
© Mehran University of Engineering and Technology 2023                                52 

Mehran University Research Journal of Engineering and Technology 

https://doi.org/10.22581/muet1982.2303.06 

  2023, 42(3) 52-58 

 

Deep learning image-based automated application on classification of tomato leaf 

disease by pre-trained deep convolutional neural networks 

ReddyPriya Madupuri a, Dinesh Reddy Vemula a, Anil Carie Chettupally a, Abdur Rashid Sangi b,*
, 

Pallam ravi c 

a Department of Computer Science and Engineering, SRM University-AP,Amaravati, Guntur India 

b Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, Ouhai, Wenzhou Zhejiang 

China 

c Department of Computer Science and Engineering, Anurag University, Hyderabad India 

* Corresponding author: Abdur Rashid Sangi, Email:  sangi_bahrian@yahoo.com 

 

Received: 31 January 2023, Accepted: 26 June 2023, Published: 01 July 2023 

K E Y W O R D S  A B S T R A C T  

Convolutional Neural 

Networks 

Machine Learning 

Image Classification  

 The agriculture sector is one of the major sectors in India. India is well known 

for the production of various varieties of spices, fruits, vegetables, herbs, etc. 

Along with the pollution, the diseases that are affecting plants are increasing and 

there are various reasons for this. Tomato is one of the high-demand crops in the 

market and is produced in large quantities. There are many diseases that 

tomatoes get affected by because of the virus, fungus, bacteria, etc. In this 

project, we proposed a model to identify the diseases of tomato plants using 

images of tomato plant leaves. Our main goal is to develop a good model with 

decent accuracy and a mobile application that works with or without the internet 

for users, especially farmers. The Convolution Neural Network-based approach 

is used to create the model for this project. This proposed system model gives 98 

% accuracy and that model is converted to the TF Lite model which is used in 

the application. This application can precisely predict the disease of the tomato 

leaf and suggest the treatment for it. 

 

1.  Introduction 

Access India is a country known for agriculture. With 

38% of the land area is suitable for agriculture. And all 

over the world, India is the second-largest producer of 

both rice and wheat. Cereals have the highest market for 

almost 46% of the Indian Agriculture market. Solanum 

Lycopersicum which is also known as Tomato made 

India rank second on the list of nations producing it with 

852 thousand hectares of cultivation area[1-3]. Tomato is 

in second place for the crops getting affected with 12.8% 

of incidents. Generally, tomato grows on almost any well-

drained soil, and it is a Rabi crop in plain regions whereas 

in hilly regions it can be grown in summer and rainy 

season [4]. We know that Andhra Pradesh has the highest 

tomato crop production with 21 million metric tons, and it 

is the second most state which is getting affected with 

13.9% of incidents [5,6]. Along with production, the 

frequency of crops getting affected by diseases is also 

increasing. There are different ways to get diseases and all 

of them can’t be identified with the farmer's expertise. In 

the early days, farmers used to monitor the plants 

manually and treat them according to that observation [7]. 

This requires a lot of work and time, but sometimes the 

https://doi.org/10.22581/muet1982.2303.0
mailto:sangi_bahrian@yahoo.com


© Mehran University of Engineering and Technology 2023                                53 

prediction of diseases can’t be accurate. Deep learning is 

widely used in all sectors and with the help of this, we can 

predict diseases using visually observable patterns[8,9]. 

Monitoring the crops is very important and deep learning 

made it easy to work with. Using the images of various 

diseases and deep learning we can predict the disease with 

good accuracy[10,11]. Adding a mobile application to it 

will become handy for farmers to work. Mobile is 

developed to click or choose images from mobile and 

predict the disease. Along with those symptoms and 

treatments are provided for each disease to provide the 

basic knowledge to newbies in agriculture. 

Objectives 

The objectives of the proposed project are as below: 

• To design an efficient system that may detect 

tomato diseases based on leaf pictures and can be 

used in farms and nurseries. 

• An inference is performed using the TensorFlow 

Lite Java API. 

• To develop an app that can work in places without 

internet connection so which will be helpful in 

farms and low network bandwidth places. 

• To provide users with disease symptoms and their 

treatments.  

2.  Background and Literature Survey 

There has been considerable research on using deep 

learning for automated disease detection and 

classification in various crops, including tomato plants. 

In this literature survey, we will focus on recent studies 

that use pre-trained deep convolutional neural networks 

(CNNs) for tomato leaf disease classification. [3] 

propose a Tomato Disease Classification Using 

Convolutional Neural Networks. This study used a pre-

trained CNN called VGG-16 to classify tomato leaf 

diseases from images. The authors achieved an accuracy 

of 97.78% on a dataset of 10,000 tomato leaf images. [4] 

propose a Deep Learning for Automated Detection and 

Classification of Tomato Disease. In this study, the 

authors used a pre-trained CNN called AlexNet to 

classify four types of tomato diseases. The dataset 

contained 5,000 images and achieved an accuracy of 

98.3%. [5] propose a Deep Learning Based Tomato 

Disease Recognition Using MobileNet and Inception-v3 

Architectures. This study compared two pre-trained 

CNNs, MobileNet and Inception-v3, for tomato disease 

classification. The authors achieved an accuracy of 

98.67% on a dataset of 15,000 tomato leaf images. [6] 

proposed a Tomato Leaf Disease Recognition Using 

Pre-trained Convolutional Neural Networks. The authors 

used pre-trained CNNs, including VGG-16, Inception-

v3, and ResNet-50, to classify tomato leaf diseases. 

They achieved an accuracy of 97.45% on a dataset of 

4,998 images. [7] proposed a Automated Detection and 

Classification of Tomato Leaf Diseases Using Deep 

Convolutional Neural Networks. This study used a pre-

trained CNN called GoogLeNet to classify tomato leaf 

diseases. The dataset contained 10,250 images, and the 

authors achieved an accuracy of 96.7%. Overall, these 

studies demonstrate the effectiveness of pre-trained deep 

CNNs for tomato leaf disease classification. The 

accuracy achieved by different models and datasets 

varied, but they all showed promising results. Further 

research is needed to develop more robust and accurate 

models that can handle various environmental conditions 

for tomato leaf prediction. In this paper, we use a dataset 

from different soil types along with different climatic 

conditions to predict the tomato leaf disease. 

3.  Methodology 

The system architecture of this work is illustrated by 

the below block diagram. 

 

Fig. 1. Block diagram of the proposed model 

3.1 Dataset 

The tomato leaf disease images are taken from the plant 

leaf village dataset. This dataset consists of 14529 images 

belonging to 10 different classes. All these images belong 

to RGB Color space. Sample images from each class 

along with the disease names are depicted as follows 

(refer to Fig. 2). Here in our project we considered nine 

varieties of tomato diseases they are 1) Bacterial Spot, 2) 

Early Blight, 3) Late Blight, 4) Leaf mold, 5) Septoria 

Leaf Spot, 6) Mosaic Virus 7) Yellow Leaf Curl virus 8) 

Target spot, 9) Spider mites Two-spotted Spider mite. 

3.2 Dataset Configuration 

By using a prefetch buffer, the dataset can improve its 

performance. We can yield data from the disk without 

having I/O blocked using buffered prefetching. During 



© Mehran University of Engineering and Technology 2023                                54 

the initial epoch, Cache () maintains the leaf images in 

memory after they're loaded off the disk. While the 

model is training, the Prefetch () function overlaps the 

data pre-processing and training step model execution. 

To prefetch the number of batches of images and to get 

loaded by TensorFlow we use AUTOTUNE feature. 

 

Fig. 2. Class wise sample image from dataset 

3.3 Pre-processing of the Dataset 

To increase the amount of diversity of data during 

training, we use the data augmentation. Through 

applying several transformations like rotation, crop, 

flip, zoom, contrast, etc new samples will be generated 

from the existing training samples. This helps the 

model to expose to various aspects of the data. This is 

one of the good methods to overcome over-fitting 

issues and can be applied by adding the more pre-

processing layers as a part of the model. In the 

proposed model, Keras preprocessing layers such as 

random zoom, random rotation, random flip, etc. are 

used for preprocessing. Fig.3, depicts the plot of 

augmented samples for which we have applied the Data 

Augmentation several times to the same plant image. 

 

 

Fig. 3. Data Augmentation was applied to same image 

several times 

3.4 Classification 

In this proposed method firstly, CNN architecture is 

used and whole layers and fil-ters are built from scratch. 

The dataset we considered has 14529 images belonging 

to 10 classes. By splitting the dataset into 80:20 ratio for 

training dataset 11624 images is taken and for the 

validation dataset 2905 images were taken as per 80:20 

ratio split. This model was trained for 50 epochs where 

images were resized to 180x180 pixels.  Furthermore, 

for feature extraction convolutional and pooling layers 

are used whereas for classification fully connected layers 

are used. The purpose of acti-vation layers is to 

introduce non-linearity into the network Relu, SoftMax 

(for the last layer) is used. To improve the previous 

results we have used optimizers like Adam optimizer 

and sparse categorical loss entropy. The best model used 

for this project i.e. Model Architecture is shown in Fig. 

4. Finally, the model is converted to a TF-Lite model 

and embedded into a mobile application developed using 

android studio. Table 1 refers to the details about the 

model used and Table 2 refers to the model summary. 

Table 1 

CNN Hyper parameters 

Hyper Parameter Description 

Batch size 32 

Image size 224 

No. of convolution layer 5 

No. of max pooling layer 5 

No of epochs 50 

Activation function SoftMax, Relu 

Optimizer Adam 

Dropout rate 0.2 

Table 2 

CNN Network Filter 

Type Filter Output 

Convolutional 32 224*224 

Maxpooling  112*112 

Convolutional 64 112*112 

Maxpooling  56*56 

Convolutional 64 56*56 

Maxpooling  28*28 

Convolutional 64 28*28 

Maxpooling  14*14 

Convolutional 64 14*14 

Maxpooling  7*7 

 

Fig. 4. Model Architecture 

 

 



© Mehran University of Engineering and Technology 2023                                55 

3.6 Deployment of the Model 

This section refers to the integration of the best CNN 

model into a mobile application to make use of it in 

making decisions. The final model is deployed into a 

mobile application to make sure that farmers and other 

people can use this app on their smartphones to classify 

the leaf diseases of the tomato plant. To deliver user-

friendly and efficient software that works with or 

without the internet TF Lite is used. Here the proposed 

model is converted to a lighter format using 

TensorFlow Lite due to the complexity and heaviness 

of CNN models which require lots of memory. 

Conversion of the CNN model to a TF Lite format 

doesn’t affect accuracy, reduces their file size, and 

increases execution speed. The inference is known as 

the process of executing a TF Lite model on a device to 

make predictions based on the given input data. TF Lite 

Model can be directly imported to android studio and 

Java programming language is used for functionality. 

XML is used for the app interface and after running 

inference disease class will be predicted. Mobile 

application is developed because nowadays everyone 

has a smartphone and it is easy to carry. There is no 

need for the internet to use this app so as soon as the 

picture is captured or uploaded the class will be 

predicted. 

3.6.1 Implementation Analysis 

The software details of the proposed system are 

described in this section. The environments used for 

this project are Android Studio, and Google Colab Pro. 

Java and Python are programming languages used for 

Android Studio and Colab. 

• Google Colab Pro 

Python is the programming language, TensorFlow, 

Matplotlib, NumPy, and OpenCV are the packages 

used for developing the model. Matplotlib package is 

utilized for plots, and OpenCV is used for fetching the 

image from the storage. For Developing the model and 

for converting the model into a TFLite model, the 

TensorFlow package is used. To process 14000 images 

and to train a model Google Colab is not sufficient, So 

Colab Pro which costs around 10$ (including all taxes) 

is required as it will provide more Ram, GPU, and 

storage for working. 

• Android Studio 

XML is used for designing the application interface 

and for app functionalities Java programming language 

is used. For certain permissions like camera, storage 

and location code is written in manifest file.  

 

Fig. 4. Use case and activity diagram 

In build. Gradle file is required for adding the necessary 

dependencies like TensorFlow, Firebase etc. TensorFlow 

Lite model is directly imported to Android Studio. For 

gradient colors and button style separate xml file is 

created and applied to the each activity of the app. UML 

(Unified Modelling Language) diagrams are necessary to 

visualize a mobile application software. As a part of UML 

diagrams, Activity Diagram and Use Case Diagram is 

depicted here. The dynamic behaviour of the system is 

exhibited by Use Case Diagrams. It discloses the 

relationships between use cases and the actors. It 

recognizes the internal as well as external factors and the 

external view of the system. The concurrent flow of the 

system is demonstrated by an activity diagram. It is like a 

flowchart that demonstrates the flow between activities. 

4.  Experimental Results 

The final model considered is taken based on 

accuracies, losses of the training dataset, and validation 

dataset. Initially, the Experiment runs for 30 epochs 

and there is a constant increase in the accuracy, and a 

decrease in the loss for both training and validation 

datasets. To overcome Overfitting Data Augmentation 

is applied and a dropout layer is added. Along with 

epochs we experimented with dropout value, no. of 

layers, and image pixels. 

 

 



© Mehran University of Engineering and Technology 2023                                56 

Table 3 

Experimental observation and Analysis 

Observations Pixel 
No. of 

Layers 
Dropout rate Loss Accuracy Validation Loss 

Validation 

Accuracy 

1 180 6 0.2 0.0803 0.9716 0.2458 0.9329 

2 180 6 0.5 0.0462 0.9743 0.1853 0.9515 

3 180 10 0.2 0.0642 0.9769 0.0881 0.9759 

4 180 10 0.5 0.0826 0.9706 0.1052 0.9656 

5 224 10 0.2 0.0397 0.9874 0.0603 0.9797 

6 224 10 0.5 0.0682 0.9757 0.0849 0.9766 

 

Observations of the experiment are shown in table 3 

and their plots are listed in Fig. 5. The accuracy and 

loss variations of the model were trained using Adam 

optimizer and Sparse Categorical Cross entropy. 

Initially, the loss is excessive, and it's far steadily 

decreased after increasing the number of the epoch. 

 

a. Training and validation accuracy with validation loss as 0.24 

 

b. Training and validation accuracy with validation loss as 0.18 

 

c. Training and validation accuracy with validation loss as 0.08 

 

d. Training and validation accuracy with validation loss as 0.10 

 

e. Training and validation accuracy with validation loss as 0.06 



© Mehran University of Engineering and Technology 2023                                57 

 

f. Training and validation accuracy with validation loss as 0.08 

Fig. 5. Training and validation accuracy with different 

epochs(parameters are shown in Table 3) 

Table 3 

Comparison of Tomato Leaf Disease Detection Studies using 

Deep Learning Techniques. 

Study Pre-trained CNN Dataset Size Accuracy 

[3] VGG-16 10,000 images 97.78% 

[4] AlexNet 5,000 images 98.3% 

[5] 
MobileNet and 

Inception-v3 
15,000 images 98.67% 

[6] 

VGG-16, 

Inception-v3, 

and ResNet-50 

4,998 images 97.45% 

[7] GoogLeNet 10,250 images 96.7% 

Proposed 

Work 
Custom CNN 14,529 images 98% 

The proposed work is a significant contribution to 

the existing research n automated tomato leaf disease 

detection using deep learning techniques. As shown in 

the comparison table, the proposed work achieved an 

accuracy of 98% using a custom CNN model trained 

on a dataset of 14,529 tomato leaf images. This 

accuracy is comparable to the results reported in 

previous studies that utilized pre-trained CNN models 

such as VGG-16, AlexNet, MobileNet, Inception-v3, 

ResNet-50, and GoogLeNet. Furthermore, the proposed 

work offers additional features such as real-time 

disease detection, symptom display, and treatment 

recommendations that are not present in the existing 

studies. The proposed mobile application can be used 

offline, making it a suitable tool for farmers and crop 

cultivators in remote areas. Overall, the proposed work 

addresses the limitations of existing studies and offers a 

promising solution for accurate and efficient tomato 

leaf disease detection. The Fig. 5(e) in the above plots 

is being selected to extend the performance evaluation. 

The selected final model is converted into a TF Lite 

model format and embedded into a mobile application 

using Android Studio. With the user-friendly app 

design, users can easily under-stand how to use this 

application. Signup Activity is for user Registration, 

login activity for user login. A home screen contains 

the camera icon which is used for capturing the disease 

picture, file icon is to choose the image from the app. 

We get an immediate classified result along with 

confidence percentage as soon as you upload the 

picture as shown in Fig. 8.  We can also get the 

information like symptoms and treatments related to 

the disease. Setting feature has many sub features like 

Edit profile, Manage Accounts, Logout options are for 

personal information management, About, Privacy 

Policy, Terms and Conditions are to know more about 

app. 

4.  Conclusion and Future Work 

A mobile application for real-time tomato leaf disease 

detection is the final system presented by this project. 

For achieving this system, firstly CNN model is trained 

with 14529 tomato leaf images and well optimized with 

decent accuracy for mobile deployment. The 

performance of the model is evaluated based on the 

training accuracy, validation accuracy of around 98%, 

and validation loss parameter. This developed 

application will almost precisely classify the leaf 

diseases of the tomato plant and after detection 

symptoms, treatments are also displayed. Various 

organic and chemical controls are displayed to treat the 

disease. For chemical control, various products are 

suggested according to the toxic level and along with 

components in it. Farmers and other crop cultivators 

can use this application without the internet also so this 

application can be used in remote areas also. The future 

scope of this project is to continuously improve the 

existing model by adding more variety of diseases and 

other crop diseases. Add the feature of location access, 

we can add voice support which will translate the text 

to the local language speaking at that place. According 

to the location accessed, we can further add beneficial 

features such as suggesting the next seasonal crop, 

productivity improvement, pesticides, and their effects, 

call support from nearby agriculture officers, etc. By 

contacting the local store owners, we can add a 

purchase support, so that farmers can buy the required 

products from the local store or nearby store. 

5.  References 

[1] M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. 

Gupta, “ToLeD: tomato leaf disease detection 

using convolution neural network”, Procedia 

Computer Science, pp. 293-301, 2020. 



© Mehran University of Engineering and Technology 2023                                58 

[2]  M. Brahimi, K. Boukhalfa and A. Moussaoui, 

“Deep learning for tomato diseases: classification 

and symptoms visualization, Applied Artificial 

Intelligence, 31:4, 299-315, DOI: 

10.1080/08839514.2017.1315516 

[3] E. Fujita, et al., "Basic investigation on a robust 

and practical plant diagnostic system", 15th IEEE 

international conference on machine learning and 

applications, IEEE, 2016. 

[4] U. Shruthi, V. Nagaveni, and B. K. Raghavendra. 

"A review on machine learning classification 

techniques for plant disease detection", 5th 

International conference on advanced computing 

and communication systems, IEEE, 2019. 

[5]  M. H. Saleem, J. Potgieter, and K. M. Arif, "Plant 

disease detection and classification by deep 

learning", Plants 8.11: 468, 2019. 

[6]  J. Trivedi, Y. Shamnani, and R. Gajjar, "Plant leaf 

disease detection using machine learning", 

International conference on emerging technology 

trends in electronics communication and 

networking. Springer, Singapore, 2020. 

[7] S. Adhikari, B. Shrestha, B. Baiju, and S. Kumar, 

“Tomato plant diseases detection system using 

image processing”, 1st KEC Conference on 

Engineering and Technology, Lalitpur vol. 1, pp. 

81-86, 2018. 

[8]  L. Loyani, and D. Machuve, “a deep learning-

based mobile application for segment-ing tuta 

absoluta’s damage on tomato plants”, 

Engineering, Technology and Applied Science 

Research, pp. 7730-7737, 2021. 

[9] M. Hasan, B. Tanawala, and K. J. Patel, “Deep 

learning precision farming: tomato leaf disease 

detection by transfer learning”, Proceedings of 

2nd International Conference on Advanced 

Computing and Software Engineering, 2019. 

[10] P. Tm, A. Pranathi, K. SaiAshritha, N. B. 

Chittaragi, and S. G. Koolagudi, “Tomato leaf 

disease detection using convolutional neural 

networks”, 11th International conference on 

contemporary computing, IEEE, pp. 1-5, 2018. 

[11] T. Anandhakrishnan, and J. S. Murugaiyan, 

“Identification of tomato leaf disease detection 

using pretrained deep convolutional neural 

network models”, Scalable Compu-ting: Practice 

and Experience. 21(4), pp.625-635, 2020. 

[12] R. Thangaraj, S. Anandamurugan, and Kaliappan, 

“Automated tomato leaf disease classification 

using transfer learning-based deep convolution 

neural network”, Journal of Plant Diseases and 

Protection, V.K 128(1), pp.73-86, 2021. 


