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 Target tracking via Correlation Filter (CF) is a hot research area of computer 

vision domain, and offers various credible benefits. Existing CF algorithms face 

challenges when there are target appearance variations due to background noise, 

scale and illumination changes, occlusion, and fast motion, which severely 

degrades the overall tracker performance. To get maximum benefits, an object 

tracker should perform well with the less computational burden in the presence of 

real time challenging situations. To address this issue, a novel visual object tracker 

is proposed based on multi feature fusion and adaptive learning technique with 

aberrance suppression. At first, multiple features i.e., Histogram of gradient 

(HOG), Color Naming (CN), saliency, and gray level intensities are combined 

using feature fusion technique. Further, based on the evaluation of final fused 

response map using Peak-to-Sidelobe Ratio (PSR), an adaptive learning strategy 

is integrated to improve the learning phase of tracker. Tracking results show that 

the proposed strategy beats the other modern CF trackers with Distance Precision 

(DP) scores of 88.2%, 85.9%, and 74.1% and 64.7% over OTB2013, OTB2015, 

and TempleColor128 and UAV123 datasets respectively. 

1. Introduction 

Object tracking is an essential problem in computer 

vision applications including security and supervision 

[1], human-machine interaction [2], Intelligent 

Transportation Systems (ITS) [3], and various UAV 

applications [4, 5]. The prime goal of object tracking 

is to estimate the tracking path of a single or multiple 

objects in the video sequence. With effective object 

tracking, more information about the recognition and 

activities of the object can be extracted. Object 

tracking becomes a challenging task as the targeted 

object experiences many real time challenging factors 

i.e., partial/full occlusion, target deformation, light 

and scale variations, background clutter, and fast 

motion.  

Generative and discriminative are the two broad 

categories of object tracking techniques. The 

generative approach focuses on the general 

characteristics of the object model and searches for the 

target location where the candidate region has the 

highest similarity [6]. Optical flow is a popular 

generative technique used for object tracking [7]. It 

tracks the object by calculating the pixel movement 

between two consecutive frames. Although, optical 

flow is a simple tracking technique but it grapples with 

challenges in various situations i.e., fast movement, 

high resolution, scale and light variations, occlusion. 

The discriminative approach distinguishes the target 

from the surrounding in an image by considering it a 

classification problem. The discriminative method 

includes Deep Learning (DL) [8], Discriminative 

Correlation Filter (DCF) [9], or combination of both. 

YOLO (You Only Look Once) is a highly efficient and 

fast DL technique used for object detection that 

extends to object tracking by processing frames 

sequentially [10]. Although DL-based tracking 
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methods have shown greater accuracy and outstanding 

performance on challenging datasets i.e., Siamese 

Network has achieved 160 Frames Per Second (FPS) 

[11] and Continuous Convolution Operator Tracker 

(C-COT) [8] ranked as top in the VOT2016 challenge 

[12], they have high computational complexity and 

thus require high Graphical Processing Units (GPU’s) 

for training on the datasets. This bottleneck makes the 

DL-based tracker not feasible for real-time 

applications. Alternatively, Correlation Filter (CF) 

based trackers provide a favourable solution for real-

time applications due to their low computational 

burden, and the good trade-off between accuracy and 

tracking speed.  

This research proposes an effective solution to 

cope with the aforesaid issues for single object 

tracking. Inspired by the work presented in [13], we 

further improved the tracker’s performance especially 

for aerial videos by incorporating aberrance repression 

feature.  To assess the tracker performance, numerous 

experiments have been performed on challenging 

benchmarks i.e., OTB-2013, OTB-2015, 

TempleColor128, and UAV123. 

The rest of the paper is organized as follows: 

Section 2 provides the detailed critical analysis of 

related work on object tracking. Section 3 discusses 

the main framework of proposed tracking approach. 

Section 4 describes the research methodology 

employed for this work and presents analysis of 

results. Finally, conclusion and future research 

directions is provided in section 5. 

2. Related Work 

Since the last decade, correlation filters (CF) for visual 

object trackers have attracted the object-tracking 

community due to their superior performance. A 

typical outline of a CF tracker requires the object 

information from the first frame only. Afterward, the 

tracking is performed over the entire image sequence. 

The effectiveness of localizing the targeted object is 

determined by how efficiently the filter is learned in 

the prior frame. CF filter utilized the frequency 

domain to performs the correlation operation and 

provides a sharp response over the target in the search 

window. Performing operations in the frequency 

domain, enable the CF trackers to achieve a higher 

frame rate. 

Bolme et al., first introduced CF-based target 

tracking as the Minimum output sum of the Squared 

error (MOSSE) which becomes a baseline tracker for 

the later development of Visual Object Tracking 

(VOT) [14]. MOSSE tracker takes the grayscale image 

patches as input and computes the correlation in the 

Fourier domain for rapid calculations which leads to 

achieving the unprecedented tracking speed (669 

FPS). Although MOSSE trackers have achieved very 

high running speed, the tracking accuracy was not 

satisfactory due to the utilization of the single channel 

Histogram of Gradient (HoG) feature. Based on the 

MOSSE framework, different trackers have been 

proposed to achieve high performance such as scale 

estimation [15, 16], integration of circulant structure 

[17, 18], multi-feature fusion [19, 20], and various 

filter learning and updation strategies [21, 22]. For 

high-speed tracking, these techniques use the Fast 

Fourier Transform (FFT) which produces unwanted 

boundary effects, causing degradation in the accuracy 

and precision of the tracker. 

Different techniques have been proposed [23-

28,32] to overcome the boundary effects. Danelljan et 

al. proposed a Spatially Regularized DCF (SRDCF) 

tracker in which the regularization parameter is 

injected to penalize the filter coefficients for learning 

more weights over the central part of the target [24]. 

The authors utilized the densely extracted training 

samples from the foreground as well as the 

surrounding background of the target. However, the 

expansion of the search region makes the tracker more 

sensitive to background clutter and aberrance.  

Later, the SRDCF framework became the baseline 

of different trackers that shows impressive 

performance e.g., Continuous Convolution Operator 

Tracker (CCOT) [8], and Learning Spatial-Temporal 

Regularized Correlation Filter (STRCF) [21]. 

Although the SRDCF tracker has effectively mitigated 

the influence of boundary effects, the tracking speed 

was too low (5.3 FPS). The STRCF tracker is an 

amended version of the SRDCF tracker, in which 

spatial-temporal information is introduced to enhance 

the tracking speed and reduce the complexity. 

However, the STRCF tracker failed to tackle object 

appearance variations, particularly in aerial videos due 

to the fixed regularization component. To handle this 

issue, an adaptive spatial-temporal regularization 

parameter is introduced [42]. Wang et al. utilized the 

adaptive cosine window instead of a fixed cosine 

window to enlarge the search region which leads to the 

elimination of boundary effects [19]. Gao et al. 

introduced the dynamic saliency information into the 

DCF tracker to increase the positive samples for 

training to eliminate the boundary effects [13]. Yuan 

et al. proposed the Adaptive Spatial-Temporal Context 

Aware (ASTCA) tracker for aerial tracking scenarios. 

Adding spatial context information in the object model 

effectively alleviates the boundary effect and 

improves accuracy by distinguishing the target from 

its background [27]. 
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Recently, different trackers have been proposed 

with multiple features i.e., Deep features, HoG, Colour 

Naming (CN), Saliency, and greyscale features 

[9,16,19,20,29]. Wang et al., have combined the HoG 

and CN features to develop a reliable objective model 

[19]. Xu et al. incorporated the HoG, CN, and deep 

features for feature representations and achieved 

outstanding accuracy on OTB2013/2015 and 

VOT2017/2018 datasets. However, it achieves a 

tracking speed of 7.8 FPS only [29]. 

Fig. 1. Aberrance Repression Evaluation Of Proposed Tracker With Baseline ARCF Tracker On Shaking Dataset. Sudden 

Change Of Target Object From Frame #19 To #21 Are Well Addressed By The Proposed Method. Red And Green Bounding 

Boxes Represents Baseline And Proposed Trackers Respectively

Higher dimensional features produce enormous 

training samples, increasing computational 

complexity and reducing tracking speed. For example, 

the CCOT tracker updates 800,000 parameters during 

the learning and updation phase of the filter [8]. Such 

large training parameters limit the efficiency of the 

tracker in terms of computational cost and tracking 

speed. Moreover, these trackers are not feasible for 

real-time tracking, as embedded systems have limited 

memory size. Based on the incorporation of 

handcrafted (HoG + CN) and deep object features, 

Danelljan et al. presented an Efficient Convolution 

Operator (ECO) tracker that utilized the convolutional 

operator to suppress the training parameters up to 80% 

(with deep features) [30]. Another similar work is 

presented where the authors used the same features as 

our method but they did not cope with aberrance [31]. 

In [32], Ji et al., addresses the boundary effects and 

filter corruption for UAV tracking by introducing 

adaptive contextual learning and key filter selection in 

regularized correlation filter. Ma et al., proposed 

Spatial disturbance suppression and Object saliency-

aware Correlation Filter (SOCF) tracker to handle 

similar objects disturbance in aerial tracking [33]. 

Based on the above-highlighted issues, we 

proposed an aberrance-repressed multi-feature 

integrated correlation filter with adaptive learning for 

VOT to enhance the tracker’s performance in visually 

challenging scenarios. The strength of response map is 

assessed using Peak-to-Sidelobe Ratio (PSR) and an 

adaptive learning strategy is introduced based on these 

PSR values. In addition, multiple features are 

integrated by utilizing the feature fusion technique to 

effectively develop the object appearance model. 

Furthermore, an Alternating Direction Method of 

Multipliers (ADMM) is used to resolve the 

optimization problem with low computational cost. 

3. Proposed Tracking Approach 

This section discusses the main framework of the 

proposed aberrance repressed multi-feature integrated 

correlation filter with an adaptive learning technique. 

3.1 Baseline Tracker 

In this study, an Aberrance Repressed Correlation 

Filter (ARCF) tracker is taken as the baseline tracker 

that utilized the HoG features only for the 

representation of the object appearance model [17]. 

Let x and w present a vectorized input sample and 

a filter respectively, then response 𝑅(𝑥) is given as, 
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𝑅(𝑥) =  ∑ 𝑥𝑐
𝐶

𝑐=1
⋆  𝑤𝑐                                               (1) 

where ⊛ shows the circular convolution operation. 

The C is a dimensional feature map that is obtained 

using input sample x and the ideal response y. The 

tracker estimates a similar object in the next frame 

using the filter w. The optimal parameters of filter w 

are determined during the filter training by minimizing 

the loss function ε(w) given as: 

𝜀(𝑤) =  
1

2
‖𝑦 − ∑ 𝐵𝑥𝑐 ⋆  𝑤𝑐

𝐶

𝑐=1

‖

2

2

+
𝜆

2
∑‖𝑤𝑐‖2  

2

𝐶

𝑐=1

 (2) 

where B is a binary cropping matrix, used to select 

central M elements of the vectorized input sample xc, 

y is the desired correlation output in Gaussian form 

with a peak centred over the target of interest, and λ 

regularization parameter. The size of the cropped 

matrix B is M × N where M and N represent rows, and 

columns respectively, and usually, N≫M. 

3.2 Proposed Approach 

Fig. 2 demonstrates the block diagram of the proposed 

tracking approach. The image patch which contains 

the area of interest including the target object is 

extracted from the current frame and then multiple 

features i.e., fHOG, CN, Gray level intensities, and 

Saliency, are obtained to develop a resilient object 

model. To combine the response maps of all extracted 

features effectively, a fusion strategy based on the PSR 

is utilized. Besides multiple feature extraction, an 

aberrance suppression scheme is employed to suppress 

the background interference. Finally, the combined 

response map is obtained based on the fused and 

aberrance repression response maps.  

 

Fig.2. Overview Of Proposed Tracking Method 

3.2.1 Multi-feature extractor 

I. HOG feature extraction: The Histogram of 

Gradient (HOG) is a single feature descriptor 

that utilized the gradient information and is 

widely used in object detection to provide 

texture information about the targeted object. 

HOG is better than other similar descriptors 

i.e., Scale Invariant and Feature Transform 

(SIFT), canny edge detector, etc., as it utilized 

both the angle as well as the magnitude to 

calculate the gradient information of the 

target. Thus, it provides a better object 

appearance model against geometric 

variations. Felzenszwalb’s HOG (fHOG) is a 

faster implementation of the HOG feature 

descriptor in which the feature dimensions are 

reduced for rapid gradient calculations [34]. 

Taking this advantage, fHOG is used as a 

feature descriptor and 31 channels of HOG 

features are adapted in this work. The fHOG 

map of the cropped image patch is shown in 

Fig. 3.  

Fig. 3. fHOG Feature Map 

II. Colour Naming (CN) feature extraction: For 

developing a robust appearance model, textual 

information’s are not enough to handle 

different visual challenges i.e., object 

deformation, illumination, and scale 

variations. The colour Naming (CN) 

technique performs well in such scenarios. In 

CN, the input RGB image is transformed into 

an 11-dimensional annotated colour space 

using 11 linguistic colour labels. CN map of 

the input image patch is shown in Fig. 4. 

III. Grey feature extraction: In some visually 

challenging scenarios, CN-based feature 

descriptors do not model the object 

effectively. For example, in aerial tracking, 

when the context around the object is similar 

Fig. 4. CN Feature Map 
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to the foreground, the CN features fail and are 

labelled with the same colour name which 

increases the spurious detection rate. To 

handle this issue, Gray-level intensities that 

are robust to motion blur are also integrated to 

build a robust appearance model. The gray 

feature map G(t) is shown in Fig. 5, and 

obtained by converting the RGB image patch 

into the gray-scale image using the following 

Eq: 

𝒢(𝑡)(𝑖, 𝑗)

=  𝛽𝑅𝑥𝑅
(𝑡)(𝑖, 𝑗) + 𝛽𝐺𝑥𝐺

(𝑡)(𝑖, 𝑗)

+  𝛽𝐵𝑥𝐵
(𝑡)

(𝑖, 𝑗)                                                  (3) 

where x(t) is the input image patch, the values 

of βR, βG and βB are taken as 0.2989, 0.5870, 

and 0.1140 respectively. 

IV. Saliency feature extraction: Saliency refers to 

the exclusive features which make an object 

more prominent than its background. In this 

work, this feature is adopted to suppress 

background interference and enhance the 

object foreground. The procedure described in 

[35] is utilized for constructing the saliency 

map as depicted in Fig. 6. 

3.2.2 Response fusion 

Single feature descriptors rely on a single feature such 

as HOG, CN, or deep features and failed to perform 

well in challenging scenarios when object appearance 

changes rapidly. Multiple features, on the other hand, 

achieve a more robust object appearance model and 

can effectively tackle visually challenging factors. 

Feature fusion is a technique in which different 

features are combined in a way to develop a more 

robust target appearance model. 

In the proposed tracking framework, four features 

are utilized including fHOG, CN, Gray, and Saliency. 

PSR is utilized with the response of each feature to 

filter the noise for creating a more stable response as 

depicted in Fig. 7. Final fused response map ℱ (t) is 

obtained using the following Eq: 

ℱ(𝑡) =
1

6
[(𝛽ℋ(𝑡)𝒞(𝑡)

ℛℋ(𝑡)𝒞(𝑡)
 ⊕

 𝛽ℋ(𝑡)𝒢(𝑡)
ℛ ℋ(𝑡)𝒢(𝑡)

 ⊕ 𝛽ℋ(𝑡)𝒮(𝑡)
ℛℋ(𝑡)𝒮(𝑡)

 ⊕

𝛽𝒞(𝑡)𝒢(𝑡)
ℛ𝒞(𝑡)𝒢(𝑡)

 ⊕ 𝛽𝒞(𝑡)𝒮(𝑡)
ℛ𝒞(𝑡)𝒮(𝑡)

⊕

 𝛽𝒢(𝑡)𝒮(𝑡)
ℛ 𝒢(𝑡)𝒮(𝑡)

) + ℛ𝐴𝑅]                                         (4) 

where ℋ, 𝒞 , 𝒢 and 𝒮 represents response maps of 

HOG, CN, Grayscale, and Saliency respectively. β is 

the weighted PSR that helps to eliminate the 

interference from the response map. In the Eq. 4, ⊕ 

denotes element-wise addition and RAR is the 

aberrance suppressed response map. The final 

response has only one highest peak which is the 

estimated location of the target as demonstrated in Fig. 

7. 

3.2.3 Aberrance suppression 

Aberrance takes place in different real-time scenarios, 

especially in aerial videos. i.e., partial/full occlusion, 

in/out plan rotation, and background clutter. In the 

presence of aberrance, abrupt changes occurred in the 

response map which leads to poor performance and 

tracking failure. To suppress the aberrance, L2 norm or 

Euclidean norm is used to find the difference in 

response maps of the previous and current frame ℛ1 

and ℛ2 as follows: 

‖ℛ1[𝜓𝑝,𝑞] − ℛ2‖
2

2
         (5) 

where p,q denote the location differences between 

both responses in 2D space, and ψp,q represents shifting 

operation, performed to coincide both peaks. In an 

aberrance scenario, produces a high value due to the 

dissimilarity between the peaks of both response 

maps. With aberrance repression, the objective 

function in Eq. 2 becomes: 

Fig. 5. Grayscale Feature Map 

Fig. 6. Saliency Feature Map 

Fig. 7. Multi-Features Fusion Technique 
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𝜀(𝑤) =  
1
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𝑐=1 ‖
2
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+

𝜆

2
∑ ‖𝑤𝑐‖2
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𝛾
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‖∑ (𝐵𝑥𝑡−1
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𝑐=1 [𝜓𝑝,𝑞] − ∑ (𝐵𝑥𝑡
𝑐 ⋆𝐶

𝑐=1

 𝑤𝑡
𝑐)‖

2

2
                                                                               (6)  

where t and t − 1 represents current and previous 

frames respectively. Parameter γ is an aberrance 

penalizing factor. 

3.2.4 Adaptive model strategy 

Occlusion handling is a crucial step in object detection 

and tracking. In various signal processing 

applications, the peak signal strength is measured by 

the PSR. Based on this idea, PSR is used to efficiently 

tackle occluded situations. To calculate the PSR, the 

correlation response map is divided into the 

correlation peak and side-lobes. The peak of the 

correlation response is the predicted target object 

location, while the side-lobe is the rest of the pixels in 

the search window. The PSR is calculated as: 

𝑃𝑆𝑅 =  
max(ℛ(𝑧)) −  𝜇𝑠𝑙(ℛ(𝑧))

𝜎𝑠𝑙(ℛ(𝑧))
                           (7) 

where R(z) represents correlation response map, 

max R(z) is the response peak, µsl and σsl are the 

mean and standard deviation of side-lobe respectively. 

The target patch is denoted by z. PSR can be 

considered an effective indicating factor for occlusion 

detection. In target occluded conditions (79th frame of 

the Jogging dataset), the response map has a low value 

of PSR because of the presence of side-lobe which 

increases the standard deviation σsl as shown in Fig. 

8(a). In this case, there are many minor peaks 

(sidelobes) appearing in the response map therefore, 

the PSR value given by Eq. 7 is reduced to 9.2. In 

occlusion-free situations (52nd frame), only one sharp 

peak centred at the targeted object will appear while 

the rest of the area is flat. For this case, the value of 

Eq. 7 will be high (15.7) due to the absence of minor 

lobes as demonstrated in Fig. 8(b). 

 

In the structure of most CF trackers, the model is 

modified in each frame to adjust the model variations 

in the target. The target location in the succeeding 

frame is estimated based on the modified learned 

model. However, as the target experiences occlusion 

or goes through out-of-view situations, the model 

drifting may occur due to the uncertain training 

samples for filter learning. To get superior tracking 

performance, it is imperative to strict the tracker in the 

learning phase to not update the model in challenging 

conditions. 

To cope with these situations, an adaptive model 

learning strategy is introduced based on the values of 

PSR. Mathematically, it can be written as: 

𝜂 =  {
𝜂𝑜             𝑖𝑓 𝑃𝑆𝑅 < 𝛼                      

 
0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

                 (8) 

 

The values of α and ηo are shown in Table 1. In 

occluded or out-of-view scenarios, the learning rate η 

will be set to zero, no model updation will be 

performed in such situations according to Eq. 8. A 

comparison of both schemes (adaptive and non-

adaptive) is demonstrated in, where the target is 

occluded from 61st to 79th frame of Jogging dataset. 

Our proposed adaptive model strategy successfully re-

detects the target when it reappears from the occlusion 

(i.e., 86th frame) as shown in Fig. 9(a). Conversely, if 

the adaptive model scheme is not employed, the 

tracking failure occurs due to the corruption of the 

object model during occlusion as shown in Fig. 9(b). 

 

3.2.5 Model updation 

The model x is updated in each frame to adjust the 

object appearance changes. The model 𝑥model is 

updated using the following Eq: 

Fig. 8. Peak-To-Side-Lobe Ratio (Psr) Values In Occluded 

And Non-Occluded Scenarios In Two Different Frames 

(Dataset: Jogging) 

Fig. 9. Tracking Results Of Adaptive And Non-Adaptive 

Schemes. Dataset: Jogging 
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𝑥𝑡
𝑚𝑜𝑑𝑒𝑙 = (1 − 𝜂)�̂�𝑡−1

𝑚𝑜𝑑𝑒𝑙 + 𝜂𝑥𝑡                                  (9) 

where η shows the learning rate, t, and t − 1 present 

the current and previous frame respectively. 

4. Simulation Environment and Results 

4.1 Simulation Setup 

The simulation of the proposed tracker is performed 

using MATLAB® 2018 on Intel® Core™ i7-11700 

CPU at 2.40 GHz with 16GB of RAM. In this research, 

HoG, CN, saliency, and greyscale features are adopted 

to build a more robust object model. The proposed 

tracker is evaluated with the different parameter 

settings as listed in Table 1. 

4.2 Evaluation Datasets 

Extensive experiments are carried out on the well-

known challenging benchmarks for the assessment of 

our tracker including OTB-2013 [36], OTB-2015 [37], 

TempleColor128 [38], and UAV123 [39] which 

consists of 50, 100, 128, and 123 video sequences 

respectively. It can be classified into 11 attributes 

according to the challenges including illumination 

variations (IV), scale variations (SV), occlusion 

(OCC), deformation (DEF), motion blur (MB), fast 

motion (FM), in-plane rotation (IPR), out-of-plane 

rotation (OPR), out-of-view (OV), background clutter 

(BC), and low resolution (LR). 

Table 1 

Major parameters used in the proposed method 

Parameter Value Parameter Value 

Feature cell 

size  
4 × 4 

ADMM 

iterations 
2 

Number of 

scales (S) 
5 Learning rate 𝜂 0.019 

Scale step 1.01 

Bandwidth of 

Gaussian 

function  

√𝑤 × ℎ

16
 

Regularization 

parameter 𝝀 
0.01 

Aberrance 

penalty factor 𝛾 
0.71 

𝜼𝒐 0.019 𝛼 10 

4.3 Evaluation Methodology 

One Pass Evaluation (OPE) is a common method for 

robustness evaluation which requires the ground truth 

of the target from the first frame only, and then mean 

accuracy and success rate are obtained from all the 

subsequent frames. All the DCF trackers are evaluated 

based on three metrics: Distance Precision (DP), 

Overlap Success (OS), and Centre Location Error 

(CLE). A short description of all three metrics is given 

below: 

Centre Location Error (CLE) represents the 

difference (in pixels) between the tracked and ground 

truth bounding boxes. The least value of CLE is an 

indication of the higher tracker accuracy. CLE is 

calculated as:  

𝐶𝐿𝐸 =  √(𝑥𝑔𝑡 − 𝑥𝑡)
2

+ (𝑦𝑔𝑡 − 𝑦𝑡)
2

                     (10) 

where 𝑥𝑔𝑡, 𝑦𝑔𝑡 and 𝑥𝑡 , 𝑦𝑡 represents the central 

location of ground truth and estimated bounding box 

respectively.  

Distance Precision (DP) rate counts the frames in 

which the CLE of the predicted bounding box is less 

than the pre-set threshold from the ground truth. The 

precision plot is obtained by calculating the precision 

over various thresholds.   

Overlap Success (OS) rate shows the number of 

video frames whose intersection over union (IoU) is 

greater than a pre-set threshold 𝑡 (normally 0.5). The 

larger value of the success rate is an indication of more 

accuracy. Let 𝑏𝑡 𝑎𝑛𝑑 𝑏𝑔 represents the bounding box 

of our tracker and ground truth respectively, success 

rate 𝑆 is calculated as follows: 

𝑆 =  
|𝑏𝑡 ∩ 𝑏𝑔|

|𝑏𝑡 ∪ 𝑏𝑔|
> 𝑡                                                    (11) 

4.4 Performance Evaluation  

4.4.1 Evaluation of OTB2015 dataset 

The precision and success plot of the proposed tracker 

along with other modern trackers on the OTB2015 

dataset with the percentage score of precision and 

success is shown in Fig. 10. From the precision plot, 

it is obvious that our method beats the baseline ARCF 

tracker [40] and obtains a DP score of 85.9% which is 

6.1% greater than the ARCF score (79.8%). Our 

tracker has achieved a running speed of 13.4 FPS. 

Table 2 shows the mean CLE, FPS, DP, and OS score 

percentages of various trackers, the Centre Location 

Error (CLE) of our tracker is 17.7 only which is 3.6% 

and 5% less than the BACF (second best), and STRCF 

(third best) trackers respectively. From Table 2, it is 

obvious that the proposed scheme has obtained the 

lowest mean CLE (17.7) in comparison with other 

trackers which shows the greater accuracy of proposed 

method. 

Fig. 10. Precision And Success Plot Over OTB2015 Dataset 
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4.4.2 Evaluation of OTB2013 dataset 

Fig. 11 shows the precision and success plot over 

OTB2013 dataset. Tracking results show that our 

tracker has outperformed all other trackers on both 

precision and success plots by obtaining a DP score of 

88.2% and an OS score of 66.7%. BACF trackers 

appear as the second-best tracker for this dataset and 

achieve a DP score of 84.9% and an OS score of 

64.4%. The baseline ARCF tracker has achieved a DP 

score of 83.2% and an OS score of 62.1%. Compared 

to the ARCF tracker, our method gains 3.3% and 2.3% 

improvements in precision and success rate 

respectively. Table 3 shows the DP and OS score (%) 

of all other trackers. Fig. 14(b) shows the graphical 

representation of precision and AUC score achieved 

by the different trackers over the OTB2013 dataset. 

 

4.4.3 Evaluation of TempleColor128 dataset 

The performance of our tracker is also investigated on 

the TempleColor128 dataset [38] which consists of 

128 challenging videos. Tracking results in 

comparison with other existing trackers CSK [18], 

STRCF [21], BACF [22], SRDCF [24], DSST [29], 

ARCF [40], SAMF [41], MUSTER [42], TLD [43] are 

shown in Fig. 12. Based on the tracking results, it is 

clear that the proposed method has performed well 

against the abovementioned trackers with a DP score 

of 74.1% and OS score of 68.9%. Moreover, our 

method gains improvement by 6%, 7.4%, and 7.8% 

precision over STRCF, ARCF, and SRDCF trackers. 

Fig. 14(c) shows the graphical representation of 

precision and AUC score of the aforementioned 

trackers over TempleColor128 dataset. 

 

4.4.4 Evaluation of UAV123 dataset 

Fig. 13 demonstrates the comparison of proposed and 

other trackers including CSK [18], STRCF [21], 

BACF [22], SRDCF [24], DSST [29], ARCF [40], 

SAMF [41], MUSTER [42], TLD [43] trackers over 

UAV123 dataset. The tracking results show that our 

tracker performs well among other trackers, and 

achieves 64.7% precision and 46.1% success rate, 

while the baseline ARCF tracker obtains 61.2% and 

43.3% precision and success scores respectively. 

Based on the tracking results, it is clear that our tracker 

outperforms ARCF, MEEM, and SRDCF trackers by 

3.5%, 6.3%, and 7.2% DP scores respectively.  

 

 

Fig. 13. Over All Precision And Success Plots Over 

UAV123 Dataset 

Fig. 11. Precision and Success Plot Over OTB2013 

Dataset 

Fig. 12. Precision And Success Plot Over 

Templecolor128 Dataset 
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Fig. 14. Precision And Area Under The Curve (AUC) Of 

Different Trackers Over: (A) OTB2015 (B) OTB2013 (C) 

Templecolor128 (D) UAV123 

4.5 Attribute-Based Performance Analysis 

In OTB benchmarks [36,37], authors categorized the 

video sequences into 11 attributes as described in 

Section 4.2. The performance of our tracker is further 

investigated for each attribute of used datasets. Fig. 16 

demonstrates the attribute-based performance 

comparison with other trackers over the OTB2015 

benchmark. 

 

Among other trackers, STRCF appears as a strong 

candidate for deformation (58.5%), in-plane-rotation 

(58.3%), illumination variation (63.2%), and out-of-

plane rotation (59.8%) attributes, while BACF 

performs well for Background Clutter (62.8%). Table 

4 presents the attribute-based effectiveness of all the 

trackers on 9 more challenging sequences. From the 

results, it is clear with a score of 5.491. Fig. 15 

illustrates the average success score (%) of our method 

with other trackers over 11 dominant challenging 

attributes of the OTB2013 benchmark.  that our tracker 

has achieved a 5.516 overall score, and STRCF 

appeared as the second-best tracker.

 

Fig. 15. Attribute-Based Performance Analysis Of Our 

Method In Comparison With Other Trackers Over The 

OTB2013 Dataset 

Fig. 16. Success Plot Of 11 Challenging Attribute Over OTB2015 Dataset 
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Table 2  

Performance comparison over OTB-2015 benchmark 

Method 
STRCF 

[21] 

BACF 

[22] 

ARCF 

[40] 

SRDCF 

[24] 

Staple 

[46] 

MEEM 

[45] 

LCT 

[44] 

SAMF 

[41] 

KCF 

[47] 

DSST 

[29] 
Proposed 

CLE 22.7 21.3 27.2 25.2 36.8 47.1 48.7 31.0 47.8 47.0 17.7 

DP (%) 82.7 81.6 79.8 78.9 78.4 78.1 76.2 75.1 69.6 68.0 85.9 

OS (%) 78.4 76.7 73.8 72.8 70.9 62.2 70.1 67.4 55.0 60.1 80.8 

FPS 28.9 26.7 23.1 5.8 76.6 22.4 21.7 23.2 216 40.9 13.4 

 

Table 3 

Performance comparison over OTB-2013 Benchmark 

 
STRCF 

[21] 

BACF 

[22] 

ARCF 

[40] 

SRDCF 

[24] 

Staple 

[46] 

MEEM 

[45] 

SAMF 

[41] 

KCF 

[47] 

DSST 

[29] 
Proposed 

DP (%) 81.4 84.9 83.2 83.8 79.3 83.0 78.5 74.0 74.0 88.2 

OS (%) 63.9 64.4 62.1 62.6 60.0 56.6 57.9 51.4 55.4 66.7 

 

Table 4  

Success score over 9 more challenging attributes of OTB2015 dataset. red, green, and blue bold values show the best, second 

best, and third best respectively 

 Proposed STRCF BACF ARCF SRDCF Staple MEEM LCT SAMF KCF DSST 

SV 0.594 0.622 0.575 0.544 0.565 0.529 0.474 0.492 0.500 0.399 0.475 

OPR 0.603 0.598 0.577 0.542 0.550 0.534 0.525 0.538 0.536 0.453 0.470 

OCC 0.590 0.596 0.565 0.528 0.559 0.548 0.504 0.507 0.540 0.443 0.453 

MB 0.623 0.660 0.585 0.581 0.610 0.558 0.545 0.532 0.534 0.456 0.488 

IV 0.633 0.632 0.620 0.604 0.613 0.598 0.517 0.566 0.534 0.479 0.558 

IPR 0.615 0.583 0.581 0.551 0.544 0.552 0.529 0.557 0.519 0.469 0.502 

FM 0.619 0.620 0.594 0.569 0.595 0.535 0.525 0.522 0.504 0.448 0.453 

DEF 0.611 0.585 0.572 0.556 0.544 0.554 0.489 0.499 0.509 0.436 0.420 

BC 0.628 0.595 0.603 0.591 0.583 0.574 0.519 0.550 0.525 0.498 0.523 

Overall 5.516 5.491 5.272 5.066 5.163 4.982 4.627 4.763 4.701 4.081 4.342 

 

Table 5 

Success score over 11 challenging attributes of the OTB2013 dataset.  red, green, and blue bold values show best, second best, 

and third best respectively 

 Proposed STRCF BACF ARCF SRDCF Staple MEEM LCT SAMF KCF DSST 

SV 0.619 0.620 0.609 0.567 0.587 0.551 0.498 0.553 0.507 0.427 0.546 

OV 0.571 0.658 0.630 0.554 0.555 0.547 0.606 0.594 0.550 0.550 0.462 

OPR 0.659 0.612 0.629 0.596 0.599 0.575 0.558 0.624 0.559 0.495 0.536 

OCC 0.652 0.625 0.623 0.590 0.627 0.593 0.552 0.627 0.612 0.514 0.532 

MB 0.616 0.595 0.577 0.582 0.601 0.541 0.541 0.524 0.461 0.497 0.455 

LR 0.461 0.448 0.438 0.449 0.426 0.438 0.36 0.286 0.388 0.312 0.408 

IV 0.602 0.567 0.589 0.573 0.576 0.568 0.533 0.588 0.513 0.493 0.561 

IPR 0.641 0.60 0.628 0.594 0.566 0.580 0.535 0.592 0.525 0.497 0.563 

FM 0.587 0.583 0.592 0.541 0.569 0.508 0.553 0.534 0.483 0.459 0.428 

DEF 0.696 0.594 0.622 0.632 0.635 0.618 0.56 0.668 0.625 0.534 0.506 

BC 0.636 0.549 0.598 0.598 0.587 0.576 0.569 0.587 0.520 0.535 0.517 

Overall 6.74 6.451 6.535 6.276 6.238 6.095 5.865 6.177 5.743 5.313 5.514 
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Table 6 

Success score over 11 challenging attributes of Templecolor128 dataset. red, green, and blue bold values show best, second 

best, and third best respectively 

 Proposed STRCF BACF ARCF SRDCF MUSTER TLD SAMF CSK DSST 

SV 0.539 0.516 0.479 0.480 0.481 0.434 0.327 0.450 0.276 0.404 

OV 0.462 0.479 0.400 0.343 0.395 0.337 0.350 0.339 0.204 0.279 

OPR 0.547 0.477 0.463 0.471 0.456 0.442 0.285 0.469 0.286 0.399 

OCC 0.520 0.467 0.445 0.441 0.476 0.455 0.309 0.446 0.266 0.368 

MB 0.483 0.446 0.391 0.405 0.424 0.357 0.271 0.410 0.240 0.339 

LR 0.449 0.478 0.382 0.420 0.354 0.351 0.399 0.242 0.205 0.269 

IV 0.529 0.511 0.522 0.517 0.512 0.530 0.300 0.484 0.302 0.438 

IPR 0.529 0.449 0.466 0.459 0.453 0.430 0.273 0.409 0.279 0.394 

FM 0.514 0.472 0.441 0.435 0.447 0.410 0.280 0.451 0.264 0.371 

DEF 0.584 0.540 0.529 0.560 0.528 0.509 0.261 0.537 0.247 0.372 

BC 0.524 0.494 0.507 0.517 0.499 0.531 0.286 0.433 0.294 0.387 

Overall 5.68 5.329 5.025 5.048 5.025 4.786 3.341 4.67 2.863 4.02 

 

Table 7 

Success score over 11 challenging attributes of the UAV123 dataset. red, green, and blue bold values show best, second best, 

and third best respectively 

 Proposed ARCF BACF MEEM MUSTER SRDCF TLD SAMF CSK ASLA DSST 

SV 0.270 0.267 0.246 0.241 0.235 0.237 0.242 0.166 0.149 0.186 0.171 

OV 0.373 0.325 0.308 0.322 0.281 0.333 0.160 0.238 0.189 0.180 0.210 

OPR 0.392 0.354 0.333 0.327 0.299 0.346 0.239 0.274 0.205 0.194 0.235 

OCC 0.345 0.256 0.275 0.231 0.203 0.311 0.148 0.220 0.151 0.099 0.157 

MB 0.385 0.360 0.326 0.337 0.302 0.355 0.219 0.282 0.220 0.202 0.246 

LR 0.444 0.404 0.396 0.361 0.333 0.399 0.252 0.271 0.214 0.159 0.225 

IV 0.424 0.398 0.373 0.340 0.343 0.390 0.268 0.306 0.247 0.238 0.262 

IPR 0.336 0.274 0.274 0.311 0.225 0.263 0.163 0.160 0.134 0.148 0.137 

FM 0.396 0.330 0.320 0.325 0.295 0.368 0.202 0.289 0.227 0.162 0.245 

DEF 0.231 0.199 0.172 0.211 0.229 0.229 0.135 0.197 0.150 0.134 0.156 

BC 0.403 0.358 0.352 0.348 0.316 0.356 0.251 0.264 0.203 0.199 0.231 

Overall 3.999 3.525 3.375 3.354 3.061 3.587 2.279 2.667 2.089 1.901 2.275 

Table. 5 provides attribute-based quantitative data 

of the proposed and other trackers on the OTB2013 

dataset. Our method has achieved an overall score of 

6.74, while BACF and STRCF appeared as the second 

and third-best performance trackers. Table 6 provides 

the attribute-based analysis of the TempleColor128 

dataset. Based on the results, it is noticeable that our 

method has achieved an overall score of 5.68, while 

STRCF and ARCF appeared as second and third-best 

trackers for these 11 challenging attributes. 

Table 7 shows the attribute-based performance 

over UAV-123 dataset. The overall score of all 

trackers is less compared to the other benchmarks 

because this dataset contains aerial videos which are 

more challenging. Our method shows an overall score 

of 3.99, while SRDCF and ARCF trackers achieve 

3.587 and 3.525 scores, appearing as second and third-

best trackers respectively. 

4.6 Qualitative Comparison 

Fig. 18, demonstrates the qualitative comparison of 

proposed and other trackers over OTB benchmarks. In 

the basketball video sequence, the target experiences 

background clutter (BC) because all players wear the 

same dress. Moreover, the target object (#9 player) 

faces partial occlusion at frame #655. All 

aforementioned trackers keep tracking the target 

object except BACF. For this challenging situation, 

the bounding box drawn by our method is nearer to the 

bounding box of the ground truth.  

Similarly, the target has a fast motion (FM) 

attribute at frame #72 in the Bird1 challenging 

sequence. For this case, all other trackers failed except 

the proposed tracker which keeps tracking the target 

despite fast motion. Our tracker tackles the Scale 

Variation (SV) challenge effectively as shown in 

frames #83 and #90 of Dragonbaby and shaking 
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sequences respectively. For the Dragonbaby sequence, 

only the proposed tracker performs accurate tracking, 

other trackers lose the object. For the shaking 

sequence, DSST, and SRDCF miss the target as shown 

in #90, #220, and #344. The Soccer sequence suffers 

from occlusion, motion blur, scale variation, and fast 

motion attributes. For all these challenges, our tracker 

successfully tracks the object, while STRCF and 

ARCF perform poor tracking. Tiger2 sequence 

experiences occlusion, deformation, background 

clutter, and in-plane rotation. Our tracker keeps 

tracking the target accurately, while DSST and KCF 

trackers failed to perform well in this case.

 

Fig. 17. Comparison Of Centre Location Error (Pixels) On 12 Challenging Videos Of The OTB2015 Dataset 

 

 

A frame-to-frame comparison of different trackers 

on 12 challenging videos of the OTB2015 dataset is 

shown in Fig. 17. The CLE of our method is 

represented by the red line as shown in legends. From 

all the tracking results, it is clear that our tracker has 

the least CLE as compared to other trackers. The mean 

CLE of our tracker over the whole OTB2015 dataset 

is only 17.74 as shown in Table 2. 

5. Conclusion and Future Work 

This paper presented an effective object tracker based 

on the Discriminative Correlation Filter (DCF) 

framework. Our method is an enhanced version of the 

ARCF tracker which utilize HoG features only. We 

proposed an online multifeatured learning-based 

visual object tracker with an aberrance repression 

scheme is proposed. Firstly, we developed a robust 

object appearance model by utilizing the fHOG, CN, 

Grayscale intensities, and Saliency features. All 

features are combined effectively with adaptive 

weights which are calculated using the PSR of each 

response map individually, to suppress the noise and 

interference. Secondly, we introduced an adaptive 

learning rate updation scheme based on the PSR of the 

final fused response map to alleviate the spurious 

Fig. 18. Tracking Performance Of Our Method With Other 

Modern Trackers: BACF, DSST, ARCF, STRCF, SRDCF, 

KCF 
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learning in case of occlusion or target loss. ADMM 

method is utilized to efficiently solve DCF 

calculations. With the incorporation of adaptive model 

updation, our proposed tracker efficiently redetected 

the target after long-term occlusion. Numerous 

experiments are performed over OTB2013/15, 

TempleColor128, and UAV123 datasets. Among 

other trackers, our tracker achieves the least CLE 

(17.7) on the OTB2015 dataset, which shows the 

greater accuracy of the proposed method. Both 

qualitative and quantitative tracking results over other 

datasets show that the proposed method outperforms 

the other modern handcrafted visual object trackers. 

Although our tracker has shown outstanding results 

against challenging scenarios still, there are research 

gaps for improvements like motion estimation, low 

resolution, etc. To handle these issues more 

effectively, we will incorporate the deep neural 

network in future research work. 
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