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 Maintenance of Railway rolling stock is usually scheduled based. However, the 

mechanical parts, especially the wheelset may wear down prematurely due to 

several factors such as excessive braking and traction forces and environmental 

conditions. This makes the scheduled maintenance less effective and sometimes it 

results in derailments.   This paper presents a deep learning-based technique to 

detect wheel conditions so that maintenance can be performed promptly and 

efficiently. A time series dataset of axle vibrations is generated using a simulation 

model of the wheelset. The dataset is then used to train and test the deep learning 

model. Long short-term memory (LSTM) architecture is selected for this 

application since it is designed to perform better for time series datasets. The 

results show good performance in terms of training and testing accuracy. The 

model is tested in different defect scenarios and the mean square error in the 

prediction of railway wheelset parameters is around 15%.  

1. Introduction 

A railway wheelset is an important element in railway 

transport. It is different in two aspects from road 

vehicles. First, its tread is conical in shape, and second, 

both wheels are rigidly fixed on an axle. The exterior 

conical perimeter of the wheelset plays an important role 

in the proper operation of railway vehicles [1, 2]. 

Excessive noise and vibration are produced if the 

perimeter is changed. Traction and braking forces 

generated at the wheel-rail contact point can change the 

shape of the exterior perimeter of the wheel. Changes in 

wheel shape also accelerate crack growth on the rail 

tracks and lead to premature failure of the rail system [3, 

4]. Therefore, for proper operation, the railway vehicle 

wheel tread must be maintained at the desired conicity 

level [5]. Finding an effective technique for wheel 

profile estimation has gained a lot of interest in the 

scientific community and is of great interest to railway 

operators [6, 7]. 

Over the past few decades, the railway industry has 

seen the adoption of multiple techniques, aiming to 

improve operations and ensure safety. Among these 

advancements, numerous monitoring approaches have 

been put forth to enable automated inspections of wheel 

conditions. The underlying principle behind these 

techniques lies in the understanding that when a wheel 

is defective, the forces involved in the interaction 

between the wheel and rail tend to increase [8, 9]. 

Exploiting this phenomenon, railway researchers have 

developed various techniques to address issues related 

to rolling stock conditions, thereby enhancing the 

overall efficiency and reliability of railway systems.    

Deep learning-based methods are a powerful tool for 

rolling stock condition monitoring, offering significant 
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improvement in safety and maintenance procedures. 

Deep learning techniques have proven to have the 

capability to detect anomalies at the initial stage, 

allowing timely maintenance action of the rolling stock 

and reducing the risk of accidents and financial losses to 

railway operators. For instance, in [10] a deep learning-

based approach is proposed to detect wheel defects in 

railway vehicles. The proposed model achieved 

reasonable accuracy and demonstrated the effectiveness 

of the proposed method in identifying various types of 

wheel defects. In addition to defect detection, deep 

learning models have also been utilized for the 

prediction of running safety of railway vehicles. In [11] 

vibration-based method is developed to forecast rolling 

stock failure in real-time. This predictive capability 

enables proactive maintenance planning, minimizing 

downtime, and improving overall system reliability. To 

train these deep learning models, large datasets of wheel 

condition data are required. Collecting such datasets can 

be a challenging task, but efforts have been made to 

address this issue. For instance, Zhang et al. [12] 

proposed a data augmentation method to generate 

synthetic wheel condition data, augmenting the 

available dataset and improving the model's 

performance. While deep learning-based approaches 

show promise in wheel condition monitoring, ongoing 

research aims to further refine and optimize these 

models. The integration of real-time monitoring systems 

with deep learning algorithms holds great potential for 

enabling continuous and proactive monitoring of wheel 

conditions, ultimately enhancing the safety and 

efficiency of railway operations. 

In this paper, a novel deep learning-based method is 

proposed to detect changes in the conical profile of the 

wheelset.  The desired value of the conicity of the 

railway wheelset is 0.15 [13, 14]. The proposed method 

is capable of detecting deviations in conicity values with 

good accuracy.  The novel contributions of the authors 

are listed below.  

a. Development of vibration dataset of railway 

wheelset. 

b. Development of deep earning model for wheel 

conicity detection. 

2. Methodology 

The proposed system's block diagram is depicted in Fig. 

1. To replicate the wheelset's behaviour, a simulation 

model is constructed in Simulink, based on the 

mathematical model presented by the authors in [1-3]. 

Yaw and lateral dynamics are considered for modeling 

the wheelset dynamics. For an accurate generation of the 

dataset track disturbances induced by irregularities in 

track geometry are also considered. The reason for not 

considering other dynamics is that the impact of wheel 

defects is more evident on lateral and yaw dynamics 

which allow the deep learning model to learn quickly 

with an even smaller dataset.  

 

Fig. 1. Block diagram of the proposed scheme 

To gather data for training and testing the deep 

learning model, axle vibration and yaw rate data from 

the wheelset are collected using an accelerometer and 

gyroscope. The collected data is pre-processed to create 

a comprehensive dataset. Simulations are run for 50 

seconds at various speeds and wheel conditions, in order 

to generate vibration data representing all possible fault 

scenarios. These conditions (e.g., vehicle speed and 

wheel condition) are varied randomly during the 

simulations. Simulations are run several times to 

generate as much data as possible. For each simulation 

iteration, 500,000 data points are generated. This 

extensive dataset allows for robust training and testing 

of the deep learning model, enabling it to effectively 

learn and recognize patterns associated with different 

wheel conditions. It is important to note that the 

simulation model, based on the established 

mathematical model [1-3], accurately mimics the 

dynamic behaviour of the wheelset, ensuring the validity 

of the generated data for training purposes.  



© Mehran University of Engineering and Technology 2023                                156 

 

Fig. 2. Lateral acceleration and yaw rate at Vo=75 Km/h and 

𝜆𝑤 =0.15 

Fig. 2 shows the yaw rate and lateral acceleration 

profiles observed during simulations conducted under 

normal wheel conditions with a forward velocity 75 Km/ 

and conicity (𝜆𝑤) 0.15. It is worth noting that the 

frequency and amplitude of vibration exhibited by the 

system are influenced by both the velocity and conicity 

of the wheelset. The relationship between these 

variables can be expressed mathematically using 

Klingel's formula, as denoted by equation (1). This 

formula provides insights into the dependence of 

vibration characteristics on the specific combination of 

velocity and conicity employed during the simulation.   

𝑓 =  
𝑉𝑣

2𝜋
√

𝜆𝑤

𝐿𝑔𝑟𝑜
                                                              (1) 

 

Fig. 3. Lateral acceleration and yaw rate at Vo=120 Km/h 

and 𝜆𝑤=0.05 

Fig. 3 depicts the lateral acceleration and yaw rate 

observed when the simulation was run at a forward 

speed of 120 Km/h with a conicity value (λ_w) of 0.05. 

This specific scenario represents a faulty wheel 

condition commonly referred to as a wheel flat, 

characterized by a reduced conical tread. The figure 

clearly illustrates that both the amplitude and frequency 

of vibrations are significantly elevated under this faulty 

condition. These vibrations impact the ride quality of the 

vehicle. Additionally, the increased vibrations often 

generate high-pitched noise, which may prove to be 

disturbing for nearby residents or occupants. 

 

Fig. 4. Lateral acceleration and yaw rate at Vo=150 Km/h 

and 𝜆𝑤=0.2 

Fig. 4 illustrates a specific scenario known as a false 

flange condition, where the wheel tread exhibits wear on 

one side, leading to an increased conicity value. In this 

condition, the wheel's conical profile deviates from its 

intended design. As depicted in Fig. 4, this false flange 

condition gives rise to vibrations characterized by both 

high amplitude and high frequency. It is important to 

note that the presence of such intense vibrations poses a 

significant risk, as they have the potential to escalate to 

critical levels. If not detected and addressed in a timely 

manner, these vibrations may ultimately lead to 

derailment, jeopardizing the safety and integrity of the 

railway system. 

Hence, accurate and timely detection of the false 

flange condition becomes crucial to ensure the 

prevention of potential accidents and maintain the 

overall operational safety of the railway infrastructure. 

By implementing effective monitoring systems and 

employing appropriate maintenance protocols, railway 

operators can mitigate the risks associated with this 

condition and uphold the safety standards required for 

smooth and reliable train operations [15,16]. However, 

due to the involvement of nonlinearities in railway 

dynamics, the presence of uncertainties (e.g., 

environmental conditions), and the presence of track 

irregularities it is extremely difficult to determine wheel 

condition from vibration data only. All the variable 

parameters must be considered to accurately detect 
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wheel conditions. Therefore, the deep learning approach 

is most suitable for such types of applications. 

3. Deep Learning Model 

The dataset employed in this study consists of various 

cone sizes, namely 0.05, 0.75, 0.1, 0.12, 0.15, 0.18, and 

0.2. The primary objective of this research is to train a 

deep-learning model capable of predicting actual 

conicity conditions. To achieve this goal, a Long Short-

Term Memory (LSTM) model is proposed. LSTM 

networks are particularly well-suited for processing 

sequential data, capturing long-term dependencies, and 

mitigating the challenges associated with the vanishing 

gradient problem in conventional RNNs. Because of the 

temporal nature of the dataset, LSTMs enable the 

effective capture of temporal dependencies and provide 

accurate predictions. The reason for choosing LSTM 

stems from its ability to retain important information 

over extended time intervals, making it suitable for 

modelling dynamic systems such as the one under 

investigation. By using LSTM, a robust and accurate 

predictive model can be developed to predict future 

values of railway wheelset parameters. This predictive 

capability facilitates the identification and resolution of 

potential issues or anomalies within the dataset, offering 

valuable insights for maintenance and optimization 

purposes. 

3.1 Model Training  

The raw data generated from the simulation model 

presented in section 2 is gathered and organized into a 

single file for further processing. A snapshot of the data 

is shown in Fig. 5. After the dataset is prepared, it is 

divided into 70% and 30% ratios for training and testing 

purposes. 

 

Fig. 5. Dataset in CSV format 

A long short-term memory (LSTM) layer is 

incorporated into the deep learning model architecture. 

The LSTM layer is chosen due to its capability to 

effectively handle both past and present timesteps, 

making it suitable for this specific application. To 

optimize the model's performance, hyperparameter 

tuning is conducted. This includes exploring variations 

such as variations in the number of dense layers. 

Furthermore, adjustments to hyperparameters such as 

batch size, number of epochs, loss function, choice of 

the optimizer, and activation function are made to 

minimize the training loss. The chosen configuration for 

the output layer consists of a single neuron. The model 

is trained using a batch size of 72 and a total of 50 

epochs. The mean average error is utilized as the loss 

function, and the Adam optimizer is employed. 

After the training is completed, the training and 

testing losses came out to be 0.0081 and 0.0158 

respectively. These values indicate the effectiveness of 

the model in capturing the underlying patterns and 

making accurate predictions. To provide a visual 

representation of the performance, the training and test 

losses are plotted in Fig. 6, offering a graphical depiction 

of the model's performance and the convergence of the 

training process. This visualization aids in assessing the 

quality of the model's predictions and serves as evidence 

of achieving the best results during the training phase. 

 

Fig. 6. Training and testing loss 

The model summary is given in Table 1 with 11,851 

trainable params: 

Table 1 

Model summary 

 

4. Results and Discussion  

To check the accuracy of predictions the trained model 

is tested in different wheel condition scenarios. The 

predicted results are shown in Fig. 7. The top graph in 

Fig. 7 shows the predicted lateral acceleration at conicity 

0.12, which was not used during the training process. 

Similarly, yaw rate and lateral acceleration predicted 

values are shown at various conicity values. The mean 
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square error in testing is less than 15% which is good 

accuracy given the uncertainties involved in railway 

dynamics. 

 

Fig. 7. LSTM prediction results 

Table 2 

Summary of prediction accuracy 

Scenario Velocity Conicity MSE 

(Lateral 

Acceleration) 

MSE 

(Yaw 

Rate) 

1 40 

Km/h 

0.08 14.31% 13.23% 

2 100 

Km/h 

0.12 10.75% 9.13% 

3 130 

Km/h 

0.18 15.53% 14.91% 

Prediction accuracy is further summarized in Table 

2. In scenario 1, the model is tested at a forward velocity 

of 40 Km/h and a conicity value of 0.1. The mean square 

error in this scenario is 14.31% for lateral acceleration 

and 13.23% for yaw rate. Similarly in scenario 2, the 

model is tested at a speed of 100 Km/h and conicity of 

0.12. In this scenario, the mean square error for lateral 

acceleration is 10.75% and for yaw rate, it is 9.13%. In 

this scenario mean square error is relatively low, this is 

because the conicity value considered in this scenario is 

closer to the one used in the training process. In the third 

scenario, the model was again tested at a speed of 130 

Km/h and a conicity value of 0.18. In this scenario, the 

mean square error is 15.53% for lateral acceleration and 

14.91% for yaw rate. 

5. Conclusion and Future Work 

In this paper, a deep learning-based approach for wheel 

condition monitoring is presented which utilizes a 

dataset encompassing various conicity values. 

Implementing a Long Short-Term Memory (LSTM) 

deep learning architecture, demonstrated the capability 

to predict the wheel condition accurately. The deep 

learning model showed promising results, with very low 

training and test losses, indicating its efficacy. Further 

work can be carried out by exploring alternative deep 

learning architectures, such as convolutional neural 

networks (CNNs) or hybrid models, which could offer 

valuable insights into further enhancing the accuracy 

and efficiency of wheel condition monitoring. 

Furthermore, refinement of the deep learning model, 

expansion of the dataset, and practical implementation 

will contribute to the advancement of this field, 

ultimately enhancing the safety and reliability of railway 

systems. For practical implementation, the model can be 

deployed to an edge computing platform to detect wheel 

defects in real-time.   
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