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 Accurate weather forecasting is increasingly crucial as climate change intensifies 

the unpredictability of weather patterns, posing challenges to traditional 

forecasting models reliant on human observation or numerical methods. 

Researchers are working on precise weather forecasting to improve our 

preparedness, enabling fast response to any disaster. Among other techniques, 

deep learning is a prudent method to predict weather forecasts since it can 

automatically learn and train from a vast amount of data to generate and portray 

accurate features of an incident. This study evaluates deep learning techniques for 

weather forecasting based on different meteorological characteristics. This paper 

examines a few weather variables to evaluate the prediction performance of 

several deep learning solutions using TensorFlow and pre-trained Keras 

applications models. For this purpose, the top ten accuracy-based deep learning 

model architectures have been investigated and evaluated. The operation of each 

model is distinct. Models like EfficientNetB7, ResNet, MobileNet, VGG19, 

Xception Inception, ResNetV2, and VGG16 employ a combination of image 

classification and deep learning models to predict the weather. The WEAPD 

dataset of 6877 images representing 11 weather phenomena categories was 

utilized, and the models were trained and validated using an 80:10:10 split. 

Predictions, extraction of features, and fine-tuning of models were achieved with 

an accuracy of up to 83.39%. Most models performed well in image classification, 

enhancing the proposed framework and achieving significant precision in 

generating weather photos and reports. 

1. Introduction 

Nowadays, concerns about the world’s climate are 

growing among the civil society because many 

scientists have already confirmed much undeniable 

evidence regarding global warming [1]. On the other 

hand, agriculture, travelling, sports, and many other 

events in our life profoundly rely on precise weather 

forecasts [2]. Varying weather conditions have their 

own impacts on economic activities as well as our 

everyday life. So, accurate weather forecasting can 

improve human and environmental security and 

generate economic benefits [3]. Therefore, researchers 

are attempting to employ diverse methods to improve 

weather forecasting.  

In the past few years, several weather forecasting 

techniques and models have been developed that are 

based on numerical and historical data. Forecasting is 

a stochastic and computationally intensive process and 

wholly dependent on the precision of the data. Since 

weather is a dynamic system, it is quite difficult to 

achieve accuracy in numerical models. Apart from 

that, simulation mistakes hamper the validity of the 

model which emerge from three primary sources like 

faulty input data, flawed physics models, imprecise 
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numerical solutions, etc. Traditional techniques of 

classifying meteorological events mostly rely on 

human observation. And our capacity to forecast any 

physical phenomenon is dependent upon the precision 

of our input data and our modelling strategy [4]. 

Nevertheless, the typical artificial visual difference 

between meteorological occurrences is time-

consuming and error prone. Therefore, there is an 

urgent need to create precise, efficient, and automated 

technology for classifying meteorological events. 

Deep learning, a specialized subfield of machine 

learning, has evolved quickly in recent years and been 

applied to numerous arenas [3]. Deep learning has 

found widespread application in disciplines as diverse 

as computer vision, image processing, natural 

language processing, and many more due to its 

capacity to automatically learn and train from 

enormous amounts of sample data to develop higher 

feature expression [2]. Deep learning is adept at 

approximating nonlinear systems and extracting high-

dimensional characteristics. As the basis and primary 

driving force of deep learning, deep neural networks 

are less concerned with numerical modelling. Deep 

neural network (DNN) utilizes a data-driven approach, 

where models are constructed using data-driven 

learning [4]. The Weather Phenomena Database 

(WEAPD) from the Harvard Data verse was used as a 

dataset. There were 6877 photos available in 11 

weather phenomenon categories.  

In this research, we have used TensorFlow and 

Keras' top ten accuracy-based deep learning model 

architectures for evaluating accuracy in weather 

forecasting. Google's TensorFlow is a sophisticated 

open-source software library for machine learning and 

deep learning. Keras is a high-level application 

programming interface (API) for assembling building 

blocks to design and train deep learning models, and it 

can be integrated with TensorFlow. We implemented 

various deep learning model architectures including 

Resnet, MobileNet, DenseNet201, EfficientNetB7, 

and VGG19, among others. When done by the model 

layer, our proposed models performed exceptionally 

well in terms of picture categorization. Each model 

operates in a unique way. The model architecture 

provides the best level of predictive performance with 

the aid of these model representations of image 

resolution and model layer execution procedures. It 

could improve the proposed framework and deliver up 

to 80% accuracy in predicting weather from 

photographs and classification reports. To improve 

weather forecasting, our models based on deep 

learning achieved satisfactory results, validating the 

research. 

2. Literature Review 

The application of neural networks and deep learning 

techniques in weather prediction has been extensively 

studied, demonstrating diverse approaches to tackle 

the challenges in accuracy and reliability. Salman et 

al. conducted a foundational study employing 

recurrent neural networks (RNNs) optimized 

heuristically for rainfall prediction using a dataset 

composed of ENSO (El Niño-Southern Oscillation) 

variables such as wind, SOI, SST, and OLR [1]. In 

their experiments, rainfall was the dependent variable, 

and three different leaps—1, 2, and 3—were evaluated 

for predictive performance. Notably, leap 1 emerged 

as the most effective, yielding an R² value of 84.8% 

and an RMSE of 125 in the first experiment. 

Comparatively, the second experiment exhibited a 

lower R² value of 59.9% with an RMSE of 155.29. 

These findings underscore the potential of RNNs with 

robust backpropagation for rainfall forecasting, 

highlighting the sensitivity of the model's performance 

to data segmentation and parameter optimization. 

In another study, Fang et al. proposed and tested 

the MeteCNN model for weather event classification, 

achieving significant improvements over traditional 

models [2]. Using their weather dataset, the MeteCNN 

architecture attained an impressive classification 

accuracy of 92.68%, surpassing ResNet18, which 

achieved an accuracy of 88.73%, by approximately 

4%. The precision, recall, and F1-score of MeteCNN 

hovered around 93%, underscoring its reliability in 

classification tasks. This model’s superiority in 

handling weather event classification suggests that 

tailored deep learning architectures can significantly 

outperform generalized models, particularly when 

optimized for specific datasets and weather 

phenomena. Building on advancements in 

convolutional neural networks (CNNs), Xiao et al. 

developed a CNN-based deep learning model for 

weather classification, trained on a Kaggle dataset [3]. 

The model achieved initial metrics of 94% training 

accuracy and 92% validation accuracy, with training 

and validation losses at 18% and 22%, respectively. 

While promising, Xiao et al. acknowledged the need 

for further development, including integrating 

additional attributes such as humidity, precipitation, 

air pressure, and solar radiation. These enhancements 

aim to improve the model's robustness and 

applicability to a broader range of weather scenarios, 

demonstrating the iterative nature of developing 

weather prediction systems. Further comparative 

studies, such as those by Arcucci et al., explored the 

effectiveness of neural networks against traditional 

downscaling methods like ensemble means, multiple 

linear regression, and regional models [4]. 
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Downscaling, critical for refining low-resolution 

forecasts, was tested using seven-day rainfall 

predictions. Results showed that neural networks 

could capture storm-related details, particularly over 

the Amazon, more effectively than traditional models. 

These findings align with the performance of models 

like ResNet, emphasizing the value of neural networks 

in extracting nuanced weather patterns that 

conventional methods may overlook. Other 

researchers have explored innovative neuronal 

frameworks tailored for various weather conditions, 

such as clear, cloudy, and overcast days [5, 6]. Using 

multivariate neural networks (NNE) combined with 

wavelet-adjusted outputs of PV, solar irradiance, wind 

speed, temperature, and moisture, they demonstrated 

significant enhancements in prediction accuracy [9]. 

This method utilized clarity indices to classify days 

and employed a trimming aggregation approach to 

combine upper and lower prediction bounds 

effectively. Results indicated that the proposed 

framework consistently outperformed individual and 

benchmark models, showcasing its utility in complex, 

multivariate weather scenarios [10]. 

3. Methodology 

Deep learning models are used to anticipate object 

classification or prediction. In this study, we suggest 

the use of a picture dataset to forecast the weather 

images. There are a total of 6877 images in the 

collection, which includes 11 types of meteorological 

events. The WEAPD dataset was split into three sets: 

a training set, a validation set, and a testing set, with 

no parts of any two pictures crossing across. This 

research seeks to evaluate deep learning approaches 

for weather forecasting. To address these challenges, 

this study investigates the application of deep learning 

models to automate and enhance the accuracy of 

weather forecasting [11]. Specifically, it evaluates ten 

architectures for their performance in predicting 

weather categories based on image data. Fig. 1 shows 

the workflow of the methodology.  

 

Fig. 1. Methodology Workflow 

3.1 Data Classification 

It is crucial to create a large dataset of properly 

labelled photos of meteorological events. Therefore, 

we collected the dataset called the Weather 

Phenomena Database (WEAPD) from the Harvard 

Data verse, where 11 categories of weather 

phenomena are available comprising a total of 6877 

photos. The dataset WEAPD was divided into a 

training set, a validation set, and a testing set in a ratio 

of 80:10:10, and no portion of any one picture overlaps 

with any other. 

Within the dataset, the different types of weather 

are broken down into eleven distinct groups, where the 

following terms are included in each category: rime, 

fog, smog, dew, sandstorm, glaze, snow, hail, rain, 

frost, and lightning [12]. There is an eight-to-one 

validation ratio in the train dataset. We have integrated 

the deep learning models library into the Keras 

program so that we may identify photos in accordance 

with a variety of different model principles. Fig. 2 

shows the data distribution in the dataset.  

 
Fig. 2. Data Distribution in Dataset 

3.2 Models 

3.2.1 EfficientNetB7 

In this study, one of the significant advancements in 

weather identification involves the use of deep 

learning models to analyze and classify weather 

patterns accurately. By using the EfficientNet, it uses 

compound scaling to uniformly adjust depth, breadth, 

and resolution with a single scaling coefficient. This 

approach ensures that larger input images are paired 

with deeper networks for a broader receptive field and 

wider networks to capture finer details, optimizing 

model performance [13]. The principle behind this 

approach is rooted in the observation that larger input 

images require deeper networks to expand the 

receptive field and wider networks to capture finer 

details.  

By modifying the weights, each iteration is 

carefully designed and tested to deliver optimal 

outcomes, occasionally deviating from the scaling 
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formula for improved performance in specific 

scenarios [14]. Table 1, illustrates the classification 

performance of EfficientNet across multiple classes, 

showcasing its ability to consistently deliver high 

accuracy and robust results across  datasets. 

Table 1 

Classification report 

Data Class  Precision Recall F1-Score Support 

Dew 0.85 0.85 0.85 145 

Fog/smog 0.68 0.94 0.79 176 

Frost 0.66 0.45 0.53 87 

Glaze 0.66 0.65 0.64 116 

Hail 0.74 0.96 0.84 113 

Lightning 0.75 0.93 0.83 74 

Rain 0.84 0.88 0.86 230 

Rainbow 0.94 0.89 0.91 53 

Rime 0.94 0.95 0.94 230 

Sandstorm 0.94 0.55 0.70 50 

Snow 0.62 0.57 0.59 121 

3.2.2 ResNet 

In the context of weather identification and prediction, 

Shaoqing et al.’s Residual Network (ResNet) offers a 

transformative approach for handling deep neural 

networks [7]. ResNet’s architecture, which 

incorporates residual blocks with skip connections, is 

particularly relevant for analyzing complex weather 

datasets that require deep models to capture intricate 

spatial and temporal patterns.  

The skip connections in ResNet facilitate the 

efficient training of deep networks by mitigating 

issues like vanishing gradients, a common challenge 

when processing high-dimensional data such as 

weather attributes. In weather identification tasks, 

these connections allow the network to retain crucial 

information from earlier layers while also learning 

fine-grained transformations, leading to improved 

accuracy and generalization. In the absence of the skip 

connection in the model architectur, the input x is first 

multiplied by the weights of the layer, and then a bias 

term is added to the product. After that, the activation 

function (f) is called, and the result is H(x). 

𝐻(𝑥) = 𝑓(𝑤 ∗ 𝑥 + 𝑏)                       (1) 

Due to the implementation of architectural design 

of an innovative skip connection method, the output 

H(x) is transformed into in Eq. 2. 

𝐻(𝑥) = 𝑓(𝑥) + 𝑥                                 (2) 

In the design influenced by VGG19, there is a 34-

layer plain network to which shortcut connections, or 

skip connections, have been introduced [15,16]. The 

design is then transformed into the residual network 

by use of these skip connections, or residual blocks. 

3.2.3 MobileNet 

MobileNet is a mobile-optimized computer vision 

model developed by TensorFlow, designed for use in 

mobile applications. In the context of weather 

identification, this lightweight model can be extremely 

useful for real-time weather classification tasks, 

especially in mobile devices. [17]. 

By deploying MobileNet for tasks such as 

identifying cloud patterns, detecting weather 

anomalies, or classifying weather conditions based on 

visual data, mobile applications can provide timely 

weather updates directly to users. Due to the open-

source development, it enables developers to adapt 

and train the model for specific weather-related use 

cases, such as forecasting, weather pattern 

recognition, or even detecting severe weather 

conditions in real time.  

3.2.4 VGG19 

The VGG19 model is a subset of the VGG model that 

adds one extra layer to the base model, the architecture 

contains a total of 19 layers (16 convolutional layers, 

3 fully connected layers, 5 MaxPool layers, and final 

1 SoftMax layer). In addition to VGG11 and VGG16, 

there are further VGG variations. Since the models 

were made publicly accessible by the authors, they 

may be utilized as-is or with minor adjustments for 

other comparable tasks, making this mode a useful 

classification architecture for a wide variety of 

datasets. Facial recognition is another area where 

transfer learning may be used. Weights are freely 

accessible with other frameworks like Keras, allowing 

for arbitrary customization and application. The VGG-

19 network's aesthetic and content loss. Fig. 3 shows 

the VGG16 Model Architecture. 

 

Fig. 3. VGG16 Model Architecture 

3.2.5 Xception 

The model takes the concepts behind the base 

Inception model and makes them more extreme. In the 

original Inception model, the input was compressed 

using 1×1 convolutions, followed by the application of 

different types of filters to the depth areas of each 

input vector. Xception reverses this approach. Instead 

of compressing the input first, it applies filters to each 

of the depth maps individually. Afterward, 1×1 

convolution is applied across the depth to compress 
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the input space [18]. This design improves the model’s 

efficiency and performance by better using depth wise 

separable convolutions. Fig. 4 shows the Xception 

Model Architecture. 

 

Fig. 4. Xception Model Architecture 

The data will first travel through the entry flow, 

then it will go through the middle flow (during which 

it will repeat itself eight times), and lastly it will 

proceed through the exit flow. TensorFlow, a 

framework developed by Google, was used to create 

Xception, and each of its 60 NVIDIA K80 GPUs was 

used to train the model. 

3.2.6 InceptionResNetV2 

ResNet and Inception offer advancements in image 

recognition tasks, with exceptional performance with 

low computational cost. The Inception architecture, 

known for its efficient design, further improved by 

integrating residual connections, leading to the 

development of Inception-ResNet [17]. 

Over a million pictures from the ImageNet 

collection are used to train the convolutional neural 

network known as Inception-ResNet-v2. The network 

has 164 layers [18,19], and it can categorize pictures 

into 1000 different item categories, including things 

like surface, and objects. As a direct consequence of 

this, the network has acquired the ability to learn rich 

feature representations for a diverse set of picture 

types. With input images sized at 299 x 299 pixels, the 

network outputs a list of predicted class probabilities, 

enabling it to perform large-scale image classification 

efficiently  [19]. 

3.2.7 VGG16 

To improve accuracy of classification performance, 

the model’s developers are increasing depth through 

the use of tiny (3x3) convolution filters. Where 

architecture design allowed them to add more layers, 

resulting in a network with 16 to 19 weight layers. As 

a result, VGG16 has approximately 138 million 

trainable parameters, enabling it to learn complex 

feature representations for image classification tasks. 

Fig. 5 shows the VGG16 Model Working Flow. 

 

Fig. 5. VGG16 Model Working Flow 

VGG16 is a highly effective model in the field of 

image classification, achieving an impressive success 

rate of 92.7% when tasked with categorizing 1,000 

images into 1,000 distinct categories in weather 

identifications. The image recognition task is partly 

due to its ease of use with transfer learning. Fig. 6 

shows the accuracy of the model. Using 16 weighted 

layers in the network, which are the layers with 

trainable parameters. In total, VGG16 consists of 21 

layers, including 13 convolutional layers, 5 Max 

Pooling layers, and 3 fully connected (dense) layers. 

Despite having 21 layers, only 16 are weight layers, 

focusing on those with trainable parameters. 

3.2.8 Resnet101 

This model utilizes the concept of residual blocks to 

solve the problem of removing or exploding gradients. 

In terms, instead of forcing the network to fit the initial 

mapping, H(x), it allows the network to adjust and 

focus on learning the difference (residual) between the 

input and output, making training and efficient 

architectural design.  

Fig. 7 shows that the error rate for a 56-layer CNN 

is greater than that of a 20-layer CNN on both the 

training and testing datasets. The authors conducted 

more research on the mistake rate and concluded that 

the vanishing/exploding gradient is to blame. 

 

Fig. 6. Model Accuracy Report 

The ResNet architecture (including the residual 

blocks) may be designed from scratch using the 

TensorFlow and Keras application programming 

interfaces. Different ResNet designs are shown in Fig. 

8. 
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Fig. 7.  Model Architecture 

Fig. 7, illustrates input images are processed 

through residual blocks, with multiple layers forming 

each block. To optimize the model, the study removes 

the fully connected (FC) layer that originally 

contained one thousand different object categories. 

Depending on the number of target classes, a new FC 

layer to accommodate the specific classification 

requirements. 

3.2.9 DenseNet201 and DenseNet169 

As can be seen in the graphic below, the forward pass 

of a typical convolutional neural network is rather 

uncomplicated, with the input image being fed into the 

network and the output being a predicted label. 

 

Fig. 8. DenseNet Model Architecture 

In DenseNet, each layer processes the feature maps 

of the preceding layers, except for the first 

convolutional layer, which directly processes the input 

image. For an L-layer network, there are L direct 

connections, one between each consecutive layer. 

Total of L(L+1)/2 direct connections between layers. 

In DenseNet, each layer's feature maps serve as inputs 

for the layer above it, while the feature maps of the 

upper layer are used as inputs for the one below. 

Downsampling can occur outside the dense blocks 

through convolution and pooling operations. Within 

the dense block, feature maps are concatenated, 

ensuring that the sizes of the feature maps are 

consistent across all layers. 

 

Fig. 9. DenseNet Model Block Architecture 

4. Result Analysis 

There is a wide variety of accessible frameworks for 

deep learning today. We have used a batch size of 32 

and 100 iterations, where the learning algorithm will 

work through the entire training dataset. The reason 

behind choosing Keras instead of any other system is 

that it has garnered significant support from the 

scholarly community as well as inside the industry. 

Keras, when combined with the second version of 

TensorFlow, has more users than any other deep 

learning solution. Both Keras and TensorFlow 2 are 

quite popular among academics, as shown by the fact 

that they rank first in terms of the number of references 

they have received in scholarly articles indexed by 

Google Scholar. 

Deep learning models that come pre-trained with 

Keras applications are known as Keras applications. 

These models are useful for making predictions, 

extracting features, and fine-tuning other models. 

According to the documentation that they have 

provided, an overview of the prediction table allows 

us to quickly compare the outcome with our own 

observations. The top 10 implementations correspond 

to the ImageNet validation dataset performance of the 

model. 

The results of prior study, as shown in Table 2, are 

obtained through the Keras application. Their results 

and our most recent discoveries, which were 

predicated on their findings, are quite different in a 

few significant ways. We are getting up to 80% model 

accuracy from that model architecture, which is 

impressive considering the wide variety of deep 

learning models that we can implement 

(EfficientNetB7, Resnet, MobileNet, VGG19, 

Xception, Inception ResNetV2, VGG16, ResNet101, 

DenseNet201, and DenseNet169). We can achieve an 

efficiency of 80% across all the models using only five 

of them. 

Table 2 

Model accuracy by Keras application 

Model Names Top A-10 

Accuracy 

Parameters 

EfficientNetB7 84.3% 66.7M 

ResNet 74.9% 25.6M 

MobileNet 70.4% 4.3M 

VGG19 71.3% 143.7M 

Xception 79.0% 22.9M 

InceptionResNetV2 80.3% 55.9M 

VGG16 71.3% 138.4M 

ResNet101 76.4% 44.7M 

DenseNet201 77.3% 20.2M 

DenseNet169 76.2% 14.3M 

The results of our implementation are summarized 

in Table 3, both in terms of test model accuracy and 

test model loss. Out of all the models, we have 

achieved a model accuracy of up to 80% in ResNet, 

MobileNet, Resnet101, and DenseNet201, 
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DenseNet169. These models have a model test loss 

rate of greater than 0.5 less than 1, making them more 

suited for forecasting the weather using image 

recognition. Fig. 10 demonstrates the summary of the 

implemented models. 

Table 3 

Implementation findings 

Model Names Top 10 

Accuracy 

Parameters 

EfficientNetB7 76.47% 0.67648 

ResNet 80.63% 0.68640 

MobileNet 81.94% 0.72586 

VGG19 79.24% 0.78651 

Xception 76.40% 0.87771 

InceptionResNetV2 71.81% 1.16593 

VGG16 79.10% 0.81799 

ResNet101 83.39% 0.56006 

DenseNet201 82.96% 0.54366 

DenseNet169 82.96% 0.60020 

 

Fig. 10. Implemented Model Summary 

4.1 Comparative Analysis 

Our work utilizes multiple pre-trained deep learning 

models for weather forecasting, achieving competitive 

performance compared to previous studies while 

introducing novel aspects. This study is novel because 

it integrates multiple pre-trained models that provide 

versatility and scalability, allowing for more efficient 

training and better generalization across diverse 

climatic conditions. Unlike previous studies that often 

relied on custom-built or singular models, our 

approach reduces training time, resource usage, and 

offers a broader adaptability, making it a more 

comprehensive solution for weather forecasting. 

Salman et al. [1] achieved an R² value of 84.8% for 

rainfall prediction, while our models, such as 

ResNet101 and DenseNet201, obtained accuracies of 

up to 83.39%, demonstrating effective generalization. 

Compared to the lower accuracy models in other 

studies, our work shows greater versatility and 

scalability [15]. This combination of efficiency, 

flexibility, and scalability sets our work apart from 

previous studies, offering a novel solution to the 

challenges of weather forecasting [18]. 

5. Conclusion 

This study evaluated ten deep learning models, 

including EfficientNetB7, ResNet, MobileNet, VGG-

19, Xception, InceptionResNetV2, VGG-16, 

ResNet101, DenseNet201, and DenseNet169, for 

weather forecasting using image data. Among these, 

ResNet101, DenseNet201, and DenseNet169 achieved 

the highest accuracy, demonstrating the effectiveness 

of deep learning models in automating weather 

prediction. The findings highlight the potential of 

these models to improve weather forecasting precision 

through advanced image recognition techniques. 

However, several constraints were encountered in 

this work. The dataset, while diverse, was limited in 

size and exhibited imbalances across some weather 

categories, which may have impacted the 

generalizability of the models. Additionally, 

computational demands restricted the exploration of 

larger architectures and more extensive 

hyperparameter tuning. The study also focused solely 

on image classification, without integrating 

meteorological attributes such as temperature, 

humidity, and atmospheric pressure, which are critical 

for real-world applications. Future research should 

address these limitations by utilizing larger datasets, 

incorporating image segmentation methods like U-

Net, and integrating additional meteorological 

variables to enhance model performance and practical 

applicability. 
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