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 The development of advanced Intelligent Transportation Systems has been made 

possible by the rapid expansion of autonomous vehicles (AVs) and networking 

technology (ITS). The in-vehicle users' increased data needs from AVs put the 

vehicle's trajectory data in danger and make it more susceptible to security threats. 

In this paper, Autonomous vehicles (AVs) transform the intelligent transportation 

system by exchanging real-time and seamless data with other AVs and the network 

(ITS). Transportation that is automated has many advantages for people. However, 

worries about safety, security, and privacy continue to grow. The AVs need to 

exchange sensory data with other AVs and with their own for navigation and 

trajectory planning. When an unreliable sensor-equipped AV or one that is 

malicious enters connectivity in such circumstances, the results could be 

disruptive. To effectively detect anomalies and mitigate cyberattacks in AVs, this 

study suggests the Efficient Anomaly Detection (EAD) method. The EAD 

technique finds and isolates rogue AVs using the Multi-Agent Reinforcement 

Learning (MARL) algorithm, which operates over the 6G network to thwart 

modern cyberattacks and provide a quick and accurate anomaly detection 

mechanism. The expected outcomes demonstrate the value of EAD and have an 

accuracy rate that is 8.01% greater than that of the current systems. 

1.  Introduction 

Automotive technology is identified as a key feature of 

Intelligent Transportation Systems and is one of the 

most modern fields of study in the last ten years. A 

multitude of advantages for sustainability, accessibility 

and security is provided by autonomous vehicles (AVs), 

which have the potential to totally revolutionize the ITS 

industry [1]. To collaborate and communicate with one 

another as well as with the transportation infrastructure, 

AVs use wireless technology [2]. Moreover, Dedicated 

Short-Range Communications and different kinds of 

communications technology are used by Roadside Units 

(RSUs) and AVs so they can continuously connect and 

acquire information such as speed, distance, braking 
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condition, traffic light status, and so on [3].  The Cellular 

Vehicle, also known as (C-V2X) is necessary to ensure 

the flawless connection between Avs to synchronize the 

driving trajectories and exchange real-time data. 

However, to make 6G-V2X interaction extremely 

efficient and competent and to concurrently enable 

quick, incredibly dependable, and a latency limit 

massive communication, sixth generation (6G) 

technology is likely to be V2X compliant in the future 

[4]. In addition, more spectrum is supported by 6G, 

allowing for a great amount of fully connected autos, 

and meeting the framework's stricter requirements for 

dependability, latency, and efficiency for attack 

detection. A must-have for critical V2X services, 

including automated driving, safety, and effective 

security measures, is avoiding an abrupt session 

stoppage. Therefore, raising the quality of service is a 

vital problem to consider. Additionally, tactile 

connections with extremely fast and limited connectivity 

are needed by the AVs in the framework to enable 

dependable and real-time information transmission. The 

training devices have local storage for all the vehicular 

data, which must be fetched to process the important 

data. Finding abnormalities in the real-time data from 

the AVs is both a crucial and difficult task because these 

data are important for making significant choices. It's 

important to find the problem and eliminate the 

undesirable facts from the decision-making process [4]– 

[9]. The discovery technique proposes two mistakes: 

unfavourable effects and false advantages. It is simple to 

understand how a mistake could result in inaccurate data 

having an impact on traffic planning and perhaps having 

disastrous effects [10]. Even if it is less obvious, making 

a mistake can still have a big impact. The structure of 

visual information has suddenly changed because of the 

following hypothetical real occurrence on the network. 

an AV experiences a sudden shift, maybe due to a failure 

and causing data loss, the program may cease to timely 

and effectively respond to such sudden network 

changes, thus putting users in danger [11]. To prevent 

this kind of positive error, AV must use greater 

bandwidth information in its system of error detection. 

The Algorithms for detecting errors must distinguish 

between sensor and noise in the transmission channel, 

which increases the possibility of missing values and 

communication delays in the obtained data in addition to 

distinguishing between real network situations and 

malformations [12]. A group of scattered enterprises as 

agents—that make decisions on their own and interact in 

a common space are referred to as a multi-agent system. 

Each agent works toward a distinct goal that may need a 

variety of skills. Depending on the purpose, complex 

interactions between agents may develop, leading to 

inter-agent cooperation or rivalry. It can be difficult to 

define a posterior approach in complex systems. The 

Agents must therefore be capable of learning and 

adapting with time [4], [13], [14]. The branch of study 

known as "inverse reinforcement studies" looks at how 

an agent's aims, beliefs, or rewards are affected by how 

well it performs. [4], [15], [16]. Inverse reinforcement 

learning (IRL) is employed in the environment 

described above. To boost efficiency and precision in 

AV anomaly detection, we present a Hybrid Deep 

Anomaly Detection also known as (EAD) architecture 

on a 6G-V2X network that combines IRL hosting with 

multi-agent Learning. The framework does lessen a 

network's absolute catastrophic failure and stops many 

modern attacks including Distributed Denial of Service 

attacks. A variety of disruptive technologies, such as 

more reliable decision-making, effective air interfaces, 

computation, and resource allocation, will need to be 

integrated into 6G to accomplish the ambitious goals. 

The research develops a benchmark by using the IoT 

with Consortium network environment as the baseline 

technique. In proposed approach, a number of factors led 

to the decision of the IoT with V2X as the baseline 

strategy. First off, the connection between autonomous 

vehicles within the 6G network environment is greatly 

facilitated by the IoT with V2X. It is a crucial part of a 

dependable and effective data sharing system. In 

addition, the IoT with V2X provides a variety of openly 

available resources, such as infrastructure, tools, and 

statistics. The implementation and assessment of the 

baseline plan are considerably aided by these easily 

accessible materials. This pragmatism makes it possible 

to create a reliable baseline and conduct fruitful 

comparison analysis. 

Fig. 2 depicts a 6G-V2X system that supports a range 

of advanced use cases using several vehicular 

communication technologies. Low-earth orbit satellites 

and UAVs may substantially expand and seamlessly 

extend the scope of V2X systems, aiding in raising the 

quality of communication, especially in some possible 

blind spots that conventional terrestrial communication 

systems may experience. V2X communication devices 

will benefit from edge/fog computing, caching, and 

enhanced decision-making for longer battery life and 

faster computation. To attain cheap setup costs, extremely 

high data rates, improved security, and low power 

consumption, classical RF-based communications will 

coexist alongside visible light communication (VLC)-

aided V2X communications. 
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Fig. 1. V2X Communications Atmosphere 

The main contributions and objectives of paper:  

1. A decentralized 6G network is offered by Multi-

Agent Reinforcement Learning (MARL) to prevent 

a catastrophic EAD failure. Anomaly detection is 

extremely precise thanks to the MARL algorithm, 

which allows several AVs to identify unusual 

behavior. 

2. To identify the aberrant behavior and the AVs that 

relate to it, the Maximum Entropy IRL 

(MaxEntIRL) methodology is used to compare the 

sensory data from the present and the past. Using 

MARL, malicious AVs can be categorized 

according to the severity of their abnormal behavior. 

This guarantees that attack mitigation will happen 

quickly and effectively.  

The following sections make up the remainder of this 

paper. The relevant current works are represented in 

Section 2. Section 3 presents the suggested working 

environment and discusses the Intrusion Detection 

System (IDS) implementation, as well as the 

vulnerabilities and attack scenario. In section V, the 

suggested hybrid learning EAD framework for sensor 

identification is shown. Section shows the simulation 

results and explains the efficiency obtained. 

2.  Related Work 

Finding attacks in intra-vehicle networks is the focus of 

many research projects [17]. Real-world and academic 

studies have shown several AV threats [18], [19]. To 

improve AV security and protect passengers and drivers 

from dangers, numerous studies and solutions have been 

carried out for security systems [20], [21]. Numerous 

applications, including intrusion detection, surveillance, 

and diagnosis, make use of techniques for spotting 

anomalies. Appropriate configuration management 

procedures can be put in place to avoid or reduce potential 

responsibility if the cause of an anomaly is quickly 

identified [22], [23]. In recent years, numerous methods for 

spotting aberrant behavior and figuring out what caused it 

has been created. To detect anomalies, the One-Class 

Support Vector Machine is modified, and sensor inputs are 

collected using an Adaptive Extended Kalman Filter 

(AEKF), however, it primarily focuses on the delay of time 

[24]. Numerous circumstances can affect sensor readings, 

leading to the acquisition of false data [25]. For example, 

aging sensors and atmospheric instability may make failure 

more likely. Other reasons for inaccurate data reporting 

include tripping, a shaky cable connection, inadequate 

battery power, and unusually large variations in sensor 

readings or noise. Anomalies in sensor measurements can 

also be caused by malicious attacks [26]. Advanced threat 

surfaces that can be used by hostile actors to access and 

corrupt AVs come in many different forms. Two of the 

most dangerous potential AV attacks are the injection of 

false information and the poisoning of map databases. 

Even though insertion attacks can be recognized using 

message entropy, assaults that change the content of 

messages cannot be assessed using this method [27]. In 

multiple research investigations, the widely used 

classification technology Support Vector Machine (SVM) 

surpassed traditional learning techniques. The SVM has a 

high detection rate for unknown assaults and can recognize 

the data fields. bypassing the limitations of conventional 

machine-learning detection algorithms. However, only a 

small number of individual attacks have had the 

effectiveness of this method proven [28, 29]. The Long 

Short Term Memory technique is utilized for signal 

extraction and real-time classification [30]. To obtain a 

promising performance a multistage attention method is 

used for both types of anomalies [31]. However, a source 

rating blockchain-based approach is created to promote 

data integrity and fair evaluation requirements to improve 

the usage of crowdsourced data and data screening [32]. To 

facilitate the evaluation of protective measures, supervised 

methods are adopted that integrate plausibility checks with 

the data-centric misbehaviour detection model [33]. The 

Internet of Moving Things anomalies are found using the 

Moving Things Outlier Detection (MTOD) method. 

MTOD considers both the location and distance of moving 

objects [34]. The disparity between the data from various 

sensors is designed to be monitored by an auxiliary 

detector. It combines observations from numerous sensors 

using a combination of a Cumulative SUM (CUSUM) and 
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an Extended Kalman Filter (EKF) discriminator [35]. The 

real-time detection of the irregularities in this case is 

predicated on the vehicle's decision to accelerate. The data 

from the leader is used by a kinematic model in [36] to 

identify any unexpected deviations. The advantage is taken 

by a sensor fusion technique of the same physical variable 

as determined by the attacks of multiple sensors in a 

platoon [37]. As a result, performance deterioration is 

decreased [37]. To minimize the computational overhead, 

the sensors are placed in a ring shape [38]. Although 

mitigating sensor anomalies in AVs and detecting them can 

have serious consequences, there are no anomaly detection 

algorithms in the ITS literature [39]. Cyber-security in AVs 

or ITS in general has not been the subject of many 

investigations. Most previous works focus on a single 

element solely rather than considering a variety of impact 

parameters including time, attack duration, attack kind, etc. 

Major studies rely on a few simple machine learning 

techniques, which pay little attention to attack detection 

and what happens once an attack occurs. Additionally, the 

available studies solely focus on a select few impact factors 

and do not suggest any remedial actions. The EAD model, 

a hybrid deep learning framework, is used in this study to 

identify and categorize anomalies. The concerned AV is 

isolated from the system in the planned research to assure 

security, and after it is determined to be secure, it is added 

to the network.  

 

Table 1 

V2X communication and detection mechanisms 

Reference 
Approach/Decisi

on 
Main Idea/Objective 

Types of Defence 

Attacks 
Limitations 

Grover et al. 

[39] 

OBU-C (Data-

centric) 

Focuses on V2X 

neighbour-set with multiple 

vehicles. 

The Sybil-attack 
Feasible false and true errors 

with no prevention 

Zhou et al. [40] 
RSU(Entity-

centric) 

Hash function with 

Pseudonyms to common 

values 

The Sybil-attack 
Not covering the privacy 

preservation of central authority. 

Kerrache et al. 

[41] 

Entity (data-

centric) 

Vehicle misbehavior is 

eliminated via a trust-based 

data verification and 

routing method. 

Packet flooding (Dos) 
The Sneaky attackers bypass 

detection process 

Hortelano et al. 

[42] 
OBU-L, OBU 

Predict behavior with the 

help of watchdog 

DoS (malicious packet 

dropping/forwarding) 

There is no mention of privacy, 

and it just looks for illicit packet 

forwarding. 

Daeinabi et al. 

[43] 

Data-Centric 

(OBU-C and 

RSU) 

Expected behavior of the 

neighbors with watchdog 

Malicious packets 

with forwarding and 

dropping 

Only detects malicious attacks 

with forwarding. 

Hamieh et al. 

[44], 

Entity-centric ( 

OBU-L) 

 

The Detect patterns and 

information in radio 

interference legitimate 

cases. 

Jamming with DoS 
Only DOS, no attacker 

identification 

Ruj et al. [45] 

Data-centric 

(RSU and OBU-

L) 

To determine whether such 

occurrences occurred, keep 

an eye on the signals and 

compare them to a 

behavioral model that is 

expected. 

Position cheating 

(Sybil attack) 

Performance test with 

Unrealistic assumptions, no 

validation 

Golle et al. [46] Sybil-attack 
Compare the resurrected 

data to the predicted model. 
Data-centric (OBU-C) 

Require an appropriate model to 

compare to; no validations or 

performance tests are run. 
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There are two further categories of entity-centric 

detection methods: (a) behavioural (for example, 

observing trends in the behavior of nodes at the protocol 

level), and (b) trust-based (e.g., evaluation of trust-score, 

often using a central authority to remove malicious 

nodes). Data-centric techniques compare the 

information received with the information previously 

known from previous history or behavior, like intrusion 

detection in traditional computing systems. These 

strategies can either be (a) model-based (verifying if the 

data communicated from a certain sender is consistent 

with the model) or (b) consistency-based (e.g., use the 

information of packets – generally from multiple 

participants – to determine the trustworthiness of new 

data). We draw attention to the fact that normally 

orthogonal detection techniques for entities and data, 

and that researchers frequently suggest combining the 

two. Detection methods either (a) local (i.e., performed 

close to where the vehicle is, say by its OBUs, and 

unaffected by detection methods in other cars; or (b) 

cooperative (detection depends on cooperation between 

vehicles/RSUs) depending on the scope. OBU-based 

techniques do not require specialized infrastructure, 

Comparatively to RSU-based mechanisms (e.g., 

vehicles performing situation evaluation by themselves 

without any infrastructure).  Researchers have also 

suggested hybrid systems where misbehaviour detection 

is shared by RSU and OBUs (see Sections VI and VII). 

While consistency and trust-based schemes rely on 

collaboration among vehicles/RSUs to uncover 

inconsistencies, behavioural and plausibility methods 

often function locally. For more precise detection, 

numerous consistency-based methods can be applied 

locally, however, doing so exposes them to Sybil 

attacks. Table 01 summarized how to protect V2X 

communications from various types of attacks.  

3.  Experimental Procedures 

The EAD framework, which offers inter-vehicle sensor 

systems on a 6G network with the highest level of 

security, is described in this section. Fig. 1 presents the 

MARL architecture. MaxEntIRL and multi-agent 

reinforcement learning are installed in the sensor 

network over the AV Network (AVN). A 6G network is 

used to host the AVN to minimize latency difficulties 

and guarantee speed and effectiveness. The sensor 

network operation will be split among the various AVN 

agents using multi-agent reinforcement learning. In an 

AVN context, numerous agents will communicate and 

share characteristics like lane topology and wheel speed. 

A total cascade failure will be prevented by this ability 

to keep shared data. The robustness and dependability of 

the framework will also be guaranteed by the usage of 

6G. To detect malicious and anomalous activity quickly 

and accurately, EAD combines IRL with multi-agent 

reinforcement learning and maximum entropy. This 

component's goal is to train the AVs of a particular 

network to recognize malicious and trustworthy AVs by 

using the shared sensor network data. A decentralized 

approach like this prevents modern impersonation and 

stops hostile attackers from using brute force to break 

network encryption. Such modern cyberattacks are 

susceptible to current deep learning systems. Therefore, 

MaxEntIRL offers an effective defence against such 

attacks when other models fall short. Once a malicious 

AV has been correctly discovered using the hybrid 

technique, its reward function is tweaked using 

MaxEntIRL. This method carefully alters the incentive 

system of the malicious AV to progressively scale back 

its privileges. The reward feature will make the 

malicious AV effective again. It will start distributing 

healthy data over the network after the AV problems 

have been fixed. Other agents will perceive such a 

healthy transmission, which will set off the tweaking of 

the reward function and eventually restore the infected 

AV's capabilities. Thus, the EAD framework offers 

anomaly mitigation and detection that is dependable, 

secure, and safe while preserving the robustness of the 

system, successfully defending the system against 

assaults that the existing anomaly detection models are 

unable to handle. The hybrid architecture's process is 

shown in Fig. 2. 

 

Fig. 2. Workflow of Reinforcement based Anomaly 

detection approach 

The general architecture and AV attack scenarios are 

protected by the IDS. Internal attacks usually target the 

onboard diagnostics interface to take control of the CAN 

nodes, transmit accepting false CAN messages into the 

AVs, and perform illegal acts like abrupt braking. 

Cyberattacks are launched by external attackers via a 

variety of wireless interfaces, including cellular 

networks, Bluetooth, WiFi, etc. The proposed IDS can 

be installed in multiple places throughout AVNs to find, 

categorize, and deal with threats for a secure IoV 

platform. In this setup, The CAN bus has an IDS 

installed on top of it to detect malicious 
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communications. The IDS will also transmit messages if 

the signal level drops after increasing since messages are 

forwarded to every node. Further, the IDS examines the 

spot intrusions and packets. All nodes will emit alarms 

if any incursion is discovered. The recommended IDS 

will identify and categorize any attack attempted by 

delivering a significant amount of malicious traffic, 

against an AV system. The alarm is subsequently set off, 

and access for the attacker is forbidden. Moreover, the 

network is disconnected after the identification of 

malicious traffic. To assist with a variety of activities, 

modern AVs usually feature 100 Electronic Control 

Units (ECUs). A communication protocol for buses 

called CAN creates an international standard for reliable 

and seamless connectivity between ECUs within 

vehicles. AVs have numerous control modules added for 

security, efficiency, and performance.  

These modules greatly enhance AV performance by 

combining better prediction with extra components as 

required. Through a CAN communication system, the 

AV system regulates internal communications and 

modulates signals from the control units. The Data is 

sent and received over a network of parallel ECUs 

through the CAN communication system, which 

functions as a multi-master system. The ECU nodes do 

not include the sender's and recipient's addresses in a 

CAN message. The other ECUs go into reception mode 

when one ECU transmits a message. The transmitted 

CAN message is recognized by the ECU if it receives it; 

otherwise, it is disregarded. CAN-Low and CAN-High 

are the two signals on the CAN-bus. The priority 

increases with decreasing CAN ID values. In the event 

of a crash during message delivery, low-value IDs are 

therefore permitted. Based on the bus cycle of CAN, 

low-priority messages are subsequently broadcast again. 

However, because of its lack of security features, 

broadcasting distribution method, and unprotected 

priority system, CAN is vulnerable to numerous cyber-

attacks. The attacks using message injections are the 

primary focus of this investigation. The most frequent 

intra-vehicle attack is a message injection, with fuzzy, 

spoofing, and DoS attacks as its three main targets. 

Massive high-priority messages flood the CAN during a 

DoS attack, delaying or denying other valid 

communications.  Fuzzy attacks cause randomly 

generated communications to contain arbitrary false 

identities or packets, which causes compromised 

vehicles to exhibit unexpected actions like abrupt 

braking. It is common knowledge that spoofing attacks 

inject messages with certain CAN IDs seem to be 

authorized and authenticated to take command of the 

vehicles. 

The agent AVU in the HDAD approach follows a 

strategy that improves the value function by locating 

anomalies during data transfer. An explanation of multi-

agent reinforcement learning is provided using the 

process of modified Markov decision. It is possible to 

write the mMDP simply (S; A; R; ϕ) for M agents, where 

state space is represented by the symbol S, action space 

is represented by the symbol A, rewards space is 

represented by the symbol R, and transition probability 

space is represented by the symbol ϕ. The agent AVU 

monitors the environment's current state st at each 

interval of time t before acting in accordance with the 

policy (A|s) at that moment. The agent is dispatched to 

the following state (st + 1) after receiving a reward of rt. 

Below is a list of the reward, action, and state space.  The 

various services' utility features frequently differ. The 

state should therefore use the inclusion of the selection 

component, µm, to show how AVUs can be used in a 

heterogeneous binary manner. Any agent's power and 

channel limitations have an impact on its utility 

function. Each agent's ability to perform its utility 

function depends on the power and channel restrictions 

it has. 

Additionally, the state space of the multi-agent can 

be described as S= {s1, s2,., sm}. The State includes 

dimensions of the vector ηm and the continuous discrete 

variables. Moreover, the spread of their input data and 

scalability can affect neural networks so normalization 

is essential. The min-max normalization is used prior to 

the learning algorithm receiving the state to improve the 

training process. 

4.  Result and Discussion 

The experiment was carried out using an Intel Core i7 

processor running at 3.5 GHz, 6 GB of RAM, and an 

NVIDIA GPU. Python is utilized to implement the 

model utilizing DL frameworks like Keras. The dataset 

used in this study includes several fields pertaining to 

vehicle dynamics, trajectory data, and GPS information. 

The Deep Deterministic Policy Gradient (DDPG) 

algorithm's performance is optimised by tuning 

hyperparameters to maximise total rewards and preserve 

a stable policy. A batch size of 50 is used during training 

for 4 episodes spread across 20 epochs. The actor 

network's input layer has 15 feature state vectors, while 

the critic network's input layer has an action vector. 

These components make up the neural network 

architecture used in the DDPG algorithm. In comparison 

to the critic network, which contains two fully connected 

layers with 600 neurons, the actor network has two fully 
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connected layers with 300 neurons. The dataset also 

contains trajectory data, which is a time-series dataset 

made up of arranged item positions. In this paper, Multi-

Agent Reinforcement Learning (MARL) algorithms 

have been applied to issues including anomaly detection 

and categorization in a variety of disciplines. The DL-

based Multi-Agent Reinforcement Learning (MARL) 

algorithm a model for identifying AV abnormalities is 

proposed in this paper. An instantaneous anomaly type 

is used to train the DL-MARL model, and the 

hyperparameters are tuned using a DL technique, both 

of which contribute to increased accuracy. An analysis 

of the suggested efficiency of the work on the test results 

was done using a confusion matrix. The columns of the 

confusion matrix contain information about the 

predicted class, whereas the rows reveal details about 

the true class. True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative are the four 

outputs of this matrix (FN). TP indicates that the 

outcome falls under the positive class category if it is 

positive. TN indicates that the outcome falls under the 

negative class category if it is negative. If the outcome 

is negative, according to FP, it belongs to the category 

of the positive class. If FN predicts a negative outcome, 

the class category for that result is negative. Each class 

has a different number of FNs and FPs because of 

differences in the classes and the volume of data sets. 

The suggested model's confusion matrix for Adam 

optimizer-based anomaly detection is shown in Fig. 3. 

The FP, FN, TN, and TP norms can be found using the 

confusion matrix for each position on the test dataset. 

Table 2 

Confusion matrix for the DL- MARL 

Anomaly 2701 7933 

Not Anomaly 173 503 

True C 

 

 

Predict C 

Anomaly Not Anomaly 

In Fig. 3, showed the performance of proposed model 

with respect to accuracy, precision, and recall, it showed 

that model depicts the true and false predication with 

(AV1-AV3). The accuracy of is quite well as compared 

to the precision and recall.  

 

Fig. 3. Accuracy, Precision and Recall of model with AV1-

AVs3 

 

Fig. 3. Accuracy, Precision and Recall of model with AV1-

AVs3 

When compared to the previous work, the suggested 

work accurately detects the abnormality in AV, as shown 

by the ROC curve in Fig. 4 which is closer to the top left 

corner. To separate the signal from the noise, The True 

Positive Rate (TPR) is plotted versus the False Positive 

Rate (FPR) over several threshold levels using 

a probability curve ROC. To separate the signal from the 

noise, the True Positive Rate (TPR) vs the False Positive 

Rate (FPR) is plotted on a probability curve called (ROC). 

Table 3. showed the performance of the model with 

random samples from the dataset for detection in AVs. 

The model uses 03 hyperparameters such as start time, 

acceleration values, and lateral GPS_time from AV. 

Since there is a sudden significant shift in the values of 

these three data points, the moment an anomaly in AV is 

found. 
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Table 3 

Attacks detection of DL- MARL Model on Random 

Samples. 

Start Time GPS_Time Speed L_ Accuracy 

12:01:31 48.803 1.2451E+12 1001 

13:01:32 49.802 1.2455E+12 2001 

08:01:32 47.113 1.2241E+12 1001 

22:01:31 51.999 1.2441E+12 1001 

14:01:32 48.803 1.2425E+12 2001 

4.  Conclusion 

Vehicle-to-everything (V2X) communication platforms 

are made possible by contemporary vehicular wireless 

technology, which enables cars to communicate 

information at any time, from any location to any 

network. V2X applications have advantages, but they 

also have a lot of risks to privacy and security. By 

identifying sensor anomalies in the AVN, the EAD 

model we developed in this research can improve AV 

security. Multiple AVs can accurately identify the 

malicious AV by 12.13%. Additionally, MaxEntIRLs 

comparison methodology effectively identifies 

fraudulent AV. In general, the sensor anomaly detection 

is enhanced by 8.01% when using the EAD compared to 

the state-of-the-art, and the detection rate delay is 

decreased by 10.06%. The effectiveness of the DL-

MARL model is further assessed using ROC, AUC, 

precision, and recall. The EAD paradigm thereby 

protects the AV against harmful sensory habits. Future 

studies will be important in detecting other AV attacks, 

even though the current approach helps to spot instant 

anomalies in AVs. 
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