
© Mehran University of Engineering and Technology 2023 164

Mehran University Research Journal of Engineering and Technology

https://doi.org/10.22581/muet1982.2304.2906

 2023, 42(4) 164-183

Decoding the animated text-based captchas to verify their robustness against

automated attacks

Rafaqat Hussain Arain a, *, Riaz Ahmed Shaikh a, Safdar Ali Shah a, Sajjad Ali Shah a, Saima

Rafique b, Ahmed Masood Ansari a

a Institute of Computer Science, Shah Abdul Latif University, Khairpur Sindh Pakistan

b Government Girls Degree College, Pir Jo Goth, Sindh Pakistan

* Corresponding author: Rafaqat Hussain Arain, Email: rafaqat.arain@salu.edu.pk

Received: 01 August 2023, Accepted: 25 September 2023, Published: 01 October 2023

K E Y W O R D S A B S T R A C T

Image Processing

Machine Learning

Artificial Intelligence

CAPTCHAs

Web Security

Pre-trained CNN

 In order to protect the web against automated attacks, CAPTCHAs are most

widely used mechanism on the internet. Numerous types of CAPTCHAs are

introduced due to weaknesses in the earlier designs. Animated CAPTCHAs

are one of the design alternatives. Instead of presenting the whole information

at once, animated CAPTCHAs present information in various frames over the

specific interval of time. As CATPCHAs are ubiquitously used to avoid the

serious threats from bots therefore it is important to verify their effectiveness.

In this research we have verified their robustness against machine learning

attacks. It has been proved that adding the extra time dimension does not

necessarily ensure protection against automated attacks. We have attacked the

Hello CAPTCHA scheme, which is the most popular animated CAPTCHA

scheme available on the internet. By applying novel image processing and

machine learning techniques, these CAPTCHAs are decoded with high

precision. A pre-trained CNN is used to recognize the extracted characters. In

this research, 6 popular types of animated CAPTCHAs along with 41 sub

types were successfully deciphered with an overall precision of up to 99.5 %.

1. Introduction

CAPTCHA (Completely Automated Public Turing

Test to tell Computers and Human Apart) is a method

to safeguard the web against bots. This is most

accepted and extensively used mechanism over the

internet [1]. Although, various design variants

including image, audio, video and other various types

of CAPTCHAs were introduced over the years, but

still text-based CAPTCHAs are most commonly used

owing to their simplicity and ease of use [17, 19].

Since its introduction, various researchers attempted

to verify its robustness. Initial CAPTCHAs were

found vulnerable against automated attacks and

decoded by many researchers with high precision [2,

3, 7]. As the CAPTCHAs were attacked and

successfully decoded, the designers continued their

effort to make them more robust. In this way, more

and more new design variants were introduced in last

couple of decades. Initial text-based CAPTCHAs

were simple, but their design variants included more

noise, cluttering and overlapping mechanisms [20,

21]. However, as the new designs were introduced,

new methods were designed to break them.

Therefore, it became an ongoing war between

designers and attackers. It is a healthy competition

between both, because in either case it is useful. In

case, if a CAPTCHA is designed and not yet broken

then it can be implemented as a security mechanism.

Otherwise, if it is solved then it may lead to one step

forward in the field of AI (Artificial Intelligence). As

CATPCHAs are based on difficult problems in the

https://doi.org/10.22581/muet1982.2304.

© Mehran University of Engineering and Technology 2023 165

field of AI therefore if these CAPTCHAs are broken

then the breaking algorithm can be used to move

forward in AI.

Animated CAPTCHAs are also introduced in an

attempt to make more robust CAPTCHAs. It is

assumed that these CAPTCHAs may be more robust

than the static CAPTCHAs. In animated CAPTCHAs

the information is distributed in several frames [4-6].

Therefore, it is assumed that it is hard to be extracted

by decoding algorithms. However, we attempted to

break theses CAPTCHAs and found serious

vulnerabilities in them. The use of fixed time

intervals, fixed locations for specific characters and

simple font types are few design weaknesses which

were exploited. On the basis of such weaknesses, we

decoded these CATPCHAs with high precision. It is

concluded in the end that adding extra time

dimension does not provide more security against

programmed attacks.

In our research, it is found that very few animated

CAPTCHA schemes are available on the internet.

Among the found CAPTCHAs, Hello CAPTCHA is

the most popular and widely available on the internet

[4]. In this work we have selected 6 types along with

41 sub types of Hello CAPTCHAs. All types of Hello

CAPTCHAs are successfully decoded by our

proposed algorithms. Solving the CAPTCHAs begin

with obtaining the animated image and converting it

to static image using specific algorithm. The

animated image consists of multiple frames

containing partial information in each frame. All

these frames are extracted and the information in

terms of foreground text is obtained using our

proposed methods. Preprocessing operations are

performed on the obtained static image. Furthermore,

the image enhancement, noise removal, and certain

image processing methods are applied. The obtained

segments of characters may contain connected or

non-connected characters which are further

examined; segmented and machine learning

techniques are applied to recognize them.

Section 2 presents literature review, section 3

consists of proposed methods, section 4 provides

details of breaking all types of Hello CAPTCHAs

and section 5 provides results and discussions while

section 6 includes the conclusion and future work.

2. Literature Review

Athanasopoulos and Antonatos were the first to

suggest the incorporation of animation as a method to

enhance both the strength and usability of

CAPTCHAs [9, 21]. This resulted in the design of

animated text-based CAPTCHAs, in which

characters are moved independently in various

vertical columns within the animated image [8]. It

was thought that the addition of time would deliver

greater security than usual static CAPTCHAs. It was

referred as "zero knowledge per frame" by Cui et al.

as the information needed to solve a CAPTCHA isn't

solely present in a single image [10, 11].

Hello CAPTCHA is widely used real-world

CAPTCHA that employs the security approach of

dispersing information across several animation

frames [4]. NuCAPTCHA is a text-based CAPTCHA

with animation, designed to counter segmentation

[13]. It features characters that are merged together,

forming a moving text that a user can view in the

space. Bots, however, don't have the same advantage

and instead see a blurry mix of pixels [12].The

KillBot Professional CAPTCHA is the most complex

of the initial CAPTCHAs which were based on

motion. It uses a sophisticated combination of

blurring and fading effects, as well as scaling,

rotating, and moving characters up or down. It also

integrates various animated noises such as raindrops

and random characters which move horizontally or

vertically, in addition to falling bars and moving lines

[8]. Various types of animated text-based

CAPTCHAs have been created by applying

segmentation resistance principles, which usually

overlap several animated characters within the frames

in CAPTCHAs. The designers of NuCAPTCHA have

developed a CAPTCHA based on animated text to

counter segmentation attacks. While characters move

left to right, each one is rotated separately. In

addition, extra characters which do not rotate, along

with an animated background, are included to make it

hard for automated programs to decipher and capture

the CAPTCHA. This dual complexity contributes

greatly to the security of the CAPTCHA. At the

University of Manchester, Kund created an animated

CAPTCHA that involves small lines being used for

two distinct types of moving elements. First type of

CAPTCHA characters is composed of groups of

particles, while the second type consists of single

particles used as a background noise These particles

move in various directions to prevent bots from

utilizing the PDM tracking method to detect the

characters [14]. Xu et al proposed the first usage of

the “emerging image” method within a text-based

CAPTCHA for their new edition of NuCAPTCHA.

This technique merges two sets of gray scale frames

by employing an equation to compute the gray scale

value for each pixel in each frame [15].

𝑃(𝑥, 𝑦) = 𝑆(𝑥, 𝑦)𝑒(𝐹(𝑥,𝑦)⁄𝐶)

© Mehran University of Engineering and Technology 2023 166

For all pixel points (𝑥, 𝑦) with a value greater than

a given number T, the method creates an animated

final set of frames by making them white in Frame 𝐹

from the first set and Frame 𝑆 from the second set,

The animated characters' edges will be shown in

blurred images with a noisy background [15].

Nguyen et al. demonstrated a way of attacking

animated text-based CAPTCHAs by applying

technology to capture their animated figures in high-

quality images. The attack was successful in breaking

numerous early animated schemes. The approach

used was a two-step process consisting of the CL

(Catching Lines Method) and the PDM (Pixel Delay

Map) [6], which allows for the extraction of

characters that can be paused, moved, and scaled in

individual columns. Research demonstrated that

alternative approaches were effective exclusively

when tackling certain animated CAPTCHAs during

the character extraction stage. Frame Selection is

specifically used on the animated CAPTCHA type

with characters of the same colour that move in

various directions and speeds. This technique

involves selecting frames that have the greatest

amount of pixels not originating from the

background. Colour Selection is intended to be used

on animated CAPTCHAs with characters of different

colours that move in random directions and speeds.

Roller Selection focuses on the animated CAPTCHA

which contains rotated characters. Utilizing a flood

fill algorithm, it segments these characters before

extracting them by means of the CL method, which

captures each single character when the highest point

of its pixel reaches the highest possible height [16].

3. Proposed System

Our proposed system first identifies the type of

animated CAPTCHAs and then applies specific

methods according to the design and type of

identified CATPCHA. There are 6 types of Hello

CAPTCHAs along with its 41 subtypes selected in

this work to verify their robustness. Various design

weaknesses were explored in this research, which

includes time consistency, similar background in all

frames, characters with no noise, and characters in all

frames positioned at identical locations. Our

proposed methods are applied to extract information

from various frames. At first, a CAPTCHA challenge

that is animated is converted into a single image, and

then a specific method is used to break it. In this

work, the key methods which are employed to break

these CAPTCHAs are: PCM (Pixel Changes Map),

AF (Anti Fade) , RCP(Remove Changing Pixels),

CM(Catching Movers), GBI(Get Background

Image), RF(Remove Footer), GP(Grace Pixel),

RC(Replace Colours) and BI(Binary Image) method.

By applying our proposed methods, all 6types of

animated Hello CAPTCHA schemes along with 41

subtypes are decoded with high precision. The

proposed methods are shown in the system diagram

in Fig. 1.

Once the image is loaded, which is typically an

animated image (in GIF format); the system

identifies its type. Generally, there are two categories

of CAPTCHAs:

(a) In type 1, individual characters stay at certain

locations for 10 to 30 frames and then disappear.

Flitters, H-Mover, Popup and Smarties are the type of

CAPTCHAs which fall in this category.

(b) In type 2, the CAPTCHAs are based on noisy

backgrounds. Spread Fade and Searchlight are the

type of CAPTCHAs, which fall in this category.

A pre-trained CNN (Convolutional Neural

Network) is applied to initially identify the type of

CAPTCHA provided. The CNN is trained by

determining the mean sum of colours, and a score of

0 to 40 is assigned after the CAPTCHA is identified.

Features such as the amount of frames and the

background colours are used to identify the

CAPTCHA. CNN is trained using 100 samples of

each type of CAPTCHA and overall, 4100 images of

all types of Hello CAPTCHAs are used to train CNN.

3.1 Extraction Techniques

Static images can be obtained from multiple frames

of animated text by using extraction techniques. It is

important to ensure that the characters in the resulting

image are clearly visible and do not overlap, even if

the image is very noisy. The techniques used to

obtain a single image (in static form) from animated

image are listed below:

PCM (Pixels Changes Map): Initially, the

background of the first frame is selected (using our

proposed GBI method). Once the background is

obtained, it is compared to the other frames of the

same challenge, and any changes in those frames are

incorporated in the background image. This process

is repeated for each subsequent frame, leading to a

static image as illustrated in Algorithm No. 1.

© Mehran University of Engineering and Technology 2023 167

The img argument can be used to salvage a still

image from the animated image, while the array

contained within the 'frame' argument holds all the

frames of the CAPTCHA. The threshold is employed

for altering the colors (background) of the image and

for determining the values of it to eliminate the

colors. The background argument is acquired using

the GBI method.

AF (Anti Fade): This method is effective for

breaking Spread Fade CAPTCHAs and their five

subtypes. These CAPTCHAs contain numerous small

boxes of varying colors, with either white or black

borders. This method looks for a part of the

CAPTCHA that is not faded and then adds other such

sections from consecutive frames, allowing for a

static image to be re-created. The results of extracting

the static image for Spread Fade/ immature dream

CAPTCHAs are displayed in Fig. 2.

Fig. 1. The System diagram showing the proposed methods at different steps of decoding process

Start

Load Image
Identify Type

of CAPTCHA

Extraction Techniques

Remove Noise

Segmentation

Predict

Chuncks

Set in Edit Box

End

Trained?

Save Chuncks with Labels

Save pre-trained dataset

Train CNN model from

pre-trained Dataset

I. Pixel Changes Map (PCM)

II. Anti Fade AF

III. Remove Changing Pixels

(RCP)

IV. Catch Movers (CM)

I. Grace Pixels (GP)

II. Replace Colors (RC)

III. Binary Image (BI)

I. Hierarchical Segmentation (HS)

Pre-Extraction Techniques

I. Get Background Image (GBI)

II. Remove Footer (RF)

Retrieve Frames

Yes

No

Index

Static Image

Binary Image

Chunks

Algorithm No. 1 (The PCM Method)

1. Set ratio to 255 / frames

2. Iterate through each frame in frames

Iterate through each pixel in frame

If pixel is not within background pixel threshold

Img pixel += ratio * abs (background pixel – frame pixel)/255

End inner loop

End outer loop

© Mehran University of Engineering and Technology 2023 168

The steps required to get the static image are

described in Algorithm No. 2. We can determine the

width and height of each cell of the applied grid by

identifying the area where the grid lines have been

removed and storing the pixels in an array. A

polygon of the stored pixels is then created, and the

pixels are drawn in a static image within the polygon.

The out_img argument stores the output of

CAPTCHA characters without any fading, and the

un-faded area of the characters is established

throughout all the frames. Additionally, the width of

the boxes in the CAPTCHA is determined by the grid

cell, and the colour of the boxes is stored in the grid

colour. Inside this algorithm two functions are used:

i.e., ‘points2poly’ and ‘isPointInPoly’. The points in

the array are used to create a polygon using the first

function, i.e., points2poly while the unnecessary

points are discarded.

After getting polygon the other function, i.e.,

‘isPointsinPoly’ is used which takes three arguments;

x, y and polygon to determine whether the pixels with

coordinates x and y are within the polygon or not. In

case of ‘true’ replace those pixels in static image.

Using this method, the image without fading is

retrieved.

RCP (Remove Changing Pixels): The RCP

method is employed to decode search light

CAPTCHA. The GBI process is used to start by

finding out the background of the given animated

picture. As a result, a clear image without text or

noise is stored as a static image. Fig.s 3 (b, c, d)

demonstrate the results of comparison while Fig. 3

(e) displays the final picture. If the value of

background replacer is black and the background

colour is also black, the background replacer variable

should be changed to white. It then compares each

frame by examining the changes in the colour of

individual pixelsas given in algorithm No. 3.

Algorithm No. 2 (The AF Method)

1. Initialize cwidth to grid’s cell width and Gridcolor to grid’s line color

2. Iterate through frames

 Iterate over x from cwidth to frame’s width incrementing by cwidth

 Iterate over y from 1 to frame’s height incrementing by 2

 Compare Gridcolour to previousColour and nextColour

If Gridcolour is equal to both previousColour and nextColour then push (x, y) to array of points

3. If length of points’ array>= 3 then

call Points2Poly (points array) and assign the result to polygon variable

 Iterate over x from 0 to frame’s width

Iterate over y from 0 to frame’s height

If isPointInPoly (x, y, polygon) returns true then

Set out_img color at (x, y) to frame color at (x, y)

4. Return out_img

 Static Image Binary Conversion

Fig. 2. Decoding SpreadFade/ Immature dream CAPTCHA by applying AF method

Fig. No. 2 Breaking SpreadFade/ immature dream CAPTCHA by AF method

© Mehran University of Engineering and Technology 2023 169

Searchlight / Aunt blood CAPTCHA

(a)

Background

 (b) (c) (d)

Shade on Background

 (e)

Background with

Text

Fig. 3. Decoding the Searchlight CAPTCHA by applying RCP method

It is hard to view the text in this type of

CAPTCHA because the background and foreground

colours are quite alike. To make the text visible, a

"Search Light" of a different colour is shaded over it,

and the user can only see the text when the light is

pointed directly at the foreground text.

CM (Catch Movers): CM method is employed to

decode all sub-types of H-Mover CAPTCHAs.

Experimental results suggest that the letters of the

CAPTCHA can be found in the 140th to 179th

columns, with the rightmost one being a new

character. This technique will continuously scan the

designated columns to detect a new character as soon

as it appears. This process will repeat itself until all

six characters have been obtained. The HS method

(presented in this section) is applied to extort

characters from animated frames, as displayed in Fig.

4. To calculate the number of foreground pixels per

column in the image, the text or foreground is

counted from the 10th position onwards. It is

identified in three states: come (state = 0), stay (state

= 1) and leave (state = 2). In order to get the

animated characters by using the HS method from

left to right, the state must be equal to come, and the

frame is regarded as the actual frame. The state could

stay in place until the character gets to the 140th

column. The process of retrieving all six characters

described in Algorithm No. 4 will begin.

after the 140th column. The state will be set to leave

and the character will be treated as a new character.

Afterwards, the state will be reset to come (0). This

process will continue until all six characters have

been retrieved.

GBI (Get Background Image): In Algorithm

No. 5, the following steps are used to determine the

background and footer of given image: first, the

colour of all pixels in the first frame from the 15th

row is checked. Then, the prevalent colour is

considered as the background colour, and all other

pixels from the 1st row to the 47th row (based on

experiments) are altered to this colour. Next, at the

48th row, colour of all pixels is checked, and the

prevalent colour is considered as the footer colour.

Finally, all remaining pixels from the 48th row to the

60th row and 75th column are changed to the footer

colour. The only argument this method takes is

frames, which holds all the frames of CAPTCHAs. It

returns the background image, free of noise and

foreground textas shown in Fig. 5.

Algorithm No. 3 (The RCP Method)

1. Set out_img’ equal to gbi

2. Set replacer variable equal to black

3. If background colour from gbi argument equals black, then set replacer to white

4. Iterate through each frame in frames

a. Iterate through x = 0 to width of frame

b. Iterate through y = 0 to height of frame

If the colour of out_img at (x, y) is not equal to the frame colour then set out_img color

at (x, y) equal to replacer.

© Mehran University of Engineering and Technology 2023 170

Input Output

Fig. 5. The GBI method

Algorithm No. 4 (The CM Method)

1. Set char_no to 0 and state to come

2. Iterate each frame through frames

Iterate through x from 140 to 150

Set cmp to 0

 Iterate through each ix from 0 to 2

Iterate through each y from 0 to 46

Set offset = (frame_width * y) +(ix + x)

If the frame pixel is not within bg pixel threshold at offset then

Increment cmp

If cmp is greater than 10

If state is stay and x is equal to 140 then

Set state to leave

Else if state is leave and x is greater than 140 then

Set state to come

If state is come then

Apply HS method just in rect from 140 to 180th column

Apply ‘chunkFromWave' method to retrieve chunks

H-Mover/VioletSlider CAPTCHA

Replacing foreground and background

Segmentation using HS Method

Chunks obtained using CM Method

Fig. 4. H-Mover/VioletSlider CAPTCHA implementing CM method

Frame 3 Frame 18 Frame 34 Frame 50 Frame 69 Frame 121

© Mehran University of Engineering and Technology 2023 171

RF (Remove Footer): Footers displaying the

name of CAPTCHA can be found in all CAPTCHAs

and RF method is applied to remove them. As the

footer is located at fixed locations in all CAPTCHAs

therefore easily removed. Experiments show it is

located at the 48th row until the last row and these

lines are changed into background colour. Algorithm

No. 6 outlines the steps for removing the footer from

Hello CAPTCHAs. Fig. No. 6 depicts a clear

background after the footer has been removed.

Bg_color displays the actual background colour of

the frame, and the frames argument contains the

frames of the CAPTCHA.

Fig. 6. An example of RF method

3.2 Removing Noise

GP (Grace Pixel): The process of going through

all the pixels in an image is done using this method.

Average of each pixel and its 8 adjacent pixels is

calculated by dividing the sum by 9. This average

pixel is then compared to the grace pixel by applying

the col_ratiodiff method. Colours that are near each

other are considered as zero, while those that are far

from each other are assumed as close to 100. If the

result of col_ratiodiff is less than the grace_point,

then the grace_to colour is used to replace the colour

of the image at a certain location. Otherwise, the

original colour of the image img is kept. This method

is used to remove the noise that is surrounded by

background pixels in Spread Fade/Braunie

CAPTCHAs. Any remaining noise in the form of

lines surrounded by background is also eliminated.

An example can be seen in Fig. No. 7 and the steps

are given in Algorithm No.7. Img argument is an

input image which may have noise. Grace is output

of this algorithm that is the image without noise.

Algorithm No. 6 (The RF Method)

1. Set firstframe variable to the initial value in the frames array

2. Start a loop that iterates through each frame in the frames array

3. Set j to (i+1) modulo frames_length

4. Set frame variable to the index j in the frames array

5. Iterates through each pixel in the frame starting from the 47th row

Set the frame pixel to (bg_color + frame_pixel – firstframe_pixel) % 256

6. End the loop for each pixel after the 47th row

7. End the loop for each frame in the frames array

Input Subtracted By Output

Algorithm No. 5 (The GBI Method)

1. Create an empty image BI equal to width and height of the image.

2. Create an empty array.

3. Traverse the 15th row of frames [1] and add each pixel to the array.

4. Find the most used pixel from the array and assign it to variable bg_color

5. Create an empty array.

6. Traverse the 48th row of frames [1] and add each pixel to the array.

7. Find the most used pixel from the array and assign it to the variable footer_color

8. Traverse the 1st to 47th rows of frames [1] and set each pixel of BI to bg_color pixel.

9. Traverse the 48th to 60th rows and 75th columns of frames [1] and set each pixel of BI to

footer_color pixel.

10. Return BI

© Mehran University of Engineering and Technology 2023 172

RC (Replace Colors): This method is used to

substitute colours in an image. It examines all pixels

in the image and compares them to each existing

colour using threshold values. If the comparison is

successful, it replaces the colour; otherwise, it is

replaced with failure according to Algorithm No. 8.

This method is employed to solve Spread fade /

JacobArmen types of CAPTCHAs, which have a near

constant colour identified by CAPTCHA type.

Moreover, this method also converts the image into

binary format.

The img argument is a static image with the

colours changed to either success or failure colours.

The argument cols is used to choose colors from an

array. The threshold argument is used to determine

the amount of colour change that should take place.

The success_col argument is used to replace the

pixels between colour thresholds with a

success_color. When the comparison does not

succeed, the failure_col argument is used, and the

pixels are replaced with this argument's colour.

BI (Binary Image): In this method, the RGB

image is transformed directly into a binary image

using the mid_point argument. The mid_point is

compared to a ratio which is calculated using either

Equation No.1 (a) if the background is available, or

Equation No.1 (b) if it is not.

𝒓𝒂𝒕𝒊𝒐= (𝒊𝒎𝒈_𝒑𝒊𝒙𝒆𝒍−𝒃𝒈_𝒑𝒊𝒙𝒍)/𝟐𝟓𝟓 1(a)

𝒓𝒂𝒕𝒊𝒐=𝒑𝒊𝒙𝒆𝒍/𝟐𝟓𝟓 1(b)

After mid_point is compared to the ratio, if the

ratio is greater than mid_point, then the colour is

changed to white, or RGB (255, 255, 255). If the

ratio is less than mid_point, then the colour is

changed to black, or RGB (0, 0, 0). This is

demonstrated in Fig. No. 8 and outlined in Algorithm

9.

Before After

Fig. 8. An Example of Image Binarization

Algorithm No. 8 (The RC Method)

1. Iterate through each pixel in the img

 a. check if the pixel is between the threshold of cols

i. If the condition is true, set the pixel to success_col

ii. If the condition is false, set the pixel to failure_col

2. End the loop

Algorithm No. 7 (The GP Method)

1. Create an image grace of size img width, img height.

2. Iterate through each pixel from the image img:

a. Calculate the sum of the pixel and its surrounding 8 pixels, and divide it by 9

b. Compare the value calculated by col_ratiodiff function with grace_point

i. If the col_ratiodiff is less than grace_point, set grace pixel to grace_to

ii. Otherwise, set grace pixel to img pixel.

3.Return the image grace.

Before After

Fig. 7. GP (Grace Pixels) method

© Mehran University of Engineering and Technology 2023 173

3.3 Segmentation

HS (Hierarchical Segmentation): The HS method is

used to segment characters into small chunks, and the

chunks are then stored in small images of 20*20

using the IFW (Image from Wave) method. The HS

method involves two factors: Wave and Hierarchy.

Wave is used to hit the target, creates several waves

in the image using Algorithm No. 10 and the

modified Flood Fill method. To ensure accuracy, the

wave must meet certain specifications, as determined

by the type of CAPTCHA, such as number of pixels,

density, start position, width, and height. The waves

will only segment the areas that have not already

been segmented, and the process continues until the

entire image is segmented.

The modified FloodFill technique is utilized in the

HS method to act as a wave. In this algorithm, the

data variable is in the form of a matrix, which allows

a map view to store the wave index from the

segmented areas of the current wave. Moreover, the

other waves also store their wave index in the same

variable, i.e. data. Once the entire image is

segmented, the overall results of all segments are

retrieved from the data variable and visualized as an

image. In the modified FloodFill algorithm

(Algorithm No. 11), the wave's neighbouring waves

are checked and saved in the 'wave' argument.

3.4 Predict Chunks

This method is used to convert static images into

binary images, where the background is black, and

the foreground is white. It scans for balls or strokes

in the image, and if any are found, they are removed.

Each pixel is stored using one byte of data, with 0

representing black (background) and 1 representing

white (character). Therefore, a 20x20 pixel image

requires 50 bytes of data, plus an extra byte for the

label of the character, making a total of 51 bytes per

pre-trained image. All characters from one

CAPTCHA are saved in one pre-trained dataset,

meaning that the dataset occupies 306 bytes (51*6).

This method also converts background pixels to

black and foreground pixels to white in order to

create a binary image.

4. Breaking Hello CAPTCHAs

The Hello CAPTCHA is a free, user-friendly

CAPTCHA system with an animated, text-based

design that can be found online.

It is the most comprehensive set of animated

CATPCHAs available on the internet therefore we

decided to verify its robustness.

Algorithm No. 10 (The HS Method)

1. Initialize stack stk and waves array

2. Iterate through j from 0 to max_waves

a. Check if stack is empty

If true then get index of data array where value is 0 and assign it to point variable

b. Push the point to the stack if point is greater than 0

c. From the stack, get the coordinates of the neighbours, pixels and rect

d. Perform FloodFill using the img, stack, data, j, and wave

e. Check if the constraint returns true

If constraint is true, set all entries in the data array with value equals to

wave_index to -50

i. Pop the wave from waves array

ii. Decrement j

3. End the for loop

4. Create an empty array hierarchy

5. Call WavesHierarchy to form the hierarchy of waves
6. Return data, waves, and hierarchy

Algorithm No. 9 (The BI Method)

1. Iterate through each pixel of the image

a. Calculate the ratio of the pixel by dividing the pixel value by 255

b. If a background value is not null, find the absolute value of the gap between the pixel

value and the background value, then divide by 255

c. If the ratio is greater than the midpoint; set the image pixel to RGB (255, 255, 255)

d. If the ratio is less than the midpoint, set the image pixel to RGB (0, 0, 0)

© Mehran University of Engineering and Technology 2023 174

The creators of the mentioned CAPTCHA systems

assert that their designs are more functional, more

secure, and visually appealing to draw in users. To

make them more difficult to breach by automated

means, various animation techniques are being

considered. Even though the Hello CAPTCHA

scheme was not designed to defend against

segmentation attacks, it was created to be easily

readable and understandable for humans. This study

has chosen the Hello CAPTCHA scheme because it

provides various animations that have been created

by the designers. We believe that no other developer

or website provides more animated text-based

CAPTCHAs than HELLO CAPTCHAs. Each

CAPTCHA challenge consists of six characters or

numbers (image in GIF format) of 180*60 pixels. To

break these animated CAPTCHAs, we have

developed several algorithms, as mentioned earlier.

4.1 Flitter CAPTCHAs

In Flitter CAPTCHA, letters are formed from

squares which are then scattered apart. Different

assembly effects may be chosen, such as the erode

effect that is the explosion with gravity. The

designers of the Hello CAPTCHA used security

strategies that involved distributing the information

across multiple frames. There are seven varieties of

Flitter CAPTCHAs:

• Flitter/ Bee CAPTCHAs

• Flitter/ Brick CAPTCHAs

• Flitter/ Default CAPTCHAs

• Flitter/ RustyFlam CAPTCHAs

• Flitter/ Vinayak CAPTCHAs

• Flitter/ Windowlicker CAPTCHAs

• Flitter/ colorful CAPTCHAs

Our proposed algorithms can successfully break

the Flitter CAPTCHA and its seven subtypes with

high precision. Initially, the background of the image

is retrieved by employing GBI (Get Background

Image), and the characters from frames are extracted

using PCM (Pixel Changes Map). The proposed

methods result high precision in breaking all six

subtypes of the Flitter CAPTCHAs. Once the

animated image has been loaded and its type has

been identified, the GBI method can be implemented

to obtain a clear background from the given image.

The PCM method is used to extract the animated

characters into a static image. Different types of

noise need to be removed, and overlapped characters

have to be segmented. The GP method is used to get

rid of any noise in the image so that a clear picture

can be produced. HS method is used to segment

characters in different colours. Finally, The BI

method is utilized to obtain characters in a binary

form. Fig. 9 displays the results of all the varieties of

the Flitter CAPTCHAs.

4.2 H-Mover CAPTCHA

H-Mover is an aesthetically pleasing CAPTCHA

type, consisting of seven subtypes that display letters

one by one from left to right in an animation where

the letters come in from the right, stay still for a bit,

and then depart to the right. The speed of the

animation gradually increases and decreases, making

it attractive. At no point in the animation are all of

the letters visible simultaneously. There are seven

varieties of H-Mover CAPTCHAs.

• H-Mover/ Default

Algorithm No. 11(The MFF Algorithm)

1. While stack length is greater than 0

a. Pop stack and assign value to point

b. Set data [point] equal to wave_index

c. Get pixel at point from img and assign it to p_col

2. Iterate through i from 0 to 9

a. Calculate ix = (i%3) - 1 and iy= int (i/3) -1

b. If 0 ≤ point_x + ix ≤ 179 AND 0 ≤ point_y + iy ≤ 59

Check data[((iy + Point_y) * frame_width + (ix + point_x))]

c. If check is equal to 0 OR (check is less than 0 AND check is not equal to -

wave_index) then

i. Calculate new_point = (iy + point_y) * frame_width + (ix + point_x)

iiAssign the pixel from the img at new_point to col

d. If col is within threshold of p_col then

i. If yes, push new_point in stack

ii. Else, set data [new_point] = wave_index

e. If check>0 AND check Not Equal To wave_index then

Set wave_neighbours[check]=1

© Mehran University of Engineering and Technology 2023 175

• H-Mover/ PPL

• H-Mover/ Quicky

• H-Mover/ Street

• H-Mover/ Sunriselang

• H-Mover/ Violet slider

• H-Mover/ Baller

Flitter/Bee CAPTCHA

Flitter/Brick CAPTCHA

Flitter/Default CAPTCHA

Flitter/RustyFlam CAPTCHA

Flitter/Vinayak CAPTCHA

Flitter/Windowlicker CAPTCHA

Fig. 9. Frames, Segmentation, Static and Binary image (From left to right)

Default H-Mover CAPTCHA

PPL H-Mover CAPTCHA

Quicky H-Mover CAPTCHA

Sunriselang H-Mover CAPTCHA

Street H-Mover CAPTCHA

H-Mover/ Baller CAPTCHA

© Mehran University of Engineering and Technology 2023 176

Fig.10. Extracting H-Mover CAPTCHAs

The proposed HS method in H-Mover/

Sunriselang CAPTCHA is used to take animated

characters from an image made up of various

animated frames and turn it into a still image. As

illustrated in Fig. 10, the segmented chunks are then

retrieved.

4.3 Popup CAPTCHA

The letters appear in a random order, stay visible for

a brief period of time, and then disappear. The colour

of the letters, the speed of popup and pause time can

all be altered. Popup CAPTCHAs have five different

sub-types:

• Popup/ Day-rising

• Popup/ Default

• Popup/ Lazzari

• Popup/ Orange wave

• Popup/ Cirque

As shown in Fig. No. 11, the characters in a

popup/cirque type of CAPTCHA have been

condensed and extracted into a single image by

scrubbing the image. The background and colours of

the image have been inverted to reveal the actual

image.

4.4 Smarties CAPTCHAs

An attractive animation is used to display the

characters from left to right in Smarties CAPTCHAs,

with an extra offset parameter that allows them to

start fading in earlier than waiting for the previous

character to fade out. There are eight different sub-

types of these CAPTCHAs.

• Smarties/Confronted CAPTCHA

• Smarties/ Cyan menace CAPTCHA

• Smarties/ Cyanmenace1 CAPTCHA

• Smarties/ GCG CAPTCHA

• Smarties/ Graphite CAPTCHA

• Smarties/ Palavollo CAPTCHA

• Smarties/ Smartie CAPTCHA

• Smarties/ Techware CAPTCHA

The results of this algorithm for Smarties

CAPTCHAs and its sub-types are displayed in Fig.

12.

Popup/ Day rising CAPCTHA

Popup/ Default CAPCTHA

Popup/ Lazzari CAPCTHA

Popup/ Orange wave CAPCTHA

Popup/ Cirque CAPCTHA

© Mehran University of Engineering and Technology 2023 177

Fig. 11. Results of Popup CAPTCHAs

Smarties/ Confronted CAPTCHA

Smarties/ Cyan menace CAPTCHA

Smarties/ Cyanmenace1 CAPTCHA

Smarties/ GCG CAPTCHA

Smarties/ Graphite CAPTCHA

Smarties/ Palavollo CAPTCHA

Smarties/ Smartie CAPTCHA

Smarties/ Techware CAPTCHA

Fig. 12. Results of Smarties CAPTCHAs

4.5 SpreadFade CAPTCHA

The SpreadFade CAPTCHA has two layers: the text

on the background layer and the squares on the

foreground layer. Initially, the squares are visible;

however, they slowly become transparent, making

the letters visible. The edges of the fading can be

altered by adding noise, making the edges wider and

less precise. There are seven verities of SpreadFade

CAPTCHAs.

• SpreadFade/ Braunie

• SpreadFade/ Default

• SpreadFade/ Immature dream

• SpreadFade/ Jacob Armen

• SpreadFade/ Negative

• SpreadFade/ Ooo

• SpreadFade/ Taher

We can determine the width and height of each

cell of an applied grid by saving the pixels in an array

© Mehran University of Engineering and Technology 2023 178

after taking away the grid lines. From the pixels in

the array, we create polygons and then draw all of

them within a static image, as displayed in Fig. 13.

Although, one type of SpreadFade CAPTCHA, i.e.

“Negative” falls in type 2, but it is not recognized by

our proposed algorithm, it is rather successfully

recognized by our algorithm for SearchLight

CAPTCHA.

SpreadFade / Braunie CAPTCHA

SpreadFade / Default CAPTCHA

SpreadFade / ooo CAPTCHA

SpreadFade / Taher CAPTCHA

SpreadFade / JacobArmeen CAPTCHA

Fig. 13. The results of SpreadFade CAPTCHAs

4.6 SearchLight CAPTCHAs

These CAPTCHAs are characterized by a

background colour and foreground text that appear so

analogous that the text cannot be seen until a

searchlight of a different hue is shined upon it. The

text can only be seen when the searchlight precisely

illuminates the foreground text as shown in Fig. 14.

There are seven varieties of these CAPTCHAs:

• SearchLight/Aunt bloodCAPTCHAs

• SearchLight/ BuxstoreCAPTCHAs

• SearchLight/ CyberCAPTCHAs

• SearchLight/ GrünNinjaCAPTCHAs

• SearchLight/ MoanCAPTCHAs

• SearchLight/ RedlightCAPTCHAs

• SpreadFade / Negative CAPTCHA

The Swapper, Spring and Roller CAPTCHAs are

the CAPTCHAs where individual characters are not

fixed and they may have different locations, rotations

and positions in every frame.

5. Results and Discussions

We have carried out various experiments to assess

the accuracy of our proposed methods. We collected

4,100 samples of animated CAPTCHAs, with 100

samples of 41 different sub-types, to break Hello-

CAPTCHAs. The table 1 illustrates the outcomes of

our proposed method when used to break various

schemes, including the Overall Precision, the method

to break specific type of CAPTCHA and obtained

chunks from animated images. We have achieved a

high degree of accuracy in breaking animated

CAPTCHA schemes. It takes an average of 3 seconds

to break the six-character challenge of the scheme,

which is the same amount of time it takes a normal

human to solve it. The Overall Precision (OP) of the

proposed algorithm is obtained by the Success

Recognition Rate (SRR) of the classifier, the

accuracy of segmentation, and the total number of

characters in an image, which is calculated using

Equation No. 2 [18]:

𝑂𝑃 (%) = 𝑆𝑆𝑅% (SRR %) n (2)

In a dataset of images, Segmentation Success Rate

(SSR) is the number of characters correctly

segmented. For example, if an algorithm is used to

segment 500 characters into 100 images containing 6

© Mehran University of Engineering and Technology 2023 179

characters each, the segmentation accuracy would be

500/600 = 0.833 or 83.3%. The Success Recognition

Rate (SRR) is determined by the accuracy of the

classifier, while n is the number of characters in an

image.

SearchLight / Aunt blood CAPTCHA

SearchLight / Buxstore CAPTCHA

SearchLight / Cyber CAPTCHA

SearchLight / Moan CAPTCHA

SearchLight / Redlight CAPTCHA

SearchLight / Grün Ninja CAPTCHA

SpreadFade / Negative CAPTCHA

Fig. 14. The results of SearchLight CAPTCHA

Table 1

Results of all targeted HELLO-CAPTCHA schemes

S.No. CAPTCHA Type Method Extracted Chunks of Characters SSR% SRR% OP%

1 Flitter/Default PCM

100 98 99

2 Flitter/Bee PCM

100 98 99

3 Flitter/Brick PCM

98 98 98

4 Flitter/Rusty Flame PCM

99 98 98

5 Flitter/Vinayak PCM

100 99 99.5

6 Flitter/Colorful PCM

100 98 99

© Mehran University of Engineering and Technology 2023 180

7
Flitter/

Windowlicker
PCM

100 99 99.5

8
Search Light/

Aunt blood1
RCP

100 98 99

9 Search Light/ Aunt blood RCP

100 99 99.5

10 Search Light/ Cyber RCP

100 95 97.5

11 Search Light/ Grun Ninja RCP

100 98 99

12 Search Light/ Redlight RCP

100 99 99.5

13 Search Light/ Moan RCP

100 98 99

14
SearchLight / Buxstore

CAPTCHA
RCP

99 98 98.5

15 Spread Fade/ Taher AF

100 97 98

16
Spread Fade/ Immature

Dream
AF

100 98 99

17 SpreadFade/ JacobArmeen AF

99 99 98.5

18 Spread Fade/ooo AF

96 95 95.5

19 Spread Fade/ Negative AF

100 98 99

20 Spread Fade/ Default AF

99 98 98.5

21
SpreadFade/

Braunie
AF

96 97 96.5

22 Smarties/Cyan Menace PCM

91 90 90.5

23
Smarties/

Confronted
PCM

80 86 83

24 Smarties/Graphite PCM

92 90 91

25 Smarties/ Techware PCM

80 86 83

26 Smarties/GCG PCM

90 92 91

© Mehran University of Engineering and Technology 2023 181

27
Smarties/

Cyanmenace1
PCM

96 98 97

28 Smarties/Smarties PCM

90 92 91

29 Smarties/ Palavollo PCM

88 89 88.5

30 Popup/Default PCM

90 90 90

31 Popup/Cirque PCM

98 97 97.5

32 Popup/DayRising PCM

90 96 93

33 Popup/ lazzari PCM

90 92 91

34 Popup/Orange wave PCM

74 72 73

35 H-Mover/Defaul CM

88 89 88.5

36
H-Mover/

sunriselang
CM

96 98 97

37 H-Mover/Baller CM

84 85 84.5

38 H-Mover/PPL CM

100 82 81

39 H-Mover/Quicky CM

100 99 99.5

40 H-Mover/ VioletSlider CM 98 98 98

41 H-Mover/Street CM

82 84 83

6. Conclusion and Future work

This paper introduces novel methods to decode

the moving text in animated CAPTCHAs. In

these CAPTCHAs, the information is distributed

in several frames instead of a single static image.

The idea is based on the assumption that by

spreading it in various frames it is hard to be

decoded by automated programs. However, in

this work we have verified the robustness of most

popular types of animated CAPTCHAs, i.e. Hello

CAPTCHAs. We have attacked 41 types of Hello

CAPTCHAs and successfully decoded them with

high precision. We have proposed state of the art

methods to decode these CATPCHAs. Novel

image extraction, noise removal and image

processing methods are applied to obtain the

image containing required text. The obtained

segments of characters may contain connected or

non-connected characters which are separated

using proposed segmentation methods. Finally, a

pre-trained CNN is used to recognize the

characters. The overall precision of up to 99.5 %

was achieved in this work.

In future, we plan to verify the robustness of

other types of animated CAPTCHAs as well as

different design variants of them. We are also

© Mehran University of Engineering and Technology 2023 182

looking forward to designing a new CAPTCHA

in local language such as Urdu or Sindhi language

which can be useful to protect the local websites

where these languages are spoken and written.

This idea can open a new research paradigm and

challenge the research community to work on

these languages which can ultimately improve the

machine reading capabilities of said languages.

Declarations

Conflict of interest Authors declare that they

have no conflicts of interest.

7. References

[1] H. Gao, X. Wang, F. Cao, Z. Zhang, L.

Lei, J. Qi and X. Liu, “Robustness of text-

based completely automated public Turing

test to tell computers and humans apart”,

IET Inf. Secur. 10(1), 45–52, 2016.

https://doi.org/10.1049/iet-ifs.2014.0381

[2] E. Bursztein, M. Martin and J. Mitchell,

“Text-based CAPTCHA strengths and

weaknesses”, Proceedings of the 18th

ACM conference on Computer and

communications security. 125–138, 2011.

https://doi.org/10.1145/2046707.2046724

[3] H. Gao, W. Wang, Y. Fan, J. Qi and X.

Liu: The Robustness of Connecting

Characters Together CAPTCHAs. J Inf

Sci Eng 30(2), 347–369, 2014.

[4] Creo.Group.: HelloCAPTCHA vs Spam

bots, 2012. Available at:

http://www.hellocaptcha.com (Accessed:

20 January 2023)

[5] Y. W. Chow and W. Susilo, “AniCAP: An

animated 3D CAPTCHA scheme based on

motion parallax”, International Conference

on Cryptology and Network Security,

Springer. 255–271, 2011.

[6] V. D. Nguyen, Y. W Chow and W. Susilo,

“Attacking animated CAPTCHAs via

character extraction. International

Conference on Cryptology and Network

Security”, Springer. 98–113, 2012.

https://doi.org/10.1007/978-3-642-35404-

5_9

[7] R. Hussain., H. Gao. and R. A. Shaikh,

“Segmentation of connected characters in

text-based CAPTCHAs for intelligent

character recognition”, Multimedia Tools

and Applications. 76(24). 25547–25561,

2017. https://doi.org/10.1007/s11042-016-

4151-2

[8] Y. W. Chow, W. Susilo and P.

Thorncharoensri, “CAPTCHA design and

security issues. Advances in cyber

security: principles, techniques, and

applications”, Springer. 69–92, 2019.

https://doi.org/10.1007/978-981-13-1483-

4_4

[9] E. Athanasopoulos and S. Antonatos,

“Enhanced captchas: Using animation to

tell humans and computers apart”, IFIP

International Conference on

Communications and Multimedia

Security, Springer. 97–108, 2006.

https://doi.org/10.1007/11909033_9

[10] J.S. Cui et al. “A CAPTCHA

implementation based on moving objects

recognition problem”, in 2010

International Conference on E-Business

and E-Government IEEE. 1277–1280,

2010.

https://doi.org/10.1109/ICEE.2010.326

[11] K. Kunitani and R. Uda, “Proposal of

CAPTCHA using three dimensional

objects”, Proceedings of the 7th

International Conference on Ubiquitous

Information Management and

Communication. 1–6, 2013.

https://doi.org/10.1145/2448556.2448613

[12] Y.W. Chow and W. Susilo, “AniCAP: An

animated 3D CAPTCHA scheme based on

motion parallax”, International Conference

on Cryptology and Network Security,

Springer. 255–271, 2011.

[13] Inc., L. M. T., “NuCAPTCHA”, Available

at: http://www.nucaptcha.com, 2013.

[14] I. Kund, “Non-standard captchas for the

web: a motion based character recognition

hip”, Dissertation University of

Monchester. Jeff Yan, Ahmad Salah EI

Ahmed Usability of CAPTCHAs or

Usability issues in CAPTCHA design

school of computing Science, Newcastle

University, UK, 2011.

[15] X. Xu. et al., “Characteristic analysis of

Otsu threshold and its applications”,

Pattern recognition letters, Elsevier. 32(7),

956–961, 2011.

https://doi.org/10.1016/j.patrec.2011.01.02

1

[16] V. D. Nguyen, Y.W. Chow and W. Susilo,

“Breaking a 3D-based CAPTCHA

scheme. International Conference on

https://doi.org/10.1049/iet-ifs.2014.0381
https://doi.org/10.1145/2046707.2046724
https://doi.org/10.1007/978-3-642-35404-5_9
https://doi.org/10.1007/978-3-642-35404-5_9
https://doi.org/10.1007/s11042-016-4151-2
https://doi.org/10.1007/s11042-016-4151-2
https://doi.org/10.1007/978-981-13-1483-4_4
https://doi.org/10.1007/978-981-13-1483-4_4
https://doi.org/10.1007/11909033_9
https://doi.org/10.1109/ICEE.2010.326
https://doi.org/10.1145/2448556.2448613
http://www.nucaptcha.com/
https://doi.org/10.1016/j.patrec.2011.01.021
https://doi.org/10.1016/j.patrec.2011.01.021

© Mehran University of Engineering and Technology 2023 183

Information Security and Cryptology”,

Springer, 391–405, 2011.

https://doi.org/10.1007/978-3-642-31912-

9_26

[17] J. Nian., P. Wang, H. Gao, and X. Guo, “A

deep learning‐based attack on text

CAPTCHAs by using object detection

techniques”, IET Information

Security. 16(2), 97-110, 2022.

https://doi.org/10.1049/ise2.12047

[18] O. Starostenko, C. Cruz-Perez, F. Uceda-

Ponga, and V. Alarcon-Aquino, “Breaking

text-based CAPTCHAs with variable word

and character orientation”, Pattern

Recognition 48(4), 1101-1112, 2015.

https://doi.org/10.1016/j.patcog.2014.09.0

06

[19] M. Kumar, M. K. Jindal, and M. Kumar,

“A systematic survey on CAPTCHA

recognition: types, creation and breaking

techniques”, Archives of Computational

Methods in Engineering, 29(2), 1107-

1136, 2022.

https://doi.org/10.1007/s11831-021-

09608-4

[20] N.T Dinh and V.T. Hoang, “Recent

advances of Captcha security analysis: a

short literature review”, Procedia

Computer Science. 218, 2550-2562, 2023.

https://doi.org/10.1016/j.procs.2023.01.22

9

[21] M. Guerar, L. Verderame, M. Migliardi, F.

Palmieri and A. Merlo:

GottaCAPTCHA’Em all, “A survey of 20

Years of the human-or-computer

Dilemma. ACM Computing Surveys”,

(CSUR). 54(9), 1-3, 2021.

https://doi.org/10.1145/3477142

https://doi.org/10.1007/978-3-642-31912-9_26
https://doi.org/10.1007/978-3-642-31912-9_26
https://doi.org/10.1049/ise2.12047
https://doi.org/10.1016/j.patcog.2014.09.006
https://doi.org/10.1016/j.patcog.2014.09.006
https://doi.org/10.1007/s11831-021-09608-4
https://doi.org/10.1007/s11831-021-09608-4
https://doi.org/10.1016/j.procs.2023.01.229
https://doi.org/10.1016/j.procs.2023.01.229
https://doi.org/10.1145/3477142

