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 Non-linear Eq.s occur as a sub-problem in a wide variety of engineering and 

scientific domains. To deal with the complexity of Non-linear Eq.s, it is often 

required to use numerical procedures, which are the most suitable method to 

employ in certain circumstances. Many classic iterative approaches have been 

regularly employed for various situations; nevertheless, the convergence rate of 

those methods is low. In many cases, an iterative approach with a faster 

convergence rate is needed. This is something that classical methods like the 

Newton-Raphson Method (NRM) cannot provide. As part of this investigation, 

a modification to the NRM has been suggested to speed up convergence rates 

and reduce computational time. Ultimately, this research aims to improve the 

NRM, resulting in a Modified Iterative Method (MIM). The proposed method 

was thoroughly examined. According to the research, the convergence rate is 

higher than that of NRM. The proposed method delivers more accurate results 

while reducing computational time and requiring fewer iterations than earlier 

methods. The numerical findings confirm that the promised performance is 

correct. The results include the number of iterations, residuals, and computing 

time. This innovative technique, which is appropriate to any Non-linear 

equation, produces more accurate approximations with less iteration than 

conventional methods, and it is appropriate to any Non-linear equation. 

1. Introduction 

Determining the roots of a Non-linear Eq. is one of the 

most frequent difficulties faced in applied mathematics. 

Graphical approaches are either incorrect or use 

substantial memory [1]. The Bisection Method (BM), 

the Regula Falsi Method (RFM), the Secant Method 

(SM), and the NRM are examples of frequently used 

algorithms that are simple to comprehend [2]. 

The most difficult difficulty in numerical analysis is 

to describe Non-linear Eq.s, which are widespread in the 

field of engineering and can occur in a variety of ranges 

[1]. The demonstration characteristics and convergence 

can be exceedingly complex when compared to the 

initial hypothesis of the outcome [2]. A significant deal 

of effort has gone into understanding the structure of 

Non-linear Eq.s, and many useful models and methods 

have been proposed to do so [5]. 

Several approaches, including newer blends of 

traditional numerical methodologies and smart 

processes, are effective in explaining the system of Non-

linear Eq.s, which are overwhelmed by the difficulties 

of making a reasonable first guesstimate of the outcome 

[3]. Even still, selecting a plausible primary premise of 

explanation for the vast majority of systems of Non-

linear Eq. is extremely difficult to accomplish [4]. More 

than that, the computational efficacy isn't particularly 

impressive [5]. It is possible that the rate of convergence 

to the primary prediction of the explanation for 

furthermost numerical processes, such as the NRM is 

https://doi.org/10.22581/muet1982.2303.17
mailto:saherafshaan@gmail.com


© Mehran University of Engineering and Technology 2023                                168 

significantly more complicated when compared to the 

primary prediction [8]. It is, nevertheless, highly 

challenging to select a workable fundamental postulate 

of the conclusion for the system of Non-linear Eq.s that 

is consistent with the remainder of the system [9]. 

The Eq. in which the term has a power of two or more 

than two can be utilized in the case of a Non-linear Eq. 

in order to solve it. [6]. A curve is formed on a graph by 

Non-linear Eq.s, and as the power of the term rises, the 

graph's curve expands in size and changes its direction 

continuously. The graph depicts differences in slope at 

a variety of locations [7]. According to generalized 

linear Eq. theory, the Non-linear Eq. has the 

form 𝑎𝑥2  +  𝑏𝑦2  =  𝑐, wherever x and y are the 

variables and a, b, and c are the constant values. Non-

linear Eq.s systems typically have numerous solutions, 

no solutions, or a single solution in most cases [8]. At 

the solution point of a Non-linear system, there exist 

several Eq.s that are similar to the number of variables, 

and each of these Eq.s is satisfied [9]. 

An extensive array of applications for non-linear 

systems can be initiate in the physiology of nerves, 

chemical reactions and turbulence, electrical circuits, 

cardiac regulation, secure communications and 

encryption, celestial mechanics, economics and 

population increase, to name of few examples [10]. 

The so-called predator-prey or Lotka Volterra system 

is a simple Non-linear systems application that can be 

found in many places [11]. When the systems emerge, 

two species may be linked together, one of which will 

be prey and the other which will be predator [12]. When 

it comes to biology, a system of Eq.s is used to describe 

the natural periodic variations of populations of various 

types [13]. It is traditionally difficult to solve Non-linear 

Eq.s precisely, and exact solutions are only found very 

infrequently. For this reason, iterative methods are 

employed in order to find solutions to these Eq.s. [14]. 

2. Methodology 

The purpose of this study is to evaluate whether the 

convergence rate increases as a result of improvements 

to currently available approaches. Also considered is the 

impact of the convergence rate, whether it is slow or 

quick. It also analyses the convergence rate of different 

approaches, and on the basis of the analysis of the 

convergence rate, a change will be evaluated that takes 

advantage of the advantageous qualities of the different 

methods. The major approach taken in this work will be 

the application of the MIM to a set of randomly 

generated Non-linear Eq.s, with the accuracy and 

computational time being investigated. The Matlab 

programming language is used to implement the MIM 

described above. Trigonometric, exponential, 

logarithmic, and cubic polynomial functions are 

examined using the Modified Iterative Programs (MIP). 

1.1 Modified Iterative Model 

Despite the fact that the classic NRM achieves rapid 

convergence, one of the most prevalent problems is that 

the closest root is exceeded [15]. The NRM and the BM 

have been combined to form the new method [16]. The 

newly proposed strategy approaches the root in a 

progressive manner, eliminating the possibility of 

several iterations in the process. After a few iterations, 

the root is found using this new method, and the 

convergence process leads to the root that is the closest 

to the starting point. 

1.2 Development of Modified Iterative Method 

The MIM is different from the previous version of the 

NRM [17]. There is some modification done in the 

required method. 

Let suppose the Non-linear Eq. 

𝑓(𝑥) =  0        (1) 

Where 𝛼 is the root of the above Eq., the function has a 

well-defined derivative and it is a continuous function 

[18]. 

By using Taylor’s expansion  

𝑓(𝑥) = 𝑓(𝑥𝑛) + (𝑥 − 𝑥𝑛)𝑓(1)(𝑥𝑛) +
(𝑥−𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛) + ⋯,       (2) 

Where, 

𝑥𝑛 is the nth approximation. 

Consider in Eq. (2) that 𝛼 be the root 

𝑓(𝛼) = 𝑓(𝑥𝑛) + (𝛼 − 𝑥𝑛)𝑓(1)(𝑥𝑛) +
(𝛼−𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛) + ⋯                                (3) 

Apply Eq. (1) here then we can get, 

0 = 𝑓(𝑥𝑛) + (𝛼 − 𝑥𝑛)𝑓(1)(𝑥𝑛) +
(𝛼−𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛) +

⋯                   (4) 

Now consider the linear form in Eq. (4), we can get the 

value of 𝛼 

0 = 𝑓(𝑥𝑛) + (𝛼 − 𝑥𝑛)𝑓(1)(𝑥𝑛) 

𝛼 = 𝑥𝑛 − 
𝑓(𝑥𝑛)

𝑓(1)(𝑥𝑛)
                             (5) 

We also find similar results through the NRM. The 

initial guess of the root is 𝑥0. If the first point 𝑥0 is 

closed enough to 𝛼 then the formerly the iteration (1) 

will converge to 𝛼. This method has the local 

convergence property [19]. 

Let suppose that the value of 𝛼 can be represented by 

𝑦𝑛 , so our above function become like this, 

𝑦𝑛 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓(1)(𝑥𝑛)
                      (6) 
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The predetermined modification and calculation of 

𝑓(1)(𝑥𝑛) can be clearly explained by the basic principle 

of derivative [20], which is as follows. 

𝑓(1)(𝑥𝑛) ≈
𝑓(𝑦𝑛)−𝑓(𝑥𝑛)

𝑦𝑛− 𝑥𝑛
                      (7) 

By putting Eq. (7) in Eq. (4), then we get 

0 = 𝑓(𝑥𝑛) + (𝛼 − 𝑥𝑛) (
𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)

𝑦𝑛 − 𝑥𝑛
)

+
(𝛼 − 𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛)…, 

−(𝛼 − 𝑥𝑛)  =
𝑦𝑛 − 𝑥𝑛

𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)
(𝑓(𝑥𝑛)

+
(𝛼 − 𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛)… , ) 

𝑥𝑛 −
𝑦𝑛 − 𝑥𝑛

𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)
(𝑓(𝑥𝑛)

+
(𝛼 − 𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛)… , )  = 𝛼 

𝛼 = 𝑥𝑛 −
𝑦𝑛− 𝑥𝑛

𝑓(𝑦𝑛)−𝑓(𝑥𝑛)
(𝑓(𝑥𝑛) +

(𝛼−𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛)… , ) 

(8) 

By putting Eq. (6) in Eq. (8), then we get 

𝛼 = 𝑥𝑛 −

(𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓(1)(𝑥𝑛)
) − 𝑥𝑛

𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)
(𝑓(𝑥𝑛)

+
(𝛼 − 𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛)… , ) 

𝛼 = 𝑥𝑛

−

(
𝑥𝑛𝑓(1)(𝑥𝑛) − 𝑓(𝑥𝑛) − 𝑥𝑛𝑓(1)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)

𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)
(𝑓(𝑥𝑛)

+
(𝛼 − 𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛)… , ) 

𝛼 = 𝑥𝑛 −
(
𝑥𝑛𝑓′(𝑥𝑛) − 𝑓(𝑥𝑛) − 𝑥𝑛𝑓′(𝑥𝑛)

𝑓′(𝑥𝑛)
)

𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)
(𝑓(𝑥𝑛)

+
(𝛼 − 𝑥𝑛)2

2!
𝑓′′(𝑥𝑛)… , ) 

𝛼 = 𝑥𝑛 −

(
−𝑓(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)

𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)
(𝑓(𝑥𝑛)

+
(𝛼 − 𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛)… , ) 

𝛼 = 𝑥𝑛 −
−𝑓(𝑥𝑛)

[𝑓(1)(𝑥𝑛){𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)}]
(𝑓(𝑥𝑛)

+
(𝛼 − 𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛)… , ) 

𝛼 = 𝑥𝑛 +
[𝑓(𝑥𝑛)]2

[𝑓(1)(𝑥𝑛){𝑓(𝑦𝑛)−𝑓(𝑥𝑛)}]
+

(𝛼−𝑥𝑛)2

2!

𝑓(𝑥𝑛)

[𝑓(1)(𝑥𝑛){𝑓(𝑦𝑛)−𝑓(𝑥𝑛)}]
𝑓(2)(𝑥𝑛)…         (9) 

When the value of 𝛼 is very close to the 𝑥𝑛 then neglect 

the square of the difference [21]. 

Now obtain the value of the second derivative by Eq. (6) 

0 = 𝑓(𝑥𝑛) + (𝛼 − 𝑥𝑛)𝑓(1)(𝑥𝑛) +
(𝛼 − 𝑥𝑛)2

2!
𝑓(2)(𝑥𝑛) 

−(𝛼 − 𝑥𝑛)2

2!
𝑓′′(𝑥𝑛)  = 𝑓(𝑥𝑛) + (𝛼 − 𝑥𝑛)𝑓′(𝑥𝑛) 

𝑓(2)(𝑥𝑛) =
−2

 (𝛼 − 𝑥𝑛)2 {𝑓(𝑥𝑛) + (𝛼 − 𝑥𝑛)𝑓(1)(𝑥𝑛)} 

𝑓(2)(𝑥𝑛) =
−2𝑓(𝑥𝑛)

 (𝛼−𝑥𝑛)2
+ {

−2

 (𝛼−𝑥𝑛)2
(𝛼 − 𝑥𝑛)𝑓(1)(𝑥𝑛)} 

(10) 

For initial approximation, let suppose that in Eq. (10), 𝛼 

can be replaced by 𝛽. 

Therefore, 

𝑓(2)(𝑥𝑛) =
−2𝑓(𝑥𝑛)

 (𝛼−𝑥𝑛)2
+ {

−2

 (𝛼−𝑥𝑛)2
(𝛽 − 𝑥𝑛)𝑓(1)(𝑥𝑛)} 

(11) 

By putting Eq. (11) in Eq. (9) we found that the 𝛽 has 

the following relationships, 

𝛽 = 𝑥𝑛 +
1

𝑓(1)(𝑥𝑛)
[{

𝑓(𝑦𝑛)

𝑓(𝑥𝑛)
}
2
[𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)] − 𝑓(𝑥𝑛)] 

(12) 

Thus, Eq. (9) can be represented in Eq. (11) and (12) 

form, 

𝛼 = 𝑥𝑛 +
1

𝑓(1)(𝑥𝑛)
[

[𝑓(𝑥𝑛)]2

[𝑓(𝑦𝑛)−𝑓(𝑥𝑛)]
−

[𝑓(𝑦𝑛)]2

𝑓(𝑥𝑛)
+    … ]    (13) 

Therefore, the preceding formula can be applied for 

the purpose of approximately determining the root of the 

Eq. (1). After reducing the number of terms to just two, 

the variable 𝑥𝑛+1 will stand in for the iteration constant 

in this Eq.. [22]. Thus, 

𝑥𝑛+1 = 𝑥𝑛 +
1

[𝑓(1)(𝑥𝑛)]
[

{𝑓(𝑥𝑛)}2

[{𝑓(𝑦𝑛)−𝑓(𝑥𝑛)}]
−

{𝑓(𝑦𝑛)}2

𝑓(𝑥𝑛)
  ]    (14) 

Hence, Eq. (14) can be utilized for finding the root of 

Eq. (1) which is up to the required level of accuracy. 

1.3 Rate of Convergence 

For the MIM, the following convergence theorem 

demonstrates the theoretical significance of the choice 

of the initial point [23].  

Let suppose that 𝑛 >  0 then the term is given in Eq. 

(14)  
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𝑥𝑛+1 = 𝑥𝑛 +
1

[𝑓(1)(𝑥𝑛)]
[

{𝑓(𝑥𝑛)}2

[{𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)}]

−
{𝑓(𝑦𝑛)}2

𝑓(𝑥𝑛)
  ] 

Converges to the simple zero of the defined function  

𝑓(𝑥) =  0. 

To prove the above statement, we consider that 𝑛 →

∞ ∶ 𝑓(𝑥𝑛) → 0. According to the above Eq. which is 

iterative strategy that is why  𝑛 → ∞ makes 𝑥𝑛+1 ≈ 𝑥𝑛 

[24]. Thus, apply these conditions on Eq. (14), so it 

converts the Eq. in this form which is given below, 

{𝑓(𝑥𝑛)}3 → [{𝑓(𝑦𝑛)}2{𝑓(𝑦𝑛) − 𝑓(𝑥𝑛)}]                  (15) 

For the larger value of n, to prove the above result the 

NRM confirms that 𝑓(𝑦𝑛) → 𝑓(𝑥𝑛). 

Consider one another condition that the function 

𝑓: 1 ⊂ 𝑅 → 𝑅  can be differentiated and it has modest 

root 𝛼 in the open interval. Hence the procedure is given 

in the Eq. (14) has 4th order convergence of the given 

root where 𝑛 >  0 [25]. 

Now to prove this statement we consider that, 𝑍𝑛 =

 𝑥𝑛 −  𝛼. So by using Taylor’s expansion. We can write, 

𝑓(𝛼) = 𝑓(𝑥𝑛) − 𝑓(1)(𝑥𝑛)𝑍𝑛 +
1

2
𝑓(2)(𝑥𝑛)𝑍𝑛

2 −
1

6
𝑓(3)(𝑥𝑛)𝑍𝑛

3 + 𝑂(𝑍𝑛
4)        (16) 

Hence, 𝛼 is the real root of the function defined in 

Eq. (1) so that it is equal to zero. 

0 = 𝑓(𝑥𝑛) − 𝑓𝑓(1)
(𝑥𝑛)𝑍𝑛 +

1

2
𝑓(2)(𝑥𝑛)𝑍𝑛

2 −
1

6
𝑓(3)(𝑥𝑛)𝑍𝑛

3 + 𝑂(𝑍𝑛
4)        (17) 

𝑓(1)(𝑥𝑛)𝑍𝑛 −
1

2
𝑓(2)(𝑥𝑛)𝑍𝑛

2 +
1

6
𝑓(3)(𝑥𝑛)𝑍𝑛

3 + 𝑂(𝑍𝑛
4)  

= 𝑓(𝑥𝑛)                                 

𝑓(𝑥𝑛) = 𝑓(1)(𝑥𝑛)𝑍𝑛 +
1

2
𝑓(2)(𝑥𝑛)𝑍𝑛

2 −
1

6
𝑓(3)(𝑥𝑛)𝑍𝑛

3 +

𝑂(𝑍𝑛
4)                        (18) 

It can also be written as, 

𝜂𝑛 =
𝑓(𝑥𝑛)

𝑓(1)(𝑥𝑛)
= 𝑍𝑛 −

1

2

𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝑍𝑛

2 +
1

6

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝑍𝑛

3 +

𝑂(𝑍𝑛
4)                                            (19)  

Taylor’s expansion can also be written as, 

𝑓(𝑦𝑛) = 𝑓(𝑥𝑛) − 𝑓(1)(𝑥𝑛)𝜂𝑛 +
1

2
𝑓(2)(𝑥𝑛)𝜂𝑛

2 −
1

6
𝑓(3)(𝑥𝑛)𝜂𝑛

3 + 𝑂(𝜂𝑛
4)                             (20) 

Hence, 

𝑓(𝑦𝑛) − 𝑓(𝑥𝑛) = −𝑓(1)(𝑥𝑛) [𝜂𝑛 −
1

2

𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝜂𝑛

2 +

1

6

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝜂𝑛

3] + 𝑂(𝜂𝑛
4)                                   (21) 

By putting the value of Eq. (19) in the above Eq. so 

we get, 

  𝑓(𝑦𝑛) − 𝑓(𝑥𝑛) = −𝑓(1)(𝑥𝑛) [𝑍𝑛 −
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝑍𝑛

2 +

   {
1

3

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
+

1

2
(
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)
2

 } 𝑍𝑛
3   ] +  𝑂(𝑍𝑛

4)              (22) 

From Eq. (19) 

𝜂𝑛 =
𝑓(𝑥𝑛)

𝑓(1)(𝑥𝑛)
 

We can evaluate from it, 

𝜂𝑛𝑓(1)(𝑥𝑛) =  𝑓(𝑥𝑛) 

𝑓(𝑥𝑛) = 𝜂𝑛𝑓(1)(𝑥𝑛)         (23) 

From Eq. (22), we can get 

𝑓(𝑦𝑛) − 𝑓(𝑥𝑛) = −𝑓(1)(𝑥𝑛)𝑍𝑛 [1 −
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝑍𝑛 +

   {
1

3

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
+

1

2
(
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)
2

 } 𝑍𝑛
2   ] + 𝑂(𝑍𝑛

4)          (24) 

By putting Eq. (23), (24) and (20) in Eq. (14). Also, use 

𝑍𝑛 = 𝑥𝑛 − 𝛼 then we get 

 

𝑍𝑛+1 = 𝑍𝑛 +
1

𝑓(1)(𝑥𝑛)

[
 
 
 
 

  
[𝜂𝑛𝑓(1)(𝑥𝑛)]2

−𝑓(1)(𝑥𝑛)𝑍𝑛 [1 −
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝑍𝑛 +   {

1
3

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
+

1
2 (

𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)
2

 } 𝑍𝑛
2   ] + 𝑂(𝑍𝑛

4) 

− 
[𝑓(𝑥𝑛) − 𝑓(1)(𝑥𝑛)𝜂𝑛 +

1
2𝑓(2)(𝑥𝑛)𝜂𝑛

2 −
1
6𝑓(3)(𝑥𝑛)𝜂𝑛

3 + 𝑂(𝜂𝑛
4)   ]

2

𝜂𝑛𝑓(1)(𝑥𝑛)
  

]
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𝑍𝑛+1 = 𝑍𝑛 +
1

𝑓′(𝑥𝑛)

[
 
 
 
 

  
[𝜂𝑛𝑓′(𝑥𝑛)]2

−𝑓′(𝑥𝑛)𝑍𝑛 [1 −
𝑓′′(𝑥𝑛)
𝑓′(𝑥𝑛)

𝑍𝑛 +   {
1
3

𝑓′′′(𝑥𝑛)
𝑓′(𝑥𝑛)

+
1
2 (

𝑓′′(𝑥𝑛)
𝑓′(𝑥𝑛)

)
2

 } 𝑍𝑛
2   ] + 𝑂(𝑍𝑛

4) 

− 
[𝜂𝑛𝑓′(𝑥𝑛) − 𝑓′(𝑥𝑛)𝜂𝑛 +

1
2

𝑓′′(𝑥𝑛)𝜂𝑛
2 −

1
6

𝑓′′′(𝑥𝑛)𝜂𝑛
3 + 𝑂(𝜂𝑛

4)   ]
2

𝜂𝑛𝑓′(𝑥𝑛)
  

]
 
 
 
 

 

 𝑍𝑛+1 = 𝑍𝑛 − [  
[𝜂𝑛]2

𝑍𝑛[ 1−
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝑍𝑛+   {

1

3

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
+

1

2
(
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)
2

 }𝑍𝑛
2   ]+𝑂(𝑍𝑛

4) 

−  
 [

1

2
𝑓(2)(𝑥𝑛)𝜂𝑛

2−
1

6
𝑓(3)(𝑥𝑛)𝜂𝑛

3+𝑂(𝜂𝑛
4)   ]

2

𝜂𝑛{𝑓(1)(𝑥𝑛)}2
  ]       

 𝑍𝑛+1 = 𝑍𝑛 − [  
𝜂𝑛

2

𝑍𝑛[ 1−
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝑍𝑛+   {

1

3

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
+

1

2
(
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)
2

 }𝑍𝑛
2   ] 

−  
 [

1

2
𝑓2(𝑥𝑛)𝜂𝑛

2−
1

6
𝑓(3)(𝑥𝑛)𝜂𝑛

3+𝑂(𝜂𝑛
4)   ]

2

𝜂𝑛{𝑓(1)(𝑥𝑛)}2
  + 𝑂(𝑍𝑛

4) ] 

          𝑍𝑛+1 = 𝑍𝑛 − [  
𝜂𝑛

2

𝑍𝑛[ 1−
𝑓(2)(𝑥𝑛)

𝑓′(𝑥𝑛)
𝑍𝑛+   {

1

3

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
+

1

2
(
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)
2

 }𝑍𝑛
2   ] 

−  
𝜂𝑛

2[
1

2
𝑓(2)(𝑥𝑛)𝜂𝑛−

1

6
𝑓(3)(𝑥𝑛)𝜂𝑛

2+𝑂(𝜂𝑛
3)   ]

2

𝜂𝑛{𝑓(1)(𝑥𝑛)}2
  + 𝑂(𝑍𝑛

4) ]   

 

          𝑍𝑛+1 = 𝑍𝑛 − [  
𝜂𝑛

2

𝑍𝑛[ 1−
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝑍𝑛+   {

1

3

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
+

1

2
(
𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)
2

 }𝑍𝑛
2   ] 

−  
 𝜂𝑛[

1

2
𝑓(2)(𝑥𝑛)𝜂𝑛−

1

6
𝑓(3)(𝑥𝑛)𝜂𝑛

2+𝑂(𝜂𝑛
3)   ]

2

{𝑓(1)(𝑥𝑛)}2
  + 𝑂(𝑍𝑛

4) ]      

(25) 

Eq (25) can be more simplified by binomial theorem and by using Eq. (19) 

𝑍𝑛+1 = 𝑍𝑛 − [ 𝑍𝑛 −
𝑓(2)(𝑥𝑛)

𝑓′(𝑥𝑛)
𝑍𝑛

2 +  
1

3

𝑓(3)(𝑥𝑛)

𝑓(1)′′′            𝑝𝑘𝑖𝑘ℎ𝑎𝑛𝑑 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(𝑥𝑛)
 𝑍𝑛

3 +
1

4
{(

𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)

2

 } 𝑍𝑛
3

+ 𝑂(𝑍𝑛
4)  ] [ 1 −

𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
𝑍𝑛 +  

1

3

𝑓(3)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
 𝑍𝑛

2 +
1

2
{(

𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)

2

 } 𝑍𝑛
2 + 𝑂(𝑍𝑛

3)  ]

− 
1

4
{(

𝑓(2)(𝑥𝑛)

𝑓(1)(𝑥𝑛)
)

2

 } 𝑍𝑛
3 + 𝑂(𝑍𝑛

4) 

 



 

© Mehran University of Engineering and Technology 2023                                172 

After solving the above Eq., we can find 

𝑍𝑛+1 =   𝑂(𝑍𝑛
4)      (26) 

This sets up the 4th order convergence of the 

iterative strategy characterized by Eq. 

(14). Subsequently, a hypothesis is demonstrated 

[26]. 

3. Numerical Tests and Results 

A small number of random Non-linear Eq.s, such as 

trigonometric, exponential, logarithmic, and cubic 

polynomial Eq.s, have been successfully solved [27]. 

Numerical experiments have been conceded in the 

Matlab environment. A variety of alternative 

approaches, such as the RFM, the NRM, and The 

Proposed Method-Modified Iterative Solver,  have 

been used to find the roots, the number of iterations, 

the residuals, and the computational time for various 

functions [28]. In order to obtain numerical results, all 

four functions must be tested using the conventional 

test functions mentioned below, one after the other. 

P1:  𝑓(𝑥) =
𝑆𝑖𝑛(𝑥)+𝐶𝑜𝑠(𝑥)

𝐶𝑜𝑠(𝑥)
 

P2:  𝑓(𝑥) = 𝑒2𝑥 + 2𝑥 − 3 

P3:  𝑓(𝑥) = 𝑥2 −𝑙𝑜𝑔 (𝑥) + 5 

P4:  𝑓(𝑥) = 𝑥3 + 2𝑥2 + 𝑥 − 1 

Matlab was used to implement the answers to each 

of the four problems. The findings of the RFM, the 

NRM, and the Modified-iterative solver are presented 

in Tables 1, 2, 3, and 4. The tables below display the 

root, residuals, number of iterations, and computing 

time. 

Table 1 

Result for the function f(x) = (sin(x) + cos(x))/(cos(x)) 

P1 

𝑓(𝑥)

=
𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(𝑥)

𝑐𝑜𝑠(𝑥)
 

Root = -0.78539 

Residual  

𝑓(𝑥∗) 

Solve 

Time 

(in Sec.) 

No. of  

Iterations 

RF 0.260158 0.016749 7 

NR 0.284735 0.371802 4 

MIM 12.49493 0.175360 2 

Table 2 

Result for the function for f(x) = e^2x+2x-3 

P1 

𝑓(𝑥)
= 𝑒2𝑥

+ 2𝑥 − 3 

Root = 

0.396030 

Residual  

𝑓(𝑥∗) 

Solve Time 

(in Sec.) 

No. of  

Iterations 

RF 0.396518 0.003304 13 

NR 0.607595 0.223741 4 

MIM 0.018682 0.191202 2 

Table 3 

Result for the function for f(x) = x^2-log(x) +5 

P1 

𝑓(𝑥) = 

𝑥2

− 𝑙𝑜𝑔 (𝑥)  
+ 5 

Root = 

2.067306 

Residual 

𝑓(𝑥∗) 

Solve Time 

(in Sec.) 

No. of  

Iterations 

RF 0.080793 0.001693 7 

NR 0.003551 0.241817 5 

MIM 9.882621 0.195330 2 

Table 4 

Result for the function f(x) =(x^3+2x) ^2+x-1 

P1 

𝑓(𝑥) = 

𝑥3 + 2𝑥2

+ 𝑥 − 1 

Root = 

0.465571 

Residual 

𝑓(𝑥∗) 

Solve Time 

(in Sec.) 

No. of  

Iterations 

RF 1.101277 0.002629 9 

NR 0.393042 0.209061 4 

MIM 0.000030 0.220651 4 

RFM: Regula-Falsi Method 

NRM: Newton-Raphson Method 

MIM: Modified-Iterative Method 

By comparing the number of iterations required for 

the function to converge in the RFM and the NRM, we 

can observe that the number of iterations is increasing 

in both techniques. In such circumstances, the Matlab 

program loop becomes eternally confined by a limit on 

the number of iterations that can be performed [29]. 

Despite the fact that we can see from the above table 

that the contribution of each line to the stability of the 

function may not be the same [30], we can also see that 

the contribution of each line to the stability of the 

function may not be the same [31]. When the function 

of a line is changed, the stability of the function is 

more dependent on the lines that indicate a 

considerable increase in the number of iterations that 

we need, when the function is changed [32]. 

The outcomes presented in Tables 1, 2, 3, and 4 

illustrate that as the number of intervals increases, the 

needed number of iterations reduces. Consequently, 

the MIM takes fewer iterations than the RFM and 

NRM, resulting in a lower computing time [27]. 

The RFM, the NRM, and The Modified Iterative 

Solver have slightly different computation times than 

the NRM and The Modified Iterative Solver. It is clear 

that the RFM takes less time to compute than the MIM 

when the computational time is compared between the 

two methods. We can see that The Modified Iterative 

technique takes less time when we compare computing 

time between the NRM and The MIM, as well. We can 
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also observe that there is a significant difference in 

residuals between the RFM and the MIM if we 

compare the two methods. The RFM has a slight error 

while The MIM has a significant error. If we look at 

the residuals of both the NRM and The MIM, we can 

see that there is only a tiny difference between the two 

methods. 

The computational time, on the other hand, 

increased significantly as the gap expanded. 

Comparing the RFM with the NRM and The MIM 

requires much more processing time. The substantial 

increase in needed processing time is due to the 

partitioning of the interval and the calculation of 

𝑓(𝑎) 𝑓(𝑏)  < 0 in each interval [33]. 

The corresponding graphs of the function from 

Tables 1, 2, 3, and 4 are depicted in pictorial form 

given below. 

 

Fig. 1.  MIM of P1 

Fig. 2.  MIM of P2 

 

 

Fig. 3.  MIM of P3 

Fig. 4. MIM of P4 

4. Discussion 

The Matlab was used to implement the answers to each 

of the four problems. The findings for the RFM, the 

NRM, and the Modified-iterative solver are shown in 

Tables 1, 2, 3, and 4. The above tables display the root, 

residuals, number of iterations, and computing time. 

The tolerance threshold is 1e-05, and the initial 

estimation is 0.1, which is a reasonable estimate. If 

you want to avoid any complications, set the number 

of iterations to 20 iterations before you start the 

iteration error process. The residual fix is set to 1e-05, 

which indicates that if the residual value is less than 

this value, the iteration process will end. The number 

of decimal places represents the root tolerance for the 

current iteration of the algorithm as well as previous 

iterations.[34], [35]. 

For initial assumptions near the critical point, the 

resultant solution was more than a root away from the 

critical point [36]. With each passing second, the 

overshooting grew as the initial guesses got closer to 

the critical point. The overshooting dropped as the 

initial predictions moved further from the crucial 

point, and the overshooting was reduced until it 

reached the closest root [37]. As a result of the 
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stopping criteria employed in the calculations, the 

approach could converge to the root most closely 

associated with the region [38]. 

When using a numerical approach that meets 

certain conditions, the capacity to converge and the 

speed with which it converges are the most important 

steps to consider [39]. Previously, we discussed how 

the BM is a suitable approach for achieving 

guaranteed convergence [40]–[42]. It is possible to 

obtain the number of iterations requisite for a certain 

level of accuracy. NRM is somewhat similar, 

however, with a few minor differences [43]. In order 

to complete each step, a derivative must be calculated. 

At this point, we are presenting an iterative solver for 

Non-linear Eq.s that is method-modified and would 

achieve better convergence with more than previous 

techniques in terms of computing time [44]. 

Tables 1, 2, 3, and 4 depict the results of the RFM 

and the NRM, respectively. The first column indicates 

the residual, the second column reflects the length of 

processing time, and the third column represents the 

number of iterations. The residue is depicted in the 

first column. 

When the initial guess was in the region, as shown 

in Tables 1, 2, 3, and 4, the approach converges to the 

root that is closest to the starting point. For initial 

assumptions that were near to the critical point, the 

resultant solution was more than a root away from the 

critical point [28]. The overshooting became more 

pronounced as the first estimations got closer to the 

critical moment. With each step forward in distance 

from the critical point, the overshooting decreased 

until the initial guess reached the root that was the 

closest to that point [31]. As a result of the stopping 

criteria employed in the calculations, the approach 

converged to the root most closely associated with the 

region. 

Based on the results of the RFM, the NRM, and the 

Modified Iterative solver in Tables 1, 2, 3, and 4, it can 

be concluded that the computational time varies for all 

three methods, namely the RFM, the NRM, and the 

Modified Iterative solver. Comparing the computing 

times of the RFM with the MIM reveals that the 

Regula-Falsi method requires less time to calculate 

than the MIM. Comparing the computational times of 

the NRM with the MIM reveals that the MIM requires 

less time. 

 We can also observe a significant difference in 

residuals between the RFM and the MIM if we 

compare the two methods. The RFM has a slight error 

while the MIM has a significant error. If we look at the 

residuals of both the NRM and the MIM, we can see 

that there is only a tiny difference between the two 

methods. 

Iterative methods require a significant amount 

of processing time in order to converge on the closest 

root, which is a major factor in determining their 

overall performance [45]. This fact provides valuable 

information into the performance of each strategy in 

question. 

5. Conclusion 

The RFM, NRM, and SM are based on the same 

underlying concept, with only minor implementation 

differences. Convergence of other two is sensitive 

with respect to the initial guess. The RFM and SM do 

not need the computation of derivatives at any point of 

the process, but the NRM requires the computation of 

a derivative at each stage. Although the RFM and the 

SM are more computationally costly than the NRM, 

they permit quicker convergence.  

The proposed MIM approaches to root in fewer 

iterations, which is validated by numerical results 

presented in relevant section. Also, the MIM 

converges to desired accuracy in a short extent of time 

than competitors.   The trip of this study was divided 

into three stages: the first stage involved the 

interpretation of the RFM, the second stage involved 

the application of the NRM, and the last stage involved 

the application of modifications to the iterative 

process. We have developed a mechanism to 

accelerate the convergence of the NRM, which can 

result in a significant increase in the order of 

convergence. Applicability and performance of MIM 

on different types of nonlinear Eq.s have been tested. 

Using four distinct functions, we compared our novel 

method, the Modified Iterative solver, with the RFM 

and NRM, and analysed the results. The examples 

indicate that The Modified Iterative Solver is a 

moderately quicker approach that requires less 

iteration steps and fewer functional computations than 

the conventional iterative solver. 

Following this investigation, we can conclude that 

MIM is better choice as compared to classical methods 

in terms of iterations and computational time. 
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