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K E Y W O R D S  A B S T R A C T  

Federated Learning 

Resource Management 

Fog Computing 

Internet of Things  

 Fog computing offers an optimal answer to the expansion challenge of today’s 

networks.  It boasts scaling and reduced latency. Since the concept is still nascent, 

many research questions remain unanswered. One of these is the challenge of 

Resource Management. There is a pressing need for a reliable and scalable 

architecture that meets the Resource Management challenge without 

compromising the Quality of Service. Among the proposed solutions, Artificial 

Intelligence based path selection techniques and automated link detection methods 

can provide lasting and reliable answer. An optimal approach for introducing 

intelligence in the networks is the infusion of Machine learning methods. Such 

futuristic, intelligent networks form the backbone of the next generation of 

Internet. These self-learning and self-healing networks are termed as the Zero-

Touch networks. This paper proposes FedFog, a Federated Learning based 

optimal, automated Resource Management framework in Fog Computing for 

Zero-touch Networks. The paper describes a series of experiments focusing on 

Quality of Service parameters such as Network latency, Resources processed, 

Energy consumption and Network usage. The simulation results from these 

experiments depict superiority of the proposed architecture over traditional, 

existing architecture. 

1. Introduction  

Federated learning is the term coined by Google in 2016 

[1, 2]. It models a distributed, de-centralized paradigm 

for data analysis and decision making [3]. An 

application of Machine learning in general and Deep 

Reinforcement learning in particular, Federated learning 

provides a viable solution to many emerging challenges 

in the next wave of Internet [4]. Few of the notable 

challenges include data privacy, data sensitivity and data 

silos [5]. Contrary to the traditional machine learning 

approach where data and processing occurs at the central 

server, this approach works on localized data training 

[6]. This model provides an ideal platform for wireless 

communications since it conserves the network’s 

bandwidth and protects users’ privacy [4].  Data 

aggregation at the centralized server corresponds to 

Cloud while distributed, localized training happens at 

the Edge devices or Fog nodes [7]. Since the data is 

localized and only a model is updated on the Central 

server, privacy of end-user data is ensured [6, 8].  In 

other words, Federated Learning involves developing a 

centralized model without sending data to the server [9]. 

https://doi.org/10.22581/muet1982.2303.0
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The paper proposes FedFog-A Federated learning based 

Framework in Fog Computing for Zero-Touch Network. 

The paper is structured as follows: Section 1 contains 

Introduction, Section 2 provides the background study 

and literature review. Section 3 describes FedFog, along 

with the Experimental Setup. Section 4 contains the 

Results and Analysis and Section 5 contains the Future 

Directions and Research Areas.  

2. Background and Literature Review     

The huge leaps in the development of Internet of Things 

(IoT) has made it greatly impactful for the future 

generations [10]. Varied types of sensors gather and 

capture data and automate the processing [11].The 

easiest approach to handle majority of the challenges in 

this paradigm  is through the Cloud of Things (CoT), 

which connects IoT with the Cloud [12]. The CoT 

permits IoT data collection and processing while 

enabling moderate configuration and integration for 

further complicated data processing and implementation 

[13]. After then, the massive data is examined in order 

to make judgments about various processes. To transport 

all of this data to the Cloud, a lot of network bandwidth 

is required. Fog computing is used to overcome these 

problems. Cisco coined the phrase “Fog Computing” 

[14]. It's a recent development with a broad array of 

applications mainly in the Internet of Things. Like 

Cloud computing, Fog computing allows IoT users’ data 

storage and processing within the local loop. Storage, 

computations and networking functions are provided by 

both the Cloud and the Fog [15]. Fog computing aims to 

enhance efficiency while lowering the quantity of 

content to be routed to the Cloud. The complementary 

hierarchy of Fog-Cloud reduces the transmission of 

operational data to the Cloud. As a result, instead of 

being routed to the Cloud for analysis and temporary 

storage, collected data will received by the end device at 

edge, decreasing network traffic and latency [16]. The 

convergence of Fog computing and the Internet of 

Things has resulted in a new economic enterprise known 

as Fog as a Service (FaaS). In this paradigm a network 

is built by a service provider of Fog nodes throughout its 

global presence and serves as a landlord to clients in a 

variety of vertical industries. Each Fog node has its own 

processing, networking, and storage resources [17].  The 

challenges in Cloud networks that call for network 

expansion and growth are numerous. These range from 

communication costs to administrative policies. These 

challenges are briefly discussed below: 

● Price of Data Routing and Communication: The cost 

of transmitting data from End user to the Cloud is 

hefty considering the delay due to network traffic and 

physical limitations of the Network. Hence there is 

need for localized data transmission for immediate 

decision making and updates concept [18, 19].    

● Reliability: In case of connectivity interruption, 

various suboptimal routing paths and data processing 

options must be available [18, 9]. 

● Data Privacy and Security Concerns: To train a data 

model, users are required to share their raw, sensitive 

and confidential data with Cloud or third party. This 

leads to security concerns as data can be tempered, 

misused or abused much to the loss of its user [2, 6]. 

● Administrative Policies: Legalization of individual 

information cannot be guaranteed under traditional 

Machine Learning models, since they require data 

sharing and cannot generate models without sharing 

of this data [7, 18]. 

● Downtime: The downtime faced by intermittent 

Cloud Connectivity services brings the network to a 

standstill. Hence an expansion focusing on fault 

tolerance is needed [4, 20]. 

● Course-Grained Control: Users of the current 

networks have a course-grained control on their 

networks. Thus, the networks lack customization and 

personalization [20, 2]. 

● “Vendor Lock-in”: Differences among various 

vendors make migration a tedious job [20]. 

One possible solution to these existing Network 

problems lies in Machine learning Algorithms [21]. This 

paradigm has provided promising solutions to many 

existing network bottlenecks. Among these machine 

learning algorithms, Federated learning is an important 

paradigm [7]. Introducing Machine learning into the 

existing networks implies that networks are self-

responding which is the essence of Zero-Touch 

Networks [22].  

2.1 Federated Learning  

Federated Learning roots from the de-centralized, 

distributed architecture. It is an advancement of Deep 

Quality Neural Network that focuses on training 

multiple clusters simultaneously [1]. An example of this 

decentralized, distributed architecture is Google 

Android keyboard. 

 Federated learning is majorly depicted in Fig.s 1 and 

2 below. It is based on localized data updates [23, 19]. 

Essentially, Federated learning involves periodic 

updates of the data model to the Server instead of 
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consistent data synchronization [24], [25]. It implies that 

the Server initially broadcasts a basic model to all the 

participating nodes. Based on the received data, each 

participating node creates its local copy. This localized 

version is updated by individual nodes based on their 

local data sets and parameters. At predetermined time 

intervals, the Server updates its global model after 

receiving updates from the participating nodes. This 

implies one round of Federated Learning. It is described 

in Fig. 1 and 2 below. 

The simplest type of Federated learning is termed as 

Synchronous Federated Learning. It implies that the 

server halts the execution unless the slowest member 

updates. In the Asynchronous Federated Learning, the 

updates to the server occur in asynchronous manner 

[26]. 

Node 1 Node 3

Step 2:Initial Model is 
broadcast to the 

participating Nodes

Central Server
Step1:Central Server decides the 

TrainingModel

Step 3 :Devices train the model with  local data

Node 2

 

Fig. 1. Federated Learning 

Node 1 
Node 2 Node 3

Step 4:Server collects 
the updated model 
from the participating 
devices and updates 
the global model,to 
be broadcasted for 
the next round

Central Server

 

Fig. 2. Federated Learning(cont’d) 

Among various applications of Federated Learning, 

few noticeable ones are as follows: 

Smart Phones: Next word prediction, user behavior 

prediction and thereby updating the global model 

without exchanging user data forms the core application 

of Federated learning [27, 28].  

Organizations: Organizations can be viewed as 

individual “nodes”. These organizations range from 

hospitals containing sensitive patient data and 

confidential health records to financial institutions like 

banks. Federated Learning provides an ideal solution 

since the localized update, rather than data is sent to the 

central server [27, 28]. 

Internet of Things: Another very exceptional 

application of Federated learning lies in the Internet of 

Things (IoT), the next generation of internet boasting 

device-Cloud continuum with “talk able devices” [20, 

18]. 

Cloud and Fog Computing: This defines one of the 

fundamental and core applications for Federated 

Learning, Since the device data is updated locally, the 

overall network latency is reduced, bandwidth is 

conserved and the system reliability improves [27, 18, 

28]. 

Natural Language Processing (NLP): The concept of 

localized updates and privacy prevention makes 

Federated learning an ideal candidate for NLP. 

Few notable challenges in the Federated learning 

include its excessive use of energy and resources in 

mobile clients, for updating the model locally. 

Additionally, the limited resource management capacity 

of participating nodes will have a challenge in training 

each Agent for localized model update [29].  More over 

the training data is highly heterogenous [30], adding to 

probable deviations in the global model. Device 

heterogeneity can be reflected in varying storage 

capacity, data processing capacity and computational 

capacity. Statistical heterogeneity is another challenge, 

implying variations in generated data. Application 

specific updates can also contribute as a challenge. It 

corresponds to situations where models adapt to their 

environment in a shallow, lightweight manner. It is due 

to constrained resources available to participating Nodes 

[31]. Since traditional Federated learning model 

assumes all participating devices to contribute equally 

heterogeneity remains a challenge that hinders the 

optimal performance of Federated Learning [3].  
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3. FedFog-Proposed Federated Learning based 

Framework in Fog Computing for Zero-touch 

Networks 

The paper proposes FedFog, a Federated learning-based 

Resource Management framework in Fog computing for 

Zero-Touch Networks. It revolves around finding an 

optimal solution to the resource management problem in 

Fog Networks. It does so by suggesting an extension to 

the current Cloud-Fog framework. This section 

describes the simulation that proves the superiority of 

the proposed architecture over the traditional Cloud-Fog 

framework.   

The FedFog algorithm works in a series of steps. This 

begins by an update of generic, global copy of the model 

being broadcast to all participating Fog nodes. These 

Fog nodes are directly connected to heterogenous user 

devices. Each device generates data a different rate so 

the receiving rate and parameters are monitored at the 

Fog node. These varied parameters create localized, 

updated model for the received global model. At 

specified intervals, these updates are forwarded to the 

Cloud. This constitutes one round of Federated learning. 

Participating nodes are termed as Clients and the Fog 

device acts as a coordinator [23, 19]. For every round 

the participating nodes are elected randomly. Instead of 

transferring data to the Cloud and sharing data with 

horizontally connected devices, an updated data model 

is sent. This ensures lesser data thrashing and fewer 

updates. The FedFog algorithm is depicted in Fig. 3 

below.  

 

Client2: IoT-Device2
Client n:IoT-Device n

Client1:Generic IoT Device

2.Fog Node:
Data aggregator/co-ordinator

5.Aggregated Model generated by 
analyzing data from all participating 

nodes

4.Localized updates 
on global model 

based on received 
data

1.A generalized, global  model is broadcasted 

Cloud Server

3.Device connects to the available Data Aggregator

3.Device connects to  the  available Data Aggregator
3.Device connects to the available  Data Aggregator 

6.UpdatedModels are sent to Cloud

 

Fig. 3. FedFog-A Federated Learning Algorithm in Fog Networks

3.1 Network Topology and Experiment    

The proposed network topology is simulated in iFogSim 

[32]. The major objective of this experiment is to 

analyze the performance enhancement achieved by 

incorporating Federated Learning into the Cloud-Fog 

network. The experiment considers contrasting 

scenarios, one of which depicts traditional Cloud-Fog 

approach and the other introduces Federated Learning 

into the Cloud-Fog Network, namely FedFog 

framework. At different time intervals namely 5000 

ms,10,000 ms,15,000ms and 20,000ms, the network 

responses are recorded in a tabular manner. The 

conducted experiment considers three different cluster 

sizes. The first considers a cluster size of 3 Fog Nodes 

(n=3 where n is the Cluster Size). The second considers 

a cluster size of 4 Fog Nodes(n=4) and the third 

considers cluster size of 5 Fog nodes(n=5).  
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The first topology comprises of a central Cloud 

server, CloudServer with three connected Fog Nodes, 

namely FogServer1, FogServer2 and FogServer3, hence 

the cluster size of 3. These Fog nodes are depicting local 

data center. These FogServers connect to a total of 10 

sensors and 6 actuators. It is important to note that these 

connected sensors and actuators are connected to only 

one FogServer at a time. This depicts static connections 

from an organization to a local Fog network. The 

arrangement of the devices is as follows: FogServer1 

connects Actuator1 and Sensor1, Sensor7 and 

Sensor8.FogServer2 connects Actuator2, Actuator3, 

Sensor2, Sensor3, Sensor9, Sensor10. FogServer3 

connects Actuator4, Actuator5, Actuator6, Sensor4, 

Sensor5, Sensor6.This topology depicts following 

features:  

● There is no horizontal communication among 

devices at the same level, implying the strength of 

vertical architecture of Things-Fog-Cloud. 

● The vertical transmission also ensures data 

independency and atomicity within one layer. 

● The topology also depicts cluster heterogeneity as the 

number of sensors and actuators are different within 

each group. 

The topology for n=3 cluster is depicted in Fig. 4 below. 

Table 1 below shows the parameter used for experiment. 

 

Fig. 4. Network Topology

 

Table 1 

Parameters used in simulation

Parameter Specification 
Device Type 

Sensor/Actuator FogServer CloudServer 

Hardware x86 architecture x86 architecture x86 architecture x86 architecture 

RAM 256 MB 256 MB 400 MB 4000 MB 

Uplink Bandwidth 100 MHz 100 MHz 100,00 MHz 100,00 MHz 

Downlink Bandwidth 100,00 MHz 100,00 MHz 100,00 MHz 100,00 MHz 

Level NA 2 1 0 

BATCH SIZE  Variable Variable NA 

System Metrics Under 

Consideration 

Energy consumed, 

Network Usage, 

Resources Processed, 

Latency 

   

4.  Results and Discussion 

The following graphs depict the results.  

4.1 System Latency  

Meeting latency targets form the core of future 

networks. It is a critical performance parameter that 

determines the quality of service of a Network. It is 

defined as the time   lapse from beginning of a service 

until it is terminated.  

Fig. 5a through 5e depict the latency response of the 

system for varying cluster size and at different time 

instances. 

Each graph depicts variable cluster size of n=3,4, and 

5 being tested at a specified time of 5000ms, 10000ms, 

15000ms and 20,000ms. 

Moreover, the accumulative latency response depicts 

the combined system responses for varying cluster size 

and at varying time interval. This chart is helpful in 

predicting a future value by studying system response 

under a single chart.
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Fig. 5a. Latency at 5000 ms  

 

Fig. 5b. Latency at 10,000 ms 

 

Fig. 5c. Latency at 15000 ms 

 

Fig. 5d. Latency at 20000 ms

Fig. 5e. Accumulative Latency Response

These results indicate that the simulation was run at 

different, variable time intervals. The existing 

architecture has the minimum latency of 223ms, even 

for the minimum simulation time. Comparatively, the 

proposed architecture has a variable latency depending 

on the simulation time. Moreover, the proposed 

architecture takes lesser time to converge. This is 

evident by the improvement in the response time at time 

5000 ms and 15000 ms.  
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4.2 Resources Processed  

In iFogSim, the number of resources processed indicate 

number of current threads in execution. Fig. 6a-6e depict 

the number of resources processed for varying cluster 

size and at different time instances. 

As indicated by the statistics generated from the 

simulation, the number of resources processed by a 

traditional Cloud-Fog system is much lesser than those 

processed by the FedFog. Moreover, the difference in 

performance is constant as the simulation time changes. 

This indicates that the generated values have minimum 

deviation from the mean values, indicating system 

stability.  

 

Fig. 6a. Resources Processed at 5000ms 

 

Fig. 6b. Resources Processed at 10,000ms 

 

Fig. 6c. Resources Processed at 15000ms 

 

Fig. 6d. Resources Processed at 20,000ms

Fig. 6e. Accumulative response for Number of Resources Processed

286061.2 267171.3 265816.19

1432949.634

773437.19

1372561.91

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

n=3 n=4 n=5

Resources Processed at 5000ms

Existing System FedFog Cluster Size(n)

285201.2 296296.34 292876.19

961209.53
822218.901

1309569

0

200000

400000

600000

800000

1000000

1200000

1400000

n=3 n=4 n=5

Resources Processed at 10,000ms

Existing System FedFog Cluster Size(n)

275456.2 296325.01 294191.19

663264.6693 674722.115

929952

0

200000

400000

600000

800000

1000000

n=3 n=4 n=5

Resources Processed at 15,000ms

Existing System FedFog Cluster Size(n)

258181.2 296370.2 275516.19

972550

742129.85
673963.914

0

200000

400000

600000

800000

1000000

1200000

n=3 n=4 n=5

Resources Processed at 200,00ms

Existing System FedFog Cluster Size(n)



© Mehran University of Engineering and Technology 2023                                74 

4.3 Energy Consumption  

Efficient energy consumption and thrift use of resources 

is an open research challenge. In terms of these highly 

complex and connected systems, energy losses could be 

far more destructive. These losses include transmission 

losses and energy lost as heat. 

Fig. 7a-7e depict the energy consumption of the 

system for varying cluster size and at different time 

instances. 

The accumulative chart contains the combined 

responses of the system at varying cluster size and 

different time. 

 

Fig. 7a. Energy Consumption at 5000ms 

 

Fig. 7b. Energy Consumption at 10,000ms 

 

Fig. 7c. Energy Consumption at 15000ms 

 

Fig. 7d. Energy Consumption at 20000ms

Fig. 7e. Accumulative Energy Consumption 

FedFog ensures the proposed system is efficient than 

available, traditional one. In comparison to the previous 

system, it produces efficient outcomes in terms of 

energy usage. The proposed approach consumes less 

energy as it placed on the networks edge, rather than 

routing the entire traffic towards the Cloud. 
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The energy consumption is an important parameter 

as it determines the electrical energy consumed by the 

architecture. The superiority of FedFog is evident from 

the generated results. 

The table also provides an insight to the challenge in 

Federated learning, namely Energy consumption. The 

energy consumption of the traditional system is roughly 

above 10,000 Joules even for the minimum simulation 

time. FedFog has a consistent energy consumption 

consistently below 10,000 even for the longest running 

simulation time. The clustering of the values around a 

mean indicates stability and predictability of the propose 

architecture namely FedFog. 

4.4 Network Usage   

The network usage, also termed as Bandwidth 

Utilization implies the amount of traffic     generated on 

the network versus the highest amount   that the network 

can handle. 

Fig. 8a-8e depict the network usage of the system for 

varying cluster size and at different time instances.    

 

Fig. 8a. Network Usage at 5000ms 

 

Fig. 8b. Network Usage at 10,000ms 

 

Fig. 8c. Network Usage at 15000ms 

 

Fig. 8d. Network Usage at 20000ms 

 

Fig. 8e. Accumulative Network Usage   
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The traditional Cloud-Fog architecture indicates a 

minimum bandwidth consumption in order of 

500000KBPS as compared to FedFog that requires 

minimum bandwidth in orders of 10000KBPS. 

This implies that the FedFog framework will saturate 

at a much later time, will process more active threads 

and the user experience of slower devices will be 

reduced. This implies faster response times and 

smoother running of the operations. 

The simulated experiment indicates that FedFog has 

latency responses of nearly half the value as compared 

to basic Cloud-Fog Network. In terms of number of 

resources processed FedFog is processing resources 

nearly three times more than a traditional Cloud-Fog 

Network. Energy consumption is nearly constant for 

varying node size and varying time intervals. In terms of 

bandwidth utilization, the architecture is thrift as 

compared to traditional Cloud-Fog networks. 

Hence the experiment concludes with superiority of 

proposed architecture over existing systems. 

5. Future Directions   

Fog offers a promising implementation ground for 

envisioning Internet of Things at its fullest [33]. 

Applications are limitless. Some prominent applications 

include Smart home [34],Green Internet of Things [35] 

among many others. Many challenges lie ahead in its 

implementation along other Edge related technologies 

[36].These include efficient load balancing [37], 

[38],Energy management [39],Cybersecurity [40], [41] 

and scheduling [42].The proposed approach brings out 

an  optimal, efficient machine learning algorithm in 

solving a resource management problem. This approach 

addresses a challenge [43] and can be utilized for 

improving the task scheduling [44].   
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