽1 = ∫
𝜕𝜓𝑖

𝜕𝑥
𝜙𝑗 𝑑𝛺 and 𝐽2 =

∫
𝜕𝜓𝑖

𝜕𝑦
𝜙𝑗 𝑑𝛺 are divergence/pressure gradient matrix 

and  𝐽 = (𝐽1, 𝐽2) and 𝐾 = ∫ {
𝜕𝜓𝑘𝑖

𝜕𝑥

𝜕𝜓𝑘𝑗

𝜕𝑥
+

𝜕𝜓𝑘𝑖

𝜕𝑦

𝜕𝜓𝑘𝑗

𝜕𝑦
} 𝑑𝛺 is a stiffness matrix for pressure, where 

† is matrix transpose. 𝑉𝑛, 𝑉∗, 𝑉𝑛+1 are nodal vectors 

of velocity field, the pressure 𝑝𝑛 , 𝑝𝑛+1 , and the time 

interval Δ𝑡 is 1( , ).n nt t + 𝑉𝑗
𝑛, is a nodal velocity vector 

at 𝑡𝑛 time,  𝑉𝑗
∗ is an intermediate non-divergence-free 

velocity vector and 𝑉𝑗
𝑛+1is a divergence-free velocity 

vector at time step𝑡𝑛+1. In equations, pressure vector 

is 𝑝𝑘
𝑛, and 𝑄𝑛+1 =   𝑝𝑘

𝑛+1 − 𝑝𝑘
𝑛  is a pressure 

difference vector. 

3.5 Finite Element Discretization 

A variational formulation consuming a weighted 

approach along with a finite element approximation 

is used to discretize the set of Eq. (21) to Eq. (24) in 

the spatial domain. The objective of this approach is 

to represent the equations in a form that allows for 

numerical approximation. The shape and weight 

functions are defined in Hilbert spaces that are 

subsets of the two-dimensional Euclidean space 𝛺 ⊂

ℜ2. Specifically, we consider the Hilbert space 

𝐻1(𝛺)2for scalar-valued functions and their first-

order derivatives, and the vector-valued Sobolev 

space for functions which are integrable squares in 

the 𝐿2(𝛺) norm with their second-order derivatives. 

Finite element approximation is based on these 

function spaces. To obtain an inclusive interpretation 

of the precise definitions of these function spaces, the 

interested reader should refer to references [3] and 

[31]. The approach outlined above represents a 

standard methodology for discretizing and 

approximating the equations in question. 

𝑉 = {𝑢𝑛 ⊂ 𝐻1(𝛺)2 |𝑢𝛤1 = 𝑏
𝑛

}              (32) 

𝑉0 = {𝑣 ⊂ 𝐻1(𝛺)2|𝑢𝛤1 = 0}                  (33) 

For integrable square functions, the traditional 

inner–product exemplification is described as: 

⟨𝑓, 𝑔⟩ = ∫ 𝑓(𝑥)
𝛺

𝑔(𝑥)𝑑𝛺              (34) 

Given𝐿2(𝛺) a scalar Hilbert space for square-

integrable functions, we can express the following: 

𝛲 = {𝑞 ⊂ 𝐿2(𝛺)𝑑}               (35) 

The following set of Eq. (21) to Eq. (24) implies a 

weak formulation of the problem. The following 

semi-discrete variational forms are predicted at 

different stages: 

Stage–1a: 

((
2

∆𝑡
−

1

2𝑅𝑒
∇2 +

1

2Re D𝑎
) (𝑣𝑛+

1

2 − 𝑣𝑛, 𝜈)) =

(
1

Re
∇2𝑣 − (𝑣. ∇)𝑣 −

1

Re D𝑎
𝑣, 𝜈) − (∇𝑝, 𝑞)           (36) 
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Stage–1b: 

(
1

∆𝑡
−

1

2Re
∇2 +

1

Re D𝑎
) (𝑣∗ − 𝑣𝑛, 𝜈) = (

1

Re
∇2𝑣 −

1

Re D𝑎
𝑣, 𝜈)

𝑛
− (𝛻𝑝, 𝑞)𝑛 − (𝑣. ∇𝑣𝑛+

1

2, 𝜈)              (37) 

Stage–2: 𝜃∇2(𝑝𝑛+1 − 𝑝𝑛, 𝑞) =
1

∆𝑡
(∇. 𝑣∗, 𝜈)        (38)        

Stage–3:  

2

∆𝑡
(𝑣𝑛+1 − 𝑣∗, 𝜈) = −∇(𝑝𝑛+1 − 𝑝𝑛, 𝑞)               (39) 

By using weighted residual technique, the above 

Eq. (35) is spatially discretized using the Galerkin 

approximation method, in which the weight function 

is reserved to be equivalent to the shape function. The 

shape functions consumed for determining velocity 

and pressure components are piecewise quadratics 

and piecewise linear over triangular mesh 

tessellations, respectively. We introduce the 

approximate solutions of primitive variables, 

𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡) 𝑎𝑛𝑑 𝑝(𝑥, 𝑦, 𝑡), over finite spaces 

of the following functions: 

𝑢(𝑥, 𝑦, 𝑡) ≅ ∑ 𝑈𝑗
𝑛(𝑡)6

𝑗=1 𝛷𝑗(𝑥, 𝑦)             (40) 

𝑣(𝑥, 𝑦, 𝑡) ≅ ∑ 𝑉𝑗
𝑛(𝑡)6

𝑗=1 𝛷𝑗(𝑥, 𝑦)             (41) 

𝑝(𝑟, 𝑧, 𝑡) ≅ ∑ 𝑃𝑘(𝑡)𝜓𝑘(𝑟, 𝑧)3
𝑘=1               (42) 

here, 𝜓𝑘 and 𝛷𝑗 are linear and quadratic shape 

functions respectively. Eq. (36) to Eq. (39) 

ssymbolizations are followed [6]. The compact 

matrix form of the fully discrete system is:  

Stage–la: 

[{
2𝑀

∆𝑡
−

1

𝑅𝑒
(
𝑆

2
+

𝑀

𝐷𝑎
)} (𝑉𝑛+

1

2 − 𝑉𝑛) = [−
1

𝑅𝑒
(𝑆𝑉𝑗) +

𝑗1
†𝑃𝑘 − 𝑁(𝑉)𝑉𝑗 −

1

𝑅𝑒 𝐷𝑎
𝑀𝑉𝑗]]

𝑛

               (43) 

Stage–lb: 

[
𝑀

∆𝑡
−

1

𝑅𝑒
 (

𝑆

2
+

𝑀

𝐷𝑎
)] (𝑉∗ − 𝑉𝑛) = [−

1

𝑅𝑒
(𝑆𝑉𝑗) +

𝑗2
†𝑃𝑘 −

1

𝑅𝑒 𝐷𝑎
𝑀𝑉𝑗]

𝑛
− 𝑁(𝑉)𝑉

𝑗

𝑛+
1

2             (44) 

Stage–2: 

𝐾(𝑝𝑛+1 − 𝑝𝑛) = −
2

∆𝑡
𝐽𝑉𝑗

∗              (45) 

Stage–3: 

2𝑀

∆𝑡
(𝑉𝑗

𝑛+1 − 𝑉𝑗
∗) = 𝐽†(𝑝𝑛+1 − 𝑝𝑛)              (46) 

Where 𝑀 = ∫𝜙𝑖𝜙𝑗𝑑𝛺 is a consistent mass 

matrix, 

𝑁(𝑉) = ∫ {𝜑𝑖(𝜙𝑙𝑈𝑙)
𝜕𝜙𝑗

𝜕𝑥
+ 𝜑𝑖(𝜙𝑙𝑉𝑙)

𝜕𝜙𝑗

𝜕𝑦
} 𝑑𝛺 is a 

convection matrix, 

𝑆 = ∫ {
𝜕𝜙𝑖

𝜕𝑥

𝜕𝜙𝑗

𝜕𝑥
+

𝜕𝜙𝑖

𝜕𝑦

𝜕𝜙𝑗

𝜕𝑦
} 𝑑𝛺 is a momentum 

diffusion matrix,  𝐽1 = ∫
𝜕𝜓𝑖

𝜕𝑥
𝜙𝑗 𝑑𝛺 and 𝐽2 =

∫
𝜕𝜓𝑖

𝜕𝑦
𝜙𝑗 𝑑𝛺 are divergence/pressure gradient matrix 

and 𝐽 = (𝐽1, 𝐽2) and 𝐾 = ∫ {
𝜕𝜓𝑘𝑖

𝜕𝑥

𝜕𝜓𝑘𝑗

𝜕𝑥
+

𝜕𝜓𝑘𝑖

𝜕𝑦

𝜕𝜓𝑘𝑗

𝜕𝑦
} 𝑑𝛺 is a pressure stiffness matrix, where † 

is transpose of a matrix. 𝑉𝑛, 𝑉∗, 𝑉𝑛+1 are nodal 

vectors of velocity field, the pressure 𝑝𝑛, 𝑝𝑛+1, and 

the time interval ∆𝑡 is  (𝑡𝑛, 𝑡𝑛+1). 

3.6 Stream Function  

The understanding of flow structures is an essential 

component of fluid dynamics analysis. In a two-

dimensional coordinate system, stream functions can 

be used to calculate flow structure, providing 

valuable quantitative insights. For each dimensional 

face of a three-dimensional coordinate system, 

multiple stream functions are required. Stream 

functions serve as powerful tools for illustrating flow 

structure, conveying important physical meaning, and 

facilitating mathematical analysis. Streamlines are 

used to interpret solid boundaries of a flow by 

representing its flow field in relation to local velocity 

vectors. They are useful for assessing recirculation 

regions quantitatively. The generation of stream 

functions becomes essential when simulating fluid 

flow problems using primitive variables. Using this 

technique to visualize the flow pattern in a clear and 

concise manner. The stream function must be 

understood prior to drawing streamlines from one 

node position to another. A family of curves that 

traverse the flow structure and can be calculated from 

the velocity gradient can describe the stream function. 

The variation of fluid particles along a single 

streamline or path line within a steady-state flow field 

remains constant. The stream function complies with 

Poisson's equation in Cartesian and cylindrical polar 

coordinates systems. In the case of incompressible 

two-dimensional flow, an appropriate vector 

potential, denoted as '𝛹,' as follows: 

𝑉 = ∇ × 𝛹                (47) 

Where,𝛹 = {0,0,  𝛹} represents the stream 

function. 

Since Cartesian coordinates in computation are a 

subclass of axisymmetric frames of reference, 

Assume the components of velocity are in the axial 

and radial directions of an axisymmetric cylindrical 

polar coordinate system (𝑟,𝑧). Stream function 

𝛹(𝑟, 𝑧) and velocity components fulfil the following 

relationships [5]. 
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1

𝑟

𝜕𝛹

𝜕𝑟
= −𝑣𝑧𝑎𝑛𝑑

1

𝑟

𝜕𝛹

𝜕𝑧
= 𝑣𝑟              (48) 

For calculation purpose utilizing pseudo time 

stepping process, aforementioned (48) offers the 

resulting approach: 

𝜕𝛹

𝜕𝑡
= (

𝜕2𝛹

𝜕𝑟2 +
𝜕2𝛹

𝜕𝑧2) − 𝑟
𝜕𝑣𝑧

𝜕𝑟
− 𝑣𝑧 + 𝑟

𝜕𝑣𝑟

𝜕𝑧
             (49) 

After dividing by r gives Eq. (49) becomes:  

1

𝑟

𝜕𝛹

𝜕𝑡
=

1

𝑟
(∇2𝛹) −

𝜕𝑣𝑧

𝜕𝑟
−

𝑣𝑧

𝑟
+

𝜕𝑣𝑟

𝜕𝑧
              (50)  

For time derivative Eq. (50) using forward time 

stepping approach along (∆𝑡) step, difference 

configuration of Eq. (50) develops: 

1

𝑟
(
𝛹𝑛+1− 𝛹𝑛

∆𝑡
) =

1

𝑟
(∇2𝛹𝑛) −

𝜕𝑣𝑧

𝜕𝑟
−

𝑣𝑧

𝑟
+

𝜕𝑣𝑟

𝜕𝑧
          (51)     

Utilizing weighted residual technique, weak form 

of Eq. (51) turns into:  

1

∆𝑡
∫

𝑤

𝑟
(𝛹𝑛+1 − 𝛹𝑛)

𝛺
𝑟𝑑𝛺 = ∫

𝑤

𝑟
(∇2𝛹𝑛)

𝛺
𝑟𝑑𝛺 −

∫ 𝑤
𝜕𝑣𝑧

𝜕𝑟
𝑟𝑑𝛺

𝛺
− ∫ 𝑤

𝛺

𝑣𝑧

𝑟
𝑟𝑑𝛺 + ∫ 𝑤

𝛺

𝜕𝑣𝑟

𝜕𝑧
𝑟𝑑𝛺        (52) 

A finite element approximation will be: 

(𝛹, 𝑣𝑟, 𝑣𝑧) = ∑ (𝛹𝑗, 𝑉𝑟
𝑗
, 𝑉𝑧

𝑗
)𝛷𝑖(𝑟, 𝑧)

𝑁
𝑖=1               (53) 

here, 𝛷𝑗 is the quadratic basis function on nodal 

point 𝑗, and stream function’𝛹𝑗’. The radial and axial 

velocity elements are characterised by (𝑉𝑟
𝑗
, 𝑉𝑧

𝑗
) in 𝑟 

and 𝑧directions separately.  

Implementing finite element Galerkin 

approximation, where the weight function (𝑤𝑖) is 

taken correspondent to shape function (𝛷𝑖) is 

demonstrated as follows [5]:  

∑ 𝑤𝑖(𝑥)𝑁
𝑖=1 = ∑ 𝛷𝑖

𝑁
𝑖=1 (𝑥)              (54) 

Gives: 

1

∆𝑡
∫ 𝛷𝑖𝛷𝑗𝑑𝛺∆𝛹𝑗

𝑛+1
𝛺

= ∫ 𝛷𝑖(∇
2𝛷𝑗)𝛺

𝑑𝛺𝛹𝑗
𝑛 −

∫ 𝛷𝑖
𝜕𝜑𝑗

𝜕𝑟
𝑟𝑑𝛺

𝛺
𝑣𝑧

𝑗
− ∫ 𝛷𝑖𝛷𝑗𝛺

𝑑𝛺𝑣𝑧
𝑗
+

∫ 𝛷𝑖
𝜕𝛷𝑗

𝜕𝑧
𝑟𝑑𝛺

𝛺
𝑣𝑟

𝑗
                                                 (55) 

Green’s theorem is applied to take integration, and 

ignoring the boundary integrals by insisting Dirichlet 

boundary conditions, can be expressed as: 

1

∆𝑡
∫ 𝛷𝑖𝛷𝑗𝑑𝛺∆𝛹𝑗

𝑛+1
𝛺

= −∫
𝜕𝛷𝑖

𝜕𝑟𝛺

𝜕𝛷𝑗

𝜕𝑟
+

𝜕𝛷𝑖

𝜕𝑧

𝜕𝛷𝑗

𝜕𝑧
𝑑𝛺𝛹𝑗

𝑛 − ∫ 𝛷𝑖
𝜕𝛷𝑗

𝜕𝑟
𝑟𝑑𝛺

𝛺
𝑣𝑧

𝑗
−

∫ 𝛷𝑖𝛷𝑗𝛺
𝑑𝛺𝑣𝑧

𝑗
+ ∫ 𝛷𝑖

𝜕𝛷𝑗

𝜕𝑧
𝑟𝑑𝛺

𝛺
𝑣𝑟

𝑗
                       (56) 

The Eq. (56) is shown in semi-implicit and explicit 

forms take on matrix-vector representation as:  

1

∆𝑡
𝑀∆𝛹𝑗

𝑛+1 = −𝑆𝛹𝑗
𝑛 − 𝐷1𝑣𝑧

𝑗
− 𝑀𝑣𝑧

𝑗
+ 𝐷2𝑣𝑟

𝑗
    (57)     

(
1

∆𝑡
𝑀 +

𝑆

2
)∆𝛹𝑗

𝑛+1 = −𝑆𝛹𝑗
𝑛 − 𝐷1𝑣𝑧

𝑗
− 𝑀𝑣𝑧

𝑗
+ 𝐷2𝑣𝑟

𝑗
  

(58) 

Where, 𝑀 is mass like matrix with 

entries∫ 𝛷𝑖𝛷𝑗𝑑𝛺
𝛺

 and 𝑆 is identified as diffusion like 

term in matrix with entries:    

∫
𝜕𝛷𝑖

𝜕𝑟𝛺

𝜕𝛷𝑗

𝜕𝑟
+

𝜕𝛷𝑖

𝜕𝑧

𝜕𝛷𝑗

𝜕𝑧
𝑑𝛺 

In Eq. (57) and Eq. (58), 𝐷1and 𝐷2 are denoted as 

velocity gradient matrices with entries: 

∫𝛷𝑖
𝜕𝛷𝑗

𝜕𝑟
𝑟𝑑𝛺 and ∫𝛷𝑖

𝜕𝛷𝑗

𝜕𝑧
𝑟𝑑𝛺. 

4. Results and Discussion 

Newtonian fluids exhibit properties such as strain rate 

and shear-rate independence, resulting in linear shear 

viscosity, trivial stress difference, and a coherent 

viscosity. The published study provides intriguing 

insights into the behavior of rheological complex 

fluids when flowing through various porous media. 

Considering these facts, simulations have been 

conducted using an extended code developed 

specifically for this study. This code has already been 

expanded to incorporate parameters relevant to the 

investigation of channel flows through non-porous 

media. The simulations focus on Newtonian fluid 

flows in a conduit with a permeable material, and the 

findings are expressed in the streamline’s 

configuration. The geometries considered include 

unidirectional and reversed flows both, and the 

different divisions are illustrated in Fig. 1. This study 

investigates the impact of porosity, with varying 

permeability values ranging from 0.1 to 0.00001, on 

inertia and pressure, allowing for monitoring and 

analysis of its effects. 

4.1 Mixing and Separating of Newtonian Fluid Flows 

in a Channel Filled with Porous Media (𝐺1) 

The specific problem involving combined mixing and 

separating flows is depicted in Fig. 1 (a). Numerical 

solutions are provided for various flow rates and flow 

directions, achieved by raising the Reynolds number. 

The focus of the investigation lies in understanding 

the influence of inertia, vortex size, and vortex 

intensity when a porous material fills the channel. 

Comparisons will be made between the effects of 

inertia and changes in pressure difference observed in 

channels without porous media, as well as findings 

from existing literature. Furthermore, the influence of 

permeability and porosity on the flow pattern will be 

thoroughly analyzed and conferred. 
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4.1.1 Equal (1, 1) flow rate 

In this study, we analyze the influences of rising 

Reynolds number ranging from Re= 1 to 10000 on 

proportional flow rates, as illustrated in Fig. 2. It is 

essential to identify and comprehend new 

characteristics that arise because of changes in flow 

rates and conditions. Specifically, the objective is to 

evaluate the algorithm's performance and its ability to 

accurately replicate flow dynamics, particularly when 

adverse implications of flow inertia and flow rates 

interact in the conduit. For both reverse and 

unidirectional flows, simulation is initiated with 

𝑅𝑒 = 1 to assess the stability of the program and its 

ability to simulate the existence of a space in the 

central axis and subsequent breakup. In the upper and 

lower exit portions of the geometry, this step is 

critical for capturing reversing and mixing zones. 

Simulations are conducted upto 𝑅𝑒 = 10000, starts 

from 𝑅𝑒 = 1. Up to 𝑅𝑒 = 4000, there is no evidence 

of vortex activity. When Reynolds number 𝑅𝑒 =

5000 is applied, there is a very weak vortex activity 

near the lower and upper nip of the insert plate 

towards exit flow. In Fig. 2, the vortex at the nip of 

the middle plate vanishes as the Reynolds number 

increases (at 𝑅𝑒 = 6000 𝑎𝑛𝑑 10000). Therefore, 

under low Reynolds numbers, there is no significant 

development of strong vortex behavior, indicating 

minimal opposing inertia effects on the flow 

structure, in accordance with previous literature [12]. 

It is further observed that the macroscopic local 

inertial term does not have any significant effect on 

the hydrodynamic pattern of the linear fluids in 

permeable medium. Based on the simulation findings, 

similar findings have been reported in the literature. 

Consequently, porous medium fields with least Darcy 

no: gain a negligible momentary time for all 

microscopic numbers. Results of this study indicate 

that local inertia can be disregarded, as its effects are 

insignificant within porous domains. 

𝑅𝑒 = 1 𝑅𝑒 = 3000 

𝑅𝑒 = 4000 𝑅𝑒 = 5000 

𝑅𝑒 = 600 𝑅𝑒 = 10000 

Fig. 2. Mutual Mixing-Separating Contours for 

Newtonian Fluids Flowing In A Conduit With Porous 

Medium At Equal (1, 1) Flow Rates, With Growing Re 

Ascending From Upper To Lower At Fixed Darcy's 

Number (𝐷𝑎 = 0.1) 

4.1.2 Unequal (1, 1.5) flow rate 

The findings presented in Fig. 3 are based on 

numerical simulations for a conduit with porous 

medium, considering unequal flow rates of 1 and 1.5. 

The Reynolds number is increased from 1 to 10000 in 

these simulations to explore a variety of stream 

configurations. This study examines a setup that has 

two parallel streams with different stream rates in the 

top and bottom channels. Flow rate imbalance occurs 

between the top and bottom channel arms at a 

Reynolds number of 1 and unequal flow rates (1, 1.5). 

Consequently, flow descends from the top channel 

arm into the lower channel, resulting in an eddy 

forming along the lower channel wall within the 

central axis of the geometry. When the Reynolds 

number reaches 2000, observations indicate that an 

early response occurs in the departing flow of the 

bottom conduit arm, in which a feeble vortex 

develops close the verge of the centrally located insert 

plate. The vortex gradually grows in size and reaches 

stability at a Reynolds number of 3000. According to 

this early response, the relative flows exert an 

influence on the opposing inertia of the flow 

structure. The effects of inertia diminish with 

increasing Reynolds numbers, although an eddy 

remains on the lower channel wall throughout the test. 

In contrast with a channel without porous media, the 

existence of porous substances in the computational 

area does not significantly affect the inertia of 

Newtonian fluid flows. Because of the higher flow 

rate in the top conduit arm, the fluid is forced into the 

bottom conduit arm, resulting in a reversed flow 

toward both exits of the computational domain. As a 

result, vortices are witnessed on either segment of the 

centrally sited plate, specifically lower conduit arm 

near the exit. 
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𝑅𝑒 = 1 𝑅 = 2000 

 

𝑅𝑒 = 3000 𝑅𝑒 = 4000 

 

𝑅𝑒 = 5000 

 

𝑅𝑒 = 6000 

 
𝑅𝑒 = 10000 

Fig. 3. In A Passage Fulfilled with Permeable Medium, 

The Stream Rate Of Newtonian Fluids Is Unequal 

(1, 1.5). 

4.1.3 Unequal (1, 2) flow rate 

Fig. 4 illustrates simulations of Newtonian fluid 

moving in a conduit with a permeable medium. 

Simulations are conducted with uneven flow rates in 

both arms of the channel (1, 2). The results of these 

simulations are similar to those of the previous work, 

and they are expressed in terms of streamlines across 

a choice of Reynolds numbers from 1 to 100,000. A 

Reynolds number of 1 lead to the flow in the minimal 

arm of the conduit pushing toward the middle gap and 

exiting, only touching the wall before returning to the 

upper arm without forming an eddy, contrary to a 

Reynolds number of 1.5. In the absence of an insert 

plate positioned centrally, vortices are evident behind 

one side. The vortices are located at the peak of the 

middle plate, aligned with the direction of the exit 

flow. According to Fig. 4, at a low Reynolds number 

of 𝑅𝑒 = 2000, the vortices in the bottom channel are 

located near the wall. As the Reynolds number rises, 

the vortices become inclined with the wall and exhibit 

increased stability (Fig. 4, 𝑅𝑒 =

3000, 4000, 𝑎𝑛𝑑 5000). When flow rates are 

unequal (1, 1.5), vortices are witnessed only at the 

insert plate of the bottom arm of the exit flow conduit. 

On the other side of the geometry, the upper conduit 

arm closes the insert plate showing no signs of vortex 

production. Considering the fluid parameters, it is 

evident that varying flow rates affect the opposing 

inertia of the flow structure. Overall, the simulations 

indicate that vortex activity is relatively low in porous 

channels with Newtonian fluids. Fluids mix in the 

central space of the domain and at the corners of the 

conduit as they approach the exit. 

 

𝑅𝑒 = 1 

 

𝑅𝑒 = 1000 

 

𝑅𝑒 = 2000 

 

𝑅𝑒 = 3000 

 

𝑅𝑒 = 4000 

 

𝑅𝑒 = 5000 

 

𝑅𝑒 = 10000 

Fig. 4. The Mixing and Separation Of Newtonian 

Fluids In Porous Media Channels With Unequal 

Stream Rates (1, 2) Has Been Simplified 

4.2 Mixing and Separating of Newtonian Fluid 

Flows in A Channel Through Porous Media (𝐺2) 

A flow of Newtonian fluids within a single channel 

where the flow directions change is illustrated in Fig. 

1 (b). Each arm of the channel has two inlets on the 

left side, and the lower arm has a single outlet on the 

right side. Changes in flow directions, increasing 

Reynolds numbers, and the inclusion of the Darcy 

term in momentum equations will be discussed here. 

4.2.1 Equal (1, 1) flow rate 

Fig. 5 illustrates the impact of growing Reynolds 

number between 1 and 1,000 and maintaining equal 

flow rates between (1, 1). To evaluate the algorithm's 

ability to reproduce flow behavior accurately, new 

characteristics resulting from variations in flow rates 

and directions are identified. In particular, the study 

aims to identify any significant changes in flow 

pattern caused by conflicting impacts of flow inertia. 

The disparate inertia has not produced any notable 

effects so far, even when Reynolds numbers reach 

10000. Darcy's term, which mitigates the effect of 

disparate inertia on the flow pattern, can be credited 
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with this observation. It is important to note that the 

fluids mix within the bottom arm, moving in the 

direction of the exit point. 

R=1 Re=5000 

 
𝑅𝑒 = 10000 

Fig. 5.  Rationalise Function for Unidirectional 

Newtonian Fluid Streams Through A Porous 

Medium At The Same Flow Rate (1, 1) 

4.2.2 Unequal (1, 1.5) flow rate  

The outcomes of numerical simulations for 

Newtonian materials flowing through porous media 

with uneven flow rates (1, 1.5) are presented in Fig. 

6. Various flow divisions were simulated by 

gradually increasing the Reynolds numbers ranging 

from 1 to 10000 for various flow partitions. In this 

configuration, there are two parallel flows in the top 

and bottom conduit arms, both moving in the similar 

direction in the direction of the alike exit in the lower 

conduit arm on the right. As a result of an increase in 

flow rate in the upper channel arm, there is a slight 

push towards the exit in the lower arm. The flow is 

pushed slightly towards the lower channel arm's exit 

corner as Re increases up to 10000. It remains unclear 

whether there are any other inertia-related effects 

when compared to the inertia-related effects of 

nonporous media under similar conditions. Because 

of the unidirectional nature of the flows in the lower 

conduit arm, the fluid flows mix towards the exit as 

Re increases. Despite this, even as Re reaches 10000, 

no signs of vortex are observed. Flow goes in the 

upper arm's silent zone from its right side, but no 

vortices are observed. 

 
𝑅𝑒=1 

 
𝑅𝑒=50 

 
𝑅𝑒=100 

 
𝑅𝑒=500 

 
𝑅𝑒=1000 

 
𝑅𝑒=5000 

 

 

𝑅𝑒=10000 

Fig. 6. Unidirectional Newtonian Fluid Streams Through 

a Permeable Medium with Unequal (1, 1.5) Stream 

Rates 

4.2.3 Unequal (1, 2) flow rate 

Numerical outcomes of Newtonian Fluid flow in a 

conduit full of a porous medium are shown in Fig. 7, 

illustrating uneven (1, 2) flow rates in both arms. The 

simulations cover a range of rising Reynolds numbers 

from 1 to 10000 for a variety of flow partitions. Flow 

toward the exit in the lower arm exhibits a slight 

increase in flow, but there is no significant opposing 

inertia. The top channel arm has a higher flow rate 

than the uneven (1, 1.5) or even equal (1, 1) flow rates 

in the bottom channel arm. When the Reynolds 

number (Re) increases to 10000, the lower channel 

arm's exit corner is slightly pushed towards the wall. 

In contrast to a conduit full of non-porous medium 

under the same settings, the flow rate or fluid 

properties change do not produce any other effects. 

The unidirectional nature of flow of fluid causes 

mixing in the lower channel arm as it approaches its 

exit. Due to the fact that there are no significant 

changes in the flow pattern within the field, fewer 

outcomes are presented in Fig. 8 than in the other two 

flow rates. The flow rates are illustrated in Fig. [5 to 

6] which illustrate a conduit full of Newtonian 

materials through permeable medium. 

𝑅𝑒 = 1 

𝑅𝑒 = 10000 

Fig.7. Unidirectional Newtonian Fluid Streams 

In A Channel Through A Permeable Medium 

With Unequal (1, 2) Stream Rates 
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4.2.4 Effects of change in flow rate 

According to Fig. [5 to 7], the flow domain remains 

unchanged in all three sections, namely the bottom 

conduit arm, the upper conduit arm, and the 

separation gap in the middle. Fluid flow in the lower 

arm of the channel is gently predisposed by the 

change in flow rate in the upper arm of the channel, 

which causes it to flow in the direction of the fluid's 

exit. Due to the unidirectional flow, mixing occurs 

only in the downstream lower arm of the channel. The 

increase in Re (Reynolds number) does not result in 

any vortices at any of the three flow rates. Inertia was 

witnessed in the reversed flow instance mentioned 

earlier, but there were no significant changes in the 

unidirectional case. 

4.3 Mixing and Separating Newtonian Fluids 

Through Porous Media (𝐺3) 

Flows that combine mixing and separating are 

illustrated in Fig. 1 (c). The purpose of current 

investigation is to inspect the flow of Newtonian 

fluids within a conduit occupied with a porous 

medium with a particular focus on the variation in 

Reynolds number. Two opposing inlets are present in 

the flow configuration: one from the bottom arm on 

the left and other to the top arm on the right. On the 

right side of the lower arm, there is a single outlet. By 

altering flow rates in the top arm of the conduit, we 

examine inertia effects, pressure difference changes, 

and Darcy's number. 

 4.3.1 Equal (1, 1) flow rate 

The research findings regarding the impact of rising 

Reynolds number (1 ≤  𝑅𝑒 ≤  5000) on the 

corresponding flow rates of linear fluids in a conduit 

occupied with porous medium are depicted in Fig. 8. 

Throughout the investigation, the Reynolds number 

was varied up to a maximum value of 5000. At a 

Reynolds number of 1, the flow motion in the channel 

starts from the lower arms and moves towards the 

upper arms. This flow pattern leads to flow reversal 

and stops fluid mixing in the central space of the 

domain. 

Reynolds number up to 2000, no significant 

vortice development is observed, except for a 

displacement of the flow in the upper arm. However, 

as the Reynolds number is further increased, 

specifically at 𝑅𝑒 =  3000, a feeble vortex near the 

peck of a plate on the right side of the upper arm 

becomes noticeable. Additionally, some recirculation 

is observed in the right central axis of the plate on 

below of the bottom conduit arm. As the Reynolds 

number reaches 4000, the deceleration of vortices 

closes the middle axis of the plate on the right 

increases in dimension. It regulates location within 

the plate. The lesser swirls conserve its locations at an 

angle to the insert plates. They seem to turn into stable 

at Reynolds number of 5000, as illustrated in Fig. 8. 

The findings witnessed no intense vortex formation 

behavior at low Reynolds numbers. This aligns with 

the expected and previously reported weak differing 

inertia properties on the flow pattern, as discussed in 

the paper [12]. The observations reveal the 

occurrence of both unidirectional and reversed flows, 

with somewhat greater twisting observed in the 

reversed flow owing to the fluid flow's movement in 

the upper arm's prominent region and in the core void 

up to the peak of the duct arm's wall. The fluid 

exhibits increased mixing in the lower conduit arm, 

particularly in the segment on the way to flow 

partings. 

 
Re=1 

 

 

Re=2000 

 

 

 
Re=4000 
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Re=5000 

Fig.8 An Equal (1, 1) Stream Rate Newtonian Fluid 

Stream in A Permeable Passage Can Be Mixed and 

Separated By Means Of This Function 

4.3.2 Unequal (1, 1.5) flow rate  

The approximate outcomes illustrate the flow 

behavior of Newtonian fluids with unequal flow rates 

(1, 1.5) in two arms of a conduit occupied with porous 

media. The results of this study are illustrated in Fig. 

9. Simulations were conducted by gradually 

increasing the Reynolds numbers (1 ≤  𝑅𝑒 ≤

 5000). In the lower arm toward the flow exit, a 

recirculation phenomenon was observed at Reynolds 

number Re = 2000 near the centrally positioned plate. 

A weak vortex was observed at the tip of the centrally 

located plate when equal flow rates (1, 1) were 

considered at 𝑅𝑒 =  2000. The vortex diminished, 

however, as the flow rate increased. Fig. [8 and 9] 

illustrate the impact of increased flow rate in the top 

conduit arm in comparison to the subordinate case. A 

vortex was observed near one side of the centrally 

located insert plates in the departure flow of the 

bottom conduit arm at Re = 3000. The vortex 

increased in size and adjusted its position within the 

plate as it grew. The top channel arm of 𝑅𝑒 =

 4000 also showed a weak vortex lying flat on the 

insert plate, which lay near the centrally positioned 

insert plate. The vortices near the edges of the plates 

adjusted their positions and reached a steady state 

when 𝑅𝑒 =  5000 was reached. In the top channel 

arm, varying the flow rate significantly influenced the 

development of a vortex at the verge of the axis of 

plate, specifically from its left side. Fig. 8 illustrates 

how this vortex reappear at 𝑅𝑒 =  4000 as a result of 

an increase in Reynolds number. Equal flow rates 

produced the same mixing and separating effects. 

According to the above descriptions, both 

unidirectional and reversed flows exhibited similar 

behavior. 

  

𝑅𝑒 = 2000 

  

𝑅𝑒 = 3000 

  
𝑅𝑒 = 4000 

 

 
𝑅𝑒 = 5000  

Fig.9. Optimize Mixing and Separating Newtonian 

Fluid Streams in A Passage Satiated With Permeable 

Media, Rising 𝑅𝑒 From Top To Bottom, In Existence 

Of Unequal (1, 1.5) Stream Rates 

4.3.3 Unequal (1, 2) flow rate  

A simulation of linear fluid moves in a conduit 

occupied with a permeable medium is illustrated in 

Fig. 10 under uneven flow rates (1, 2) in each arm of 

the channel. Because of observations made in 

different sections of the flow domain, the following 

conclusions have been shown: The growth of vortices 

has not been observed in any section of the flow 

domain up to Reynolds number (𝑅𝑒) 1000. An 

emerging vortex of smaller size emerges at 𝑅𝑒 =

 2000 in the bottom channel arm of the central axis of 

the plate, immovable from the right. With the 

presence of the plate, the size of this vortex increases 

as Re reaches 3000. A second vortex forms at 𝑅𝑒 =

 4000, on the right side of the central fixed plate, in 

the top arm, in the direction of the striking place of 

the field. In the presence of 𝑅𝑒 =  5000, vortices 

emerge, however on right location vortex becomes 

prominent. Eventually it splits into smaller vortices 

and form a meandering pattern when it adheres to 

each side of the edge in the lower and upper regions. 

There is apparent inertial opposition between the 

intensity of this splitting and the formation of smaller 

vortices as Reynolds numbers increase, which 

becomes more pronounced as the Reynolds number 

increases. There is a noticeable impact on the 

development of vortices at the central edge of the top 
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channel arm when the flow rate is changed from 

unequal to equal (1, 1.5) in the top conduit arm. As 

described in Fig. 6, this effect recurs at Re = 4000. 

Mixing and separating properties are like those 

observed in cases where the flow rates are equal. The 

behavior of unidirectional and reversed flows is like 

that of equal flow rates. As illustrated in Fig. 10 at 

𝑅𝑒 =  5000, when the flow rate in the top channel 

arm changes from unven (1, 1.5) to equal (1, 2), there 

is a greater influence of inertia than for other relevant 

flow rates. Overall, these observations provide insight 

into the flow behavior and the effects of unequal flow 

rates in a conduit occupied with a porous medium 

under various Reynolds numbers. 

 

𝑅𝑒 = 1 

 

𝑅𝑒 = 1000 

 

𝑅𝑒 = 2000 

 

𝑅𝑒 = 3000 

 

𝑅𝑒 = 4000 

 

 

𝑅𝑒 = 5000 

Fig.10. Streamline Combining and Splitting Newtonian 

Fluid Streaming in A Passage Fulfilled With 

Permeable Medium With Unequal Stream Rates (1, 2) 

As 𝑅𝑒 Raises 

4.4.4 Flow rate changes and their effects 

A conduit occupied with porous media, specifically 

Newtonian fluid, is illustrated in Fig. 9 to 10 by 

examining streamline functions for unequal flows [(1, 

1.5) and (1, 2)]. An increase in flow rates in one of 

the upper arms causes a vortex that has formed near 

the verge of the central fixed plate to disappear on the 

right sideways of the domain. The vortices become 

stronger and more intense in their formation for rising 

Reynolds number and the flow rate in the top arm is 

doubled. As a result of the observations, additional 

vortices can be observed to have spread, split, or even 

been generated. Increasing recirculation indicates 

greater influence of inertial effects near the sharp 

edge of the domain. Various Reynolds numbers and 

flow rates have been used to obtain solutions, but 

unidirectional flows were not achieved. It is more 

pronounced in the top channel arm as a result of the 

flow moving from the lower to upper arm in the 

prominent corner and middle separation gaps. The 

inverted flow obstructs the incoming flow from the 

upper conduit arm in the direction of the mid space, 

causing it to reverse direction and flow in the 

direction of the vent. Thus, mingling occurs primarily 

in the bottom conduit arm within the exit division. 

4.4.5 The impact of unidirectional flows and 

permeability on pressure 

A conduit occupied with porous media, where a 

Newtonian fluid is flowing, is illustrated by Fig. 11, 

which illustrates the impact of growing inertia and 

three corresponding flow rates on the difference of 

pressure. As the Reynolds number upsurges, the 

pressure difference in the conduit will fluctuate. As 

Reynolds numbers increase, as well as flow rates vary 

in the two arms of the conduit, the variable pressure 

intensifications almost linearly. During a change in 

flow rate, the permeability value is modified, 

resulting in an increase in pressure. As shown in Fig. 

11, this change in permeability has a direct effect on 

the pressure difference. Consequently, a higher 

Reynolds number will result in a higher pressure, as 

can be witnessed in Fig. 11 during the relative flow 

rate comparison. 

 

Fig.11. Analysis Of Extreme-Scrambled Pressure at 

Mixed Stream Rates in A Permeable Media Passage With 

Improving Inertia 

4.5 Newtonian Fluids Flow Unidirectional in a 

Porous Channel (𝐺4) 

Based on the unidirectional flow condition shown in 

Fig. 1(d), we will examine the development and 

intensity of a vortex, as well as the pressure 

difference. Our analysis focuses on a scenario where 

there is only one outlet on the right of the top arm of 

a conduit, and only one inlet on the left. This study 
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compares the results of permeability and porosity on 

flow rates, and flow directions in the three 

configurations mentioned earlier (𝐺1, 𝐺2𝑎𝑛𝑑𝐺3) . 

The purpose of this research is to gain insight into 

how porosity and permeability influence vortex 

development intensity, and pressure difference in 

relation to different flow rates and directions 

observed in the configurations. 

 4.5.1 Structure of flows affected by Inertia 

The simulations performed for unidirectional flows of 

linear liquids were conducted in a conduit occupied 

with porous media, as shown in following Fig. 12. 

Despite higher Reynolds numbers, specifically up to 

𝑅𝑒 =  100000, no growth of vortices was observed. 

Additionally, when compared to reversed flow cases, 

inertial effects were found to have little influence on 

unidirectional flow. In terms of fluid flows in 

channels, the obtained results are consistent with 

findings reported in the existing literature [23]. 

𝑅𝑒 = 1 𝑅𝑒 = 5000 

 

𝑅𝑒 = 10000 

Fig. 12. Stream In a Passage Saturated with Permeable 

Media Consuming A Streamline Function 

4.5.2 Inertia and flow rate effects on pressure 

As the Reynolds number increases for Newtonian 

fluid flows, the difference pressure in the conduit 

through porous medium is shown in Fig. 13. The flow 

through two arms of the conduit, the variable pressure 

exhibits a nonlinear increase with increasing 

Reynolds number, resulting in varying pressures. 

According to Fig. 13, the permeability can be fixed at 

0.001 for Reynolds numbers ranging from 1 to 5000. 

This results in a linear growth of the pressure 

difference within the Reynolds number range. As the 

permeability value decreases from 𝑅𝑒 number 

600 𝑡𝑜 10000, the variable pressure rises, and the 

behavior becomes non-linear. Inertia as well as 

permeability are important factors affecting the 

pressure difference. The increase in pressure was 

initially minimal at lower Reynolds numbers and was 

not clearly visible on the graph. As a result, the 

vertical axis has been rescaled to better represent the 

data. 

 

Fig.13. Extreme Pressure Scaled with Developing Inertia 

in A Passage Filled with Permeable Media in 

Unidirectional Newtonian Fluid Stream 

5. Conclusion 

Through numerical analysis, the effects of inertia on 

flow, pressure, and permeability were investigated in 

a pipe filled with essentially porous medium. The 

proposed algorithm was exposed to be stable and 

correct in predicting even and intricate streams, as 

well as bifurcations. The growth of vortex in a 

passage was found to decrease in the presence of 

porous materials. The rise of non-dimensional 

variable pressure was witnessed by the enhancement 

of the stream rate at the top arm of a conduit, and 

decreasing values of permeability had a similar 

influence on pressure. The analysis concludes that the 

stream behavior using power law index and the entire 

span of Darcy's and Forchheimer's numbers is little 

influenced by the inertial term. 
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