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 All living things, comprising animals, plants, and people require water to survive. 

The world is covered in water, just 1 percent of it is fresh and functional. The 

importance and value of freshwater have increased due to population growth and 

rising water demands. Approximately more than 70 percent of the world's 

freshwater is used for agriculture. Agricultural employees are the least productive, 

inefficient, and heavily subsidized water users in the world. They also utilize the 

most water overall. Irrigation consumes a considerable amount of water. The 

field's water supply needs to be safeguarded. A critical stage in estimating 

agricultural production is crop irrigation. The global shortage of fresh water is a 

serious issue, and it will only get worse in the years to come. Precision agriculture 

and intelligent irrigation are the only solutions that will solve the aforementioned 

issues. Smart irrigation systems and other modern technologies must be used to 

improve the quantity of high-quality water used for agricultural irrigation. Such a 

system has the potential to be quite accurate, but it requires data about the climate 

and water quality of the region where it will be used. This study examines the 

smart irrigation system using the Internet of Things (IoT) and cloud-based 

architecture. The water's temperature, pH, total dissolved solids (TDS), and 

turbidity are all measured by this device before the data is processed in a cloud 

using the range of machine learning (ML) approaches. Regarding water content 

limits, farmers are given accurate information. Farmers can increase production 

and water quality by using effective irrigation techniques. ML methods 

comprising support vector machines (SVM), random forests (RF), linear 

regression, Naive Bayes, and decision trees (DT) are used to categorize pre-

processed data sets. Performance metrics like accuracy, precision, recall, and f1-

score are used to calculate the performance of ML algorithms. 

https://doi.org/10.22581/muet1982.2401.
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1. Introduction 

Everyone in the country needs food, hence agriculture is 

essential to the economy of the country. It is related to 

one of the most important occurrences in American 

history. If the country has a sizable farming population, 

it is seen as being both socially and economically 

prosperous. The key sector that generates employment 

in the majority of countries is agriculture. Help with 

planting and animal care is typically required on a large 

farm with numerous occupants. Big farms can use 

neighboring handling conveniences to enhance and 

finish their agricultural properties. The role of 

agriculture in human civilization has evolved 

significantly over time. Variations have made it 

probable to use fewer assets and accomplish less effort. 

Although, there has never been a demand and supply 

balance because of the high population density [1]. By 

2050, it is expected that there will be 9.8 billion folks on 

earth. Most population growth is probably to be found 

in developing countries. The percentage of people who 

live in cities is predicted to increase from 49% to 70% 

by 2050 [2]. Also, especially in developing countries, 

the need for food will rise as wages rise. People in these 

nations will thus be more attentive to the quality of their 

nutrition and food. Customers might start to choose 

beans and eventually meat over grains and cereals as a 

result. Water is an essential usual reserve for irrigation 

even if it is inadequate. In the country, irrigation 

consumes a lot of water. Crop irrigation has a substantial 

impact on crop output since it is impacted by several 

ecological influences, including soil and air temperature, 

soil moisture, and humidity. During reaping lands, 

farmers mostly depend on mankind's direction and 

knowledge. The field's water supply needs to be 

sustained. The lack of water is the main issue in the 

modern world. Globally, the public currently encounters 

such scarcity. In the upcoming years, the situation could 

get worse. A recognized and superior approach to farm 

management that has grown in popularity in 

contemporary agriculture is referred to as "smart 

farming." Agriculture and information technology are 

used to track the health and productivity of crops. 

Monitoring the condition of field crops and other 

indicators is necessary for this. The ultimate goal of 

intelligent farming is to lower input costs while keeping 

the same level of output quality. When a large amount 

of pesticide or fertilizer is administered at once, the 

entire field is treated as one unit [3]. Moreover, fresh 

water is a crucial natural resource for all ecosystems to 

survive. Unfortunately, only 2.53% of a whole water 

body is currently existing as fresh water. As a result, 

fresh water is in short supply in the majority of countries 

around the world. For all ecosystems to survive, fresh 

water needs to be accessible. As per the World 

Resources Institute (WRI), almost all nations will soon 

face a water shortage [4]. The fact that industry and 

agriculture use an excessive amount of freshwater has a 

big impact on ecosystems downstream. It is crucial to 

use fresh water in a way that avoids having a detrimental 

influence on future generations due to its shortage. 

Many soil kinds, comprising clay, salty, and sandy 

soils, are present in the soil. Every kind of soil has 

unique pros and cons. A notable instance of this is sandal 

soil, which has a huge volume for drainage. On another 

hand, drainage quickly eliminates soil nutrients. The 

qualities of soil have a significant impact on how much 

water the plant wants [5]. Using a variety of data 

collection and storage techniques, IoT has also made 

smart farming potential. Current irrigation systems with 

smart sensor networks gather field data for prime plant 

irrigation. ML is used in a variety of real-life uses, like 

precision farming, smart agriculture, smart healthcare, 

smart water quality, smart manufacturing, and smart 

logistics. IoT expands effectiveness, lowers costs, 

maximizes energy use, retains forecast accuracy, and 

offers excessive compact of convenience to the overall 

population. Security issues are becoming more prevalent 

as data and systems processing turn into further 

variation. Privacy and security issues are key roadblocks 

to the growth of IoT. According to a recent study by 

ecologists [6], almost the world's population may 

confront water calamity by 2025. Contrarily, most 

freshwater is used for industrial and agricultural 

purposes, which has a considerable effect on ecosystems 

lower down the watershed. Therefore, careful 

management of freshwater use is necessary to prevent 

adverse effects on the availability of water for future 

generations. Figure 1 illustrates that in Pakistan 81% of 

fresh water is used for irrigation, 13% is used for 

production, and 6% is used for home purposes, 

according to Shahmir Janjua [7]. By 2025, it's 

anticipated that human water usage will rise by up to 

26%. 
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           Fig. 1. Freshwater utilization 

Natural resources are being depleted at an accelerated 

rate due to population growth and demand. Since 

irrigation uses at least 75% of the water used globally, it 

is crucial to the productivity and expansion of 

agriculture, making water quality the main issue. Since 

farmers adopt irrigation, which is the world's biggest use 

of water, irrigation needs to be improved, and because it 

is done, irrigation is not an efficient use of water. 

Farmers must monitor data such as soil variety, climatic 

situations, existing water resources, soil humidity, soil 

nutrients, and soil pH to improve irrigation management 

and make conclusions that reduce or eliminate 

agricultural complications. 

     To address the complex issues facing agriculture, 

irrigation, a data-driven technology, needs to be 

integrated with new technologies and cutting-edge 

approaches. This study provides a summary of current 

IoT-enabled technologies that can improve agricultural 

water quality and irrigation management [8]. 

     This article discusses how irrigation and IoT have 

developed, what needs to be taken into account for 

optimal irrigation, why effective irrigation optimization 

is necessary, and how vibrant irrigation optimization 

could decrease water waste. Usage of IoT, arrangement 

of models, controllers, and sensors in agriculture, 

platforms of cloud IoT, water prediction, and ML 

models for irrigation are all demonstrated in the study. 

The creation of more effective irrigation management 

applications benefits from the convergence of tools, 

technology, and methodologies. For the creation of 

efficient irrigation management software, access to real-

time data must be improved, like water quality metrics, 

and weather, plant, and soil data. 

      This study makes the case that agriculture can 

benefit from an Internet of Networks paradigm. Privacy 

and security are essential components of Internet of 

Apps, in addition to IoT networks tied to agriculture. 

This method takes a set of data as input. All symbolic 

features are translated to numeric features for pre-

processing, and all numeric features are subsequently 

converted back to symbolic features. To extract features, 

the prime constituent investigation is employed. 

Following pre-processing, the pre-processed data set is 

categorized using ML methods like SVM, linear 

regression, RF, DT, and Naive Bayes. When assessing 

the effectiveness of ML systems, metrics accuracy, 

precision, recall, and f1-score are taken into attention. 

[9] 

2. Problem Statement 

Monitoring water quality is a crucial duty that ensures 

the safety and usability of water resources. Traditional 

water quality monitoring techniques, however, take a 

long time, cost a lot of money, are inaccurate, and 

frequently don't produce data in real-time. IoT [10, 39, 

43] and ML [40] have recently come to light as viable 

technologies for tracking water quality. IoT uses 

networked sensors and other gadgets to gather and send 

data from the real world to the digital one. Water quality 

monitoring can be automated using IoT and offers real-

time data that is accessible from a distance. This can 

significantly cut down on the time and expense of using 

conventional water quality monitoring techniques, and 

effective, accurate system performance for ML. IoT 

sensor data can be analyzed using ML [11] to find 

patterns that could point to changes in the quality of 

water. Based on the current situation and previous data, 

ML algorithms can forecast the water quality of the 

future. This can aid in spotting possible problems before 

they develop into larger ones. A thorough framework for 

IoT and ML-based water quality monitoring is needed to 

overcome these difficulties. The creation of reliable IoT 

sensors, data processing and analysis methods, and ML 

algorithms that can provide precise and dependable 

forecasts regarding water quality should all be part of 

this framework. Ultimately, the monitoring and 

management of our water resources could be completely 

changed by the application of IoT and ML for water 

quality monitoring. These technologies can help to 

ensure that our water supplies are safe and useable for 

future generations by giving real-time data and 

prediction insights. 

 

81%

13%

6%

Fresh water utilization

Irrigation Industry Domestic
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3. Objectives 

To ensure that irrigation water is safe and healthy for 

crops and does not harm soil or plants, the following are 

a few of the specific goals for irrigation water quality: 

1. Ensure that the water used for irrigation is free from 

harmful chemicals, and impurities that negatively affect 

crops. 

2. Maintain an appropriate pH level in the irrigation 

water. This helps ensure that the soil maintains the right 

nutrient balance for plant growth. 

3. Control TDS levels in irrigation water. A high range 

of TDS can damage crops and deplete the soil of 

nutrients. TDS monitoring is essential to determine the 

overall quality of water used for irrigation. However, 

TDS levels can vary significantly depending on the type 

of soil, fertilizer used, and other factors, making it 

challenging to establish a baseline TDS level. United 

Nations (UN) [38] Quote: "TDS monitoring is essential 

to ensure that irrigation water is within safe limits and 

does not negatively impact crop yields." 

4. Maintain appropriate levels of turbidity in the 

irrigation water. This is crucial for maintaining healthy 

root systems in plants. Turbidity monitoring is critical to 

determine the quality of water for irrigation purposes, 

and it is necessary to ensure that the water is free from 

suspended solids and other contaminants. 

5. Effective monitoring of water temperature is essential 

to manage water resources sustainably and support 

agricultural productivity. 

Water quality control for irrigation's overall goal is to 

guarantee that water is used responsibly and effectively 

to maximize crop yields. The necessity of monitoring 

these factors for effective management of water 

resources and agricultural output is acknowledged by 

the UN [38]. 

4. Related Work 

4.1 Review of IoT in Agricultural Water Quality 

Monitoring water quality is crucial in agriculture to 

guarantee safe and responsible water use for crop 

production. Due to its potential for real-time monitoring 

and effective data collecting, the use of IoT technology 

in water quality monitoring has attracted interest 

recently. We will examine recent works on IoT-based 

quality of water monitoring in agriculture in this 

literature review [22]. The creation of less price IoT-

based water quality monitoring system for precision 

agriculture was the focus of one study by [12] authors. 

The system was made up of pH, dissolved oxygen, and 

temperature sensors that were wirelessly networked to a 

central computer. The study showed the system's 

potential for real-time water quality parameter 

monitoring in precision agriculture. Another study by 

[13] monitored the water quality in a greenhouse tomato 

production system using an IoT-based system. The 

system was made up of temperature, electrical 

conductivity, dissolved oxygen, pH, and dissolved 

oxygen sensors that were linked to a central database. 

According to the study, IoT-based systems can monitor 

and analyze water quality data in real-time, allowing for 

effective control of greenhouse systems. In a Chinese 

rice paddy area, a study by [14] used IoT-based water 

quality monitoring. A system had a network of 

temperature, electrical conductivity, and water level 

sensors that were linked to a central computer. The study 

showed that IoT-based systems were capable of 

providing precise and actual monitoring of quality water 

in rice paddy fields. In conclusion, recent studies have 

demonstrated encouraging results for the application of 

IoT-based systems for quality water monitoring in 

agriculture. These schemes' actual monitoring and 

effective data collection capabilities can facilitate the 

effective management of water resources in agriculture, 

resulting in the sustainable crop production of high-

quality crops. 

4.2 Review of ML in Agricultural Quality 

Monitoring water quality in agriculture is crucial for 

making sure that agricultural methods are sustainable 

and that the environment is protected. The accuracy and 

effectiveness of water quality monitoring in agriculture 

have greatly improved in recent years thanks to the 

widespread use of ML techniques. Several researches 

have been conducted to investigate the use of ML 

learning algorithms in agricultural water quality 

monitoring. A study by [15] employed ML techniques, 

for instance, to forecast the water quality indicators of 

Chinese rivers and lakes. A deep learning method was 

employed in a different study by [16] to forecast the 

nitrate content of groundwater. The research revealed 

that deep learning algorithms outperformed 

conventional regression models in terms of accuracy. 

Data on water quality has also been classified using ML 

methods. For instance, the work by [17] classified water 

quality data into various categories based on the water 

quality indicators using ML algorithms. ML techniques 

have been utilized for anomaly detection in water quality 

data in addition to prediction and categorization. In the 

work by [18], inconsistencies in water quality data 

gathered from a river in Pakistan were found using ML 

algorithms. The majority of the research points to ML 
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algorithms as having enormous promise for monitoring 

water quality in agriculture. These algorithms can assist 

in decreasing expenses, increasing the precision and 

effectiveness of water quality monitoring, and 

increasing the sustainability of agricultural methods. 

4.3 Reviews of Water Quality 

In many industries, such as agriculture, water quality, 

and defense applications in daily life, wireless sensor 

networks (WSNs) are essential. 

The lifespan property of WSN, or the amount of time 

it takes for a sensor to run out of power, was investigated 

by authors in [19]. Also, they looked at the WSN 

lifespan problem using a metaheuristic approach. They 

provide a metaheuristic algorithm with three steps: 

transition, evaluation, and determination, which aid in 

determining the best solution to the issue. 

Their rationale makes it evident that mastery of the 

numerous field characteristics and subject-specific 

information about longevity problems are prerequisites 

for applying a metaheuristic technique. A lot of 

researchers have investigated a variety of metaheuristic 

algorithms. Even if these tactics are used and the 

performance of the WSN improves, there are still some 

unsolved problems. When the possibility is measured, 

numeral sensors or cluster heads, for instance, might be 

decreased. Moreover, even though the bulk of 

metaheuristic techniques are considered with 

optimization in mind, they might not be effective when 

used to address longevity issues [20]. 

     If farmers want to boost production, they must 

prioritize water quality. In these situations, using WSN 

may be very helpful in guiding farmers and other 

agricultural actors, such as management irrigation 

organizations, in making appropriate judgments that 

support irrigation necessities and crop output predictions 

[21].  

      Authors in [23] based on principal pivot irrigation 

schemes, created the self-contained agricultural 

accuracy system. The method uses an underground 

sensor network to observe area variables including soil 

temperature and humidity. This confirms that power 

settings are adjusted for input configuration and 

standard energy preservation and that sensors are 

configured. 

       Authors in [24] explored an application of wireless 

sensors in irrigation planning. They use a sensor array 

system and sensor network-based precision knowledge 

to calculate soil moisture and temperature to estimate 

watering needs in real time. 

       Authors in [25] presented a new ontologically 

guided wireless sensor or actuator-based separate zone 

watering system. The PA used in this technique is based 

on speaking plants to protect further water. The 

performance of a scheme is enhanced by combining 

several ML approaches to identify network node issues. 

Several end-user apps have been formed earlier to 

develop automation and usability of irrigation 

responsibilities. 

      Authors in [26]  conducted studies for sessional 

exploration on dry and rainy times and investigated the 

effects of five water harvesting procedures. In three 

periods of sowing, midseason, and after reap, their 

model took into account the moisture content of soil at 

four dissimilar complexities. They confirmed that their 

approach is real in reducing water use and increasing 

output. 

       Authors in [27] shaped a microcontroller software 

to accurately manage the soil temperature of plants. For 

communication connectivity, it uses a solar cell and a 

cellular Internet interface. According to the results of 

their 136-day studies, the authors suggested irrigation 

approach may utilize up to 90% less water when 

compared to standard farming practices. 

Authors in [28] devised the method for cotton crop 

irrigation. Their method was utilized to calculate the soil 

water balance using data sets from multiple cotton-

cultivating areas. Using data sets, researchers developed 

an Android app. Their program was also intended to 

collect climate data from climate locations near sites 

where it was utilized. Using both internal data and 

downloaded meteorological data, the application 

assessed the irrigation requirements and autonomously 

scheduled the irrigation systems to increase cotton yield. 

Authors in [29]  solve challenges including farming 

reserve optimization, decision provision, and field 

monitoring, an environmental WSN clarification known 

as a smart greenhouse monitoring scheme was 

developed. Their plan boosts crop productivity while 

also making the most use of water and fertilizer. They 

discussed how the environment influences how plants 

grow. 

Authors in [30] indicated that assessing the global 

water situation to make wise water use decisions is 

crucial. Farmers in Pakistan, notably those in the Nawab 

Shah district, frequently over-irrigate their fields 

because they are unaware of the crop water necessities 

and believe that using extra water will increase the 

harvest. 
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Authors in [31] demonstrated how to calculate 

operational rainwater, crop and reference 

evapotranspiration, net and gross irrigation water 

demand, crop growth, and irrigation scheduling using 

crop water requirement simulation models. Using 

modeling techniques, the ideal quantity of irrigation 

water has been determined globally. But generally 

speaking, numerous studies in previous work highlight 

the significance and pressing need for an exploration of 

crop water requirements in light of climate change, 

taking into account the significance of approximating 

crop water necessities, particularly for major crops, like 

cotton, wheat, bananas, and sugarcane in Pakistan. 

However, precise crop water requirements for these 

crops in the context of climate change are still unknown. 

5. Methodology 

The framework for a smart irrigation system for an IoT 

network for agricultural fields is presented in this section 

and may be seen in Figure 2. Real-time data sets, water 

pH, TDS, temperature, and turbidity sensors, as well as 

Arduino, centralized cloud storage, ML methods, and 

mobile applications, make up the framework's major 

elements. 

 

     Fig. 2. Framework for Water Quality 

5.1 Main Components of Proposed Framework 

5.1.1 Arduino UNO WiFi REV2  

Arduino UNO WiFi Rev.2 is an easy way to begin with 

basic IoT with its typical UNO small-factor design. If 

we want to create a sensor network associated with our 

home or office router or Bluetooth low-energy device 

that sends data to cell phones, Arduino UNO WiFi Rev.2 

is the one-stop solution for several simple IoT 

solicitation situations. By including this board in the 

device, we can use its protected ECC608 crypto chip 

accelerator to connect it to the WiFi system. Arduino 

Uno WiFi has WiFi, Bluetooth, and other improvements 

while otherwise functioning identically to Arduino Uno 

Rev3. It contains an integrated IMU (Inertial 

Measurement Unit) LSM6DS3TR and uses Microchip's 

brand-new ATmega4809 8-bit microcontroller. A Wi-Fi 

Module is an integrated SoC that can function as an 

access point or provide access to a Wi-Fi network. It has 

a built-in TCP/IP protocol stack. It is NINA-W102 from 

U-Blox. Arduino UNO WiFi Rev.2 contains a USB port, 

a power jack, an ICSP header, six analog inputs, 14 

digital input/output pins, five of which can be used as 

PWM outputs, and a reset button. All things required to 

support the microcontroller are incorporated. To begin, 

just plug in a USB cord to the PC, or power it with a 

battery or AC adapter [32]. 

 

                  Fig. 3. Arduino UNO WiFi REV2 

5.1.2 Temperature sensor DS18B20 

The water's warmth or coldness is gauged by its 

temperature. Since temperature directly distresses the 

quantity of dissolved oxygen (DO) that aquatic 

organisms can access, it is a critical water quality metric. 

The types of aquatic organisms that can persist in water 

can also be determined by temperature measurements 

[33].                      

 

Fig. 4. Temperature sensor 
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5.1.3 Turbidity sensor SKU: B306 

Water clarity is determined by turbidity. This 

measurement decides how many floating particles, like 

clay, silt, sand, and plant debris are present in water, 

which has an impact on how much sunlight reaches 

aquatic plants. When spawning grounds and eggs are 

covered by soil, excessive turbidity can lower aquatic 

life's reproductive rates. Nephelometric Turbidity 

(NTU) Units are used to measure turbidity [33]. 

 

Fig. 5. Turbidity sensor 

5.1.4 TDS sensor SKU: SEN-0244 

TDS is a word used to define the quantity of mineral and 

salt contaminants in water (TDS). PPM units are used to 

measure TDS. TDS indicates the number of 

contaminants per million units of water. For instance, 

water for drinking should have a ppm of less than 500, 

and water for agriculture should have a ppm of fewer 

than 1200 [33]. 

                             

       Fig. 6. TDS sensor 

5.1.5 SKU-B305 pH Sensor 

The concentration of hydrogen ions in water is gauged 

using the pH scale. A pH sensor measures the water's 

acidity or basicity, which has a direct impact on aquatic 

species' ability to survive. With 7 being neutral, the pH 

scale ranges from 0 (extremely acidic) to 14 (very basic). 

Utmost water falls within the 5.5 to 8.5 pH range. 

Chemicals can dissolve differently in water depending 

on pH changes. Fish and other aquatic species can die if 

the pH is too high (below 4) or too low [33]. 

 

Fig. 7. pH sensor 

5.1.6 Cloud storage 

Data about water quality is centralized in the cloud. ML 

techniques such as SVM, RF, DT, Logistic regression, 

and Nave Bayes are available on the Firebase cloud. The 

right amount of data needed for a specific crop is 

obtained using ML algorithms applied to water quality 

data, and registered users can access this information 

using mobile applications. Those who have registered 

can examine ML predictions. Those who have registered 

can examine the temperature, TDS, pH, and turbidity of 

their crop water. 

5.2 Machine Learning Algorithms 

5.2.1 Support Vector Machine Classifier 

SVMs refer to a group of learning algorithms that utilize 

regression and classification techniques to categorize 

data configurations. Their objective is to classify new 

samples by determining which side of a gap they belong 

to. SVM models are employed to classify the quality of 

water used in smooth irrigation into different classes as 

accurately as possible [34]. 

5.2.2 Random Forests 

An effective ensemble learning method used frequently 

in classification applications is RF. It categorizes using 

conclusions from uncountable DT it generates during 

training, where an output of forest is a mode of targeted 

outputs from each DT. Using random samples of 

training data, RF creates DT, lowering variance in the 

final model, improving performance, and preventing 

overfitting [35]. 
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5.2.3 Logistic Regression 

The method used to connect the dependent variable to 

one or more autonomous variables is known as logistic 

regression. In some instances, the terms predictor and 

predictor, respectively, are used to describe both the 

dependent and independent variables. Variables 

unrelated to the prediction of plant type include 

temperature and humidity differences, soil moisture, 

and pH levels.  The formula below has been created 

[35]. 

Y = B0+ B1X1+ B2X2+ ⋯ + BkXk+𝝐         (1) 

Where, 

Y = Response variable (Predicted variable) 

Xi = Independent variable 

β0 = Y-intercept (constant) 

βi = Slope for each independent variable 

ε = error (Residual) 

5.2.4 Naiıve Bayes  

The Naive Bayes techniques are a set of supervised 

learning algorithms that use Bayes' theorem for 

probabilistic classification. These algorithms assume 

that the features are independent of each other. Each 

feature is expected to increase the probability that the 

trial belongs to a particular class. Although the Naive 

Bayes models are considered to be among the simplest 

Bayesian network models, they can achieve high levels 

of accuracy when used in combination with kernel 

density approximation. Naive Bayes is a classification 

algorithm that performs well for both binary and 

multiclass classification. It performs better in cases 

where there are definite input variables, especially when 

dealing with numerical input variables. Naive Bayes is 

useful for predicting data and making predictions based 

on previous performance [35]. 

5.2.5 Decision Tree 

DT is a non-parametric supervised learning approach 

that is utilized for regression and classification 

applications. It is structured hierarchically and 

comprises a root node, branches, internal nodes, and leaf 

nodes. We can assess our possibilities with the use of 

DT. DTs are great tools for supporting in choosing one 

course of action over others. They offer a very valuable 

framework within which we can present options and 

research the potential results of those options. Using the 

tree-like model of decisions and their possible results, 

like outcomes, events, chances, utility, and resource 

costs, the DT is a decision support tool. A single 

technique for showing an algorithm that especially uses 

provisional control declarations is to use this one [36]. 

6. Simulation and Results 

The data set of 9000 water samples was developed for 

experimental exploration, and real-time data on water 

quality was used for water quality prediction. Details 

about the water's temperature, pH, TDS, and turbidity 

for a particular crop in a particular area are included. The 

dataset is made up of training data in the amount of 30% 

and testing data in the amount of 70%. In this study, we 

only build decision rules using 30% of the training data. 

Five ML algorithms were utilized in an experimental 

study: SVM, RF, Linear Regression, Naive Bayes, and 

DT. The following formulas were employed to calculate 

accuracy: 

6.1 Accuracy  

The proportion of redress expectations of indications of 

the malady to the whole number of inputs [37]. 

Accuracy =
(TP+TN)

(TP+TN+FP+FN)
           (2) 

6.2 Precision  

The ratio of correctly predicted parameters to the total 

number of parameters to be classified is called precision 

[37]. 

Precision =
TP

(TP+FP)
           (3) 

6.3 Recall  

The percentage of all positives to the total number of 

parameters. It is also known as the true positive rate or 

affectability. Wherever true positive, TN = true negative, FP 

= false positive, and FN = false negative [37]. 

Recall =
TP

(TP+FN)
           (4) 

6.4 F1-Score  

An ML evaluation metric known as the F1 score 

measures the accuracy of models. It is a combination of 

the model's recall and precision. How many times the 

model is appropriately predicted during an occupied 

dataset is determined by accuracy statistics. In 

maximum cases, an F1 score is more useful than 

accuracy, mostly if your class is distributed irregularly. 

When FP and FN costs about similar, accuracy performs 

best. It is better to embrace both precision and recall if 

the costs of FP and FN differ considerably [37]. 

F1 Score =
2×Precision×Recall

Precision+Recall
          (5) 



© Mehran University of Engineering and Technology 2024                                        200 

 

Fig. 8. Confusion Matrix 

Accuracy results of ML methods are displayed in 

Table 1 and the following figures 8, 9, 10, 11, and 12. In 

this graph, SVM outperforms RF, Logistic Regression, 

DT, and Nave Bayes in terms of accuracy results for ML 

algorithms. SVM's result is greater than 90%, while 

logistic regression's is 88%, and the accuracy results of 

RF, DT, and naive Bayes are all less than 80%. Table 2 

shows the water quality index and how much percent 

water is healthy for agriculture. 

6.5 Decision Tree (Accuracy, Precision, Recall, F1-

Score):  

The Decision Tree model exhibited an Accuracy of 

76%, which represents the proportion of correctly 

classified instances. Its Precision was 76%, indicating 

the percentage of true positive predictions out of all 

positive predictions. The Recall or Sensitivity was 77%, 

signifying the percentage of true positives correctly 

identified out of all actual positive cases. The F1-Score, 

a balanced measure of Precision and Recall, was 76%, 

showcasing a fair trade-off between precision and recall. 

The Decision Tree's performance is acceptable but not 

exceptional, and it offers interpretability. 

6.6 Naïve Bayes (Accuracy, Precision, Recall, F1-

Score):  

The Naïve Bayes model achieved an Accuracy of 71%, 

suggesting a reasonable rate of correct classifications. Its 

Precision was 71%, indicating that 71% of the positive 

predictions were accurate. The Recall, at 71%, shows 

the model's ability to identify true positives out of all 

actual positives. The F1-Score, which combines 

Precision and Recall, was 71%, reflecting a balanced 

performance between precision and recall. Naïve Bayes 

is known for its simplicity and efficiency in text and 

categorical data classification. 

6.7 Random Forest (Accuracy, Precision, Recall, F1-

Score):  

The Random Forest model demonstrated an Accuracy of 

79%, indicating a high proportion of correct predictions. 

The Precision was 78%, denoting that 78% of its 
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positive predictions were accurate. The Recall, at 79%, 

shows a good ability to correctly identify actual 

positives. The F1-Score was 79%, signifying a well-

balanced performance between precision and recall. 

Random Forests excel in handling complex datasets and 

offer robust performance. 

6.8 Support Vector Machine (Accuracy, Precision, 

Recall, F1-Score):  

The Support Vector Machine model displayed an 

impressive Accuracy of 96%, indicating an exceptional 

rate of correct predictions. Its Precision was 96%, 

showcasing a high percentage of true positive 

predictions. The Recall, at 96%, indicates the model's 

strong ability to identify true positives. The F1-Score, 

also at 96%, highlights the high balance between 

precision and recall. Support Vector Machines are 

powerful but computationally intensive models known 

for their accuracy. 

6.9 Logistic Regression (Accuracy, Precision, Recall, 

F1-Score):  

The Logistic Regression model achieved an Accuracy of 

90%, signifying a substantial proportion of correct 

predictions. Its Precision was 90%, indicating that 90% 

of its positive predictions were accurate. The Recall, at 

90%, reflects the model's ability to correctly identify 

actual positives. The F1-Score, at 90%, demonstrates a 

strong balance between precision and recall. Logistic 

Regression offers a good trade-off between performance 

and interpretability. 

Table 1 

Accuracy of ML algorithms 

Algorithm Accuracy  Precision  Recall  F1-

Score  

Decision 

Tree 

76 75 79 87.34 

Naïve Bayes 72 75 70 73 

Random 

Forest 

79 79.11 69 80 

SVM 94.18 91 90 92 

Logistic 

Regression 

88.22 84 85 87 

 

Fig. 9. Accuracy of classifiers 

 

Fig. 10. Precision of classifiers for classification of 

agriculture fields 

 

Fig. 11. Recall of classifiers for classification of agriculture 

fields 
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Fig. 12. F1-score of classifiers for classification of 

agriculture fields 

6.10 Water Quality Index (WQI) Calculation 

The water quality index can express the overall water 

quality status in a single term. 

Table 2 

Water Quality Index Range 

Classification WQI Range Description 

Good 80-100 Suitable for use 

Fair 50-79 Minor impairment 

Marginal 30-49 At Risk 

Poor 0-29 unsuitable 

WQI was calculated using Eq. (6) for the WQI 

assessment method, while the water quality status was 

assigned using the classification system developed by 

Brown et al. (1970) [41] [42] in Table 2 

𝑊𝑄𝐼 = ∑ 𝑄𝑖𝑊𝑖𝑛
𝑖=1            (6) 

Here Qi is the sub-index i-th water quality parameter, 

Wi is the weight of the i-th water quality parameter, and 

n is the number of water quality parameters.  

Table 3 

Good and bad water quality on this dataset in terms of 

WQI 

     Good Quality   Bad Quality 

      88.12 (%)      11.88 (%) 

 

 

Fig. 13. Good and bad water quality on this dataset in 

terms of WQI 

7. Conclusion 

The smart irrigation system described in this article 

makes use of cloud computing, IoT, and ML 

frameworks. This study consists of four sensors i-e 

Temperature, TDS, pH, and Turbidity. ML techniques 

were employed in this framework to forecast the 

quantity of usable grade water required for agricultural 

production. As a result, a quantifiable amount of high-

quality water is used for irrigation. Therefore the 

agricultural industry will alter as a result of intelligent 

irrigation.  

Among the classification algorithms, the SVM 

demonstrates the highest performance with an accuracy 

of 95%, precision of 91, recall of 90, and F1-score of 92. 

The Logistic Regression also performed well with an 

accuracy of 88%, while other methods, such as RF, 

Naïve Bayes, and Decision Trees are less accurate. 

These findings have significant implications for 

water management since they allow for proactive 

decision-making and prompt risk-reduction measures by 

providing an accurate estimate of the parameters 

governing water quality. Ensuring that water quality is 

accurately classified enables efficient monitoring and 

the timely identification of critical situations that 

demand prompt care. 

8. Future Work 

The use of IoT and ML for quality water monitoring has 

the potential to completely change how we manage and 

protect our water resources. Here are some potential 

future routes for this technology, which can gather real-

time data from many sources and is one of the primary 

benefits of IoT-based water quality monitoring. This 

information can be used to spot problems with water 

quality as they arise, enabling quick response and 

correction. Using ML methods, predictive modeling can 
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be used to create water quality models based on 

historical data.  

Autonomous sensor-based quality water monitoring: In 

remote areas, water quality parameters can be 

continuously monitored. When it comes to monitoring 

quality water in hard-to-reach places like deep lakes or 

secluded rivers, technology can be especially helpful. 

Integration with other data sources: To acquire a more 

thorough understanding of water quality problems and 

their causes, water quality monitoring data can be 

merged with other data sources such as weather data, 

land use data, or hydrological data.  

Creation of decision-support systems for the control 

of water quality that can be aided by ML algorithms. 

Water resource managers can use these tools to make 

well-informed choices regarding strategies for 

managing and monitoring water quality. Some 

necessary minor concerns regarding the dependability 

and security of the various data processing systems and 

processes can also be addressed.  
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