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 Rydberg physics is the most exquisite playground for the exploration of quantum 

technologies. Therefore, in this spectral investigation based on weakest bound 

electron potential model theory (WBEPMT). The quantum defects and Rydberg 

energies of low-lying and high-lying spectral Rydberg energy sequence in the 

following configurations: 1s2ns2Se1/2 and 1s2np2Po1/2 in Lithium-like ions 

(Z=4-6) Beryllium (Be II), Boron (B III) and Carbon (C IV) are computed with 

their radial expected values. Total 43 low-lying energies and quantum defects 

are computed and compared with 25 low lying radial expected values. The 

results are in good agreement with the previously published experimental / 

theoretical results. Based on the good agreement of low-lying data, total 257 new 

values of high-lying Rydberg energies and quantum defects are computed with 

575 radial expected values currently not listed at NIST. The deviation in both 

sets of data doesn’t exceed 1 cm-1. 

1. Introduction 

The recent advancements in quantum technologies are 

based on a new highly tuneable, reproducible and 

‘mother’s nature’ most versatile building block for 

quantum systems called Rydberg atoms. That can be 

utilized as the platform for quantum computation. 

Especially, in the present scenario most important 

developing applications based on Rydberg atoms are 

quantum bits, quantum sensing and quantum imaging, 

and quantum optics. In the last decade the use of 

Rydberg atoms for quantum devices is developing at 

much faster pace than ever. However, at the moment we 

are very sure that as the field grows and develop, more 

and more quantum devices based on Rydberg atoms are 

available for commercial systems that will soon 

revolutionise the society and becomes helpful to solve a 

wide range of societal problems. correspondingly, a 

rapid evolution occurs in experimental techniques, such 

as Stark effect spectroscopy [1], millimetre wave 

technique [2], two or three-photon Doppler-free 

spectroscopy techniques [3] optical double-resonance 

and level-crossing techniques [4] etc. Regarding 

theoretical techniques various methods developed [5-7].  

The exquisite theoretical techniques are self-consistent-

field theory (SCFT) [8], many-body perturbation theory 

(MBPT) [9] and quantum defect theory (QDT) [10]. For 

the computation of spectral properties of many valence 

electrons atoms, these theoretical techniques show high 

complexity in computation. The solution provided by 
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Zheng et.al [11] by put forward a semi-empirical 

method called weakest bound electron potential model 

theory (WBEPMT). This theory based on a main idea of 

separating the ionic-core with the one most loosely 

bound electron called weakest bound electron (WBE). 

The ionic-core containing all remaining electrons called 

non-weakest bound electrons (NWBE’s) and nucleus, in 

any atomic or ionic system. In weakest bound electron 

potential model (WBEPM) theory the ideas of quantum 

defects, foreign level configuration mixing, spectral 

Rydberg energy series and dependency of Rydberg 

states series on azimuthal quantum number was also 

presented.  Based on the hypothetical ideas present in 

WBEPM theory various analytical investigations were 

performed for different elements neutral and ionic states 

successfully [12-31]. 

Within the limits of WBEPMT, Lithium like ions  

(Be II, B III and C IV) behave as hydrogen atom and 

single electron in their outer most orbit treated as WBE 

and the only difference is ionic-core containing nucleus 

and two NWBE’s having a net charge of +1. In this way 

Lithium like ions (Be II, B III and C IV) WBE resides 

and moves in the potential of ionic-core.  

The interpretation of the energy levels of the valence 

electron in Li like-ionic systems is peculiarly simple in 

a way that the WBE resides in the nuclear charge 

coulombic field, shielded by the two electrons of the K-

shell. Electron’s interaction effect can be neglected, and 

the main adjustment to the asymptotic coulomb potential 

is created by core-polarization effect. Thus, the problem 

can be solved by utilizing two different approaches; 

firstly, a model potential that is formulate to compute the 

observed quantum defects for the states of the WBE, and 

secondly, coupled equations that includes electron of Se 

ground state and a Po pseudo-state. These Se and Po 

utilized to write the Schrodinger equation of one 

electron system [32]. The results obtained within the 

frame work of WBEPM theory are essentially good and 

they have deviations of less than 1cm-1 for the allowed 

transitions discussed in previous literature published 

[12-31]. 

Another underlying purpose of this investigation lies 

in a particular observation during the beam foil 

spectroscopy (BFS). This observation offers another 

field of research in atomic spectroscopy called ‘doubly 

excited states’ [33]. Specially observe in the BFS of 

Lithium-like and Beryllium-like atoms [34]. 

For the doubly excited states, in three-electron 

systems, single excitation allows 2Se-doublet states with 

a single excited electron outside the 1s21Se closed shell 

core, whereas double excitation allows 4Se-quartet states 

where the three-electron spins are all aligned. On the 

experimental side, transitions between the doubly 

excited-states have been observed in the Li atom [35], 

and the beam-foil spectroscopy [36] has shown strong 

excitation of the preceding transitions. On the basis of 

these experimental observations since 1959, extensive 

theoretical investigations of the lithium isoelectronic 

series have been the objective of physicists. Among the 

methods applied to the ground state properties of Li-like 

ions are the wave functions method used by Patil [37], 

the Hylleraas-type variational method, and the 1/Z 

expansion perturbation theory used by Yan et al. [38], 

the Hylleraas coordinates employed by Perkins [39], Ho 

[40], and King [41], the full core plus correlation method 

utilized by Chung and Zhu [42], and the quasi-projection 

operator technique developed by Temkin et al. [43]. But, 

the treatment of the properties in three-electron systems 

remains a very complex physical problem. As a result, it 

is necessary to overcome such physical problems in the 

framework of simple analytical models. For this 

purpose, we have presented a new analytical model 

named the WBEPMT [44]. This method permits one to 

succeed in obtaining simple expressions of the Rydberg 

energies and Radial expected values in connection with 

an understanding of the importance of WBE-NWBE’s 

correlation effects in atoms. The advantages of the 

WBEPM theory have been demonstrated previously 

[12-31]. In this paper, this method is applied to the 

computation of the radial expectation values of Lithium-

like ions (Be II, B III and C IV) with their quantum 

defects and low-lying and high-lying spectral Rydberg 

energy sequence in 1s2ns2Se
1/2 and 1s2np2Po

1/2 up to n=50 

electron’s state. 

2. Theory  

The theory based on the concept of one electron problem 

like hydrogen atoms. In such systems every atomic or 

ionic system contains a single most loosely bound 

electron in valence shell termed as WBE and an ionic-

core having +(Z-1) charge. The ionic core formed by the 

combination of leftover electrons other than WBE 

termed as NWBE’s with nucleus. Due to shielding effect 

ionic core formed a net columbic potential in which 

WBE may polarize or penetrate towards ionic core and 

forms a dipole. Many quanta mechanical properties of 

the atomic or ionic system are depend upon the 

behaviour of WBE. Therefore, the accurate and precise 

information about WBE is advantageous. So, by treating 

WBE as one electron problem. The Hamiltonian 

function can be written as Eq. 1. 
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                    𝐻𝑖 = −
1

2
 ∇𝑖
2 + 𝑉(𝑟𝑖)                                    (1) 

For describing the potential of an ionic core in which 

WBE reside, the one electron Schrodinger equation can 

be written as Eq. 2. 

(−
1

2
 ∇𝑖
2 + 𝑉(𝑟𝑖))𝜓𝑖 = 𝜖𝑖                                                (2)

Herein, potential 𝑉(𝑟𝑖) can be written as Eq. 3. 

𝑉(𝑟𝑖) =
𝛼

𝑟𝑖
+
𝛽

𝑟𝑖
2 (3)

Herein,

𝛼 = −𝑍∗ (4) 

                        𝛽 =
𝑎(𝑎 + 1) + 2𝑎𝑙

2
                                (5) 

In the above Eq. 3 α is the effective nuclear charge 

𝑍∗, 𝑟𝑖 is the distance between WBE and the nucleus and 

l are the azimuthal quantum number of the WBE. 

Introduction of a is the parameter into the expression of 

the potential of ionic core need to be computed. 

Also, in the potential Eq. 3, the first term gives 

coulombic potential and the second term gives electric 

dipole potential due to the dipole formed between ionic 

core and WBE. 

Now, by solving Eqs. 1 and 3 for the potential of an 

ionic core, we get Eq. 6. 

{−
ℎ2

8𝜋2𝑚
𝛻𝑖
2 +

𝐴

𝑟𝑖
+

𝐵

𝑟𝑖
2}𝛹𝑖 = 𝜀𝑖𝛹𝑖                              (6) 

The Eq. 6 can be expressed in polar coordinates as 

Eq. 7. 

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝛹

𝜕𝑟
) +

1

𝑟2 sin𝜃

𝜕

𝜕𝜃
(sin𝜃

𝜕𝛹

𝜕𝜃
) +

1

𝑟2 sin2 𝜃

𝜕2𝛹

𝜕𝜑2
+

8𝜋2𝑚

ℎ2
{𝜀 −

𝐴

𝑟
−
𝐵

𝑟2
}𝛹 = 0                                                 (7)             

Where, 𝛹(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌𝑙
𝑚(𝜃, 𝜑), and 

𝑌𝑙
𝑚(𝜃, 𝜑) = 𝐴𝑒±𝑖𝑚𝜑𝛩𝑙,𝑚(𝜃).                                    (8) 

Now, by utilizing polar coordinates and separating 

the angular function 𝑌𝑙,𝑚(𝜃, 𝜙) from the radial function  

𝑅(𝑟), we obtain Eq. 9. 

𝑑2𝑅

𝑑𝑟2
+
2

𝑟

𝑑𝑅

𝑑𝑟 
+ 2(𝜖 −

𝐴

𝑟
−
𝐵

𝑟2
−
𝑙(𝑙 + 1)

2𝑟2
)𝑅 = 0

                                                                                               (9)

  

We set Eq. 10. 

2𝐵 + 𝑙(𝑙 + 1) = 𝑙∗ (10) 

And, substituting Eqs. 4 and 10 in Eq. 9, we obtain 

   
𝑑2𝑅

𝑑𝑟2
+
2

𝑟

𝑑𝑅

𝑑𝑟 
+ 2(𝜖 −

𝑍∗

𝑟
−
𝑙∗(𝑙∗ + 1)

2𝑟2
)𝑅 = 0            (11)

 
 

By substituting Eq. 3 into Eq. 10 and solving the one 

electron Schrodinger equation by a small modification 

of Hydrogen atom problem we get the following 

expressions (Eqs. 12-15). 

𝑙∗ = 𝑙 + 𝑑 (12) 

𝑛∗ = 𝑛 + 𝑑 (13) 

𝜖 = −
𝑍∗

2𝑛∗
(14) 

𝑅 = 𝐶𝑒𝑥𝑝 (−
𝑍∗𝑟

𝑛∗
) 𝑟𝑙

∗
𝐿𝑛−𝑙−1
2𝑙∗+1 (

2𝑍∗𝑟

𝑛∗
) (15) 

Where, 𝑙∗ is the effective azimuthal quantum number 

and 𝑛∗ is the effective principal quantum number C is a 

normalization constant and 𝐿𝑛−𝑙−1
2𝑙∗+1 [

2𝑍∗𝑟

𝑛∗
] is the 

generalized Laguerre polynomial. Using the 

normalization condition, we get Eq. 16. 

∫ |𝑅(𝑟)|2𝑟2𝑑𝑟 = 1 
∞

0

(16) 

And, the integral formula concerned with two 

generalized Laguerre polynomials is given as Eq. 17. 

∫ 𝑡𝜆𝑒−𝑡𝐿𝑚
𝜇 (𝑡)𝐿

𝑚′
𝜇′

∞

0

(𝑡)𝑑𝑡 = (−1)𝑚+𝑚
′
Γ(λ + 1)

     ∑(
𝜆 − 𝜇

𝑚 − 𝑘
)(
𝜆 − 𝜇′

𝑚′ − 𝑘
)(
𝜆 + 𝑘

𝑘
)

𝑘

                             (17)
 

Where, 𝑅𝑒(𝜆) > −1. We can solve for the 

normalization constant as Eq. 18. 

𝐶 = (
2𝑍∗

𝑛∗
)

3
2
(
2𝑍∗

𝑛∗
)
𝑙∗

√
(𝑛 − 𝑙 − 1)!

2𝑛∗Γ(𝑛∗ + 𝑙∗ + 1)

{exp (−
𝑍∗𝑟

𝑛∗
) 𝑟𝑙

∗
𝐿𝑛−𝑙−1
2𝑙∗+1 (

2𝑍∗𝑟

𝑛∗
)] (18)

 

The solution may be used to calculate expectation 

values. For a transition from the level (𝑛𝑓 , 𝑙𝑓) to the 

level (𝑛𝑖, 𝑙𝑖), the expectation value of  𝑟𝑘 is                         

< 𝑛𝑓𝑙𝑓|𝑟
𝑘|𝑛𝑖𝑙𝑖 >. 

< 𝑛𝑓𝑙𝑓|𝑟
𝑘|𝑛𝑖𝑙𝑖 > =

(−1)𝑛𝑓+𝑛𝑖+𝑙𝑓+𝑙𝑖 (
2𝑍𝑓

∗

𝑛𝑓
∗ )

𝑙𝑓
∗

(
2𝑍∗

𝑛𝑖
∗ )

𝑙𝑖
∗

(19)
 

(
𝑍𝑓
∗

𝑛𝑓
∗ +

𝑍𝑖
∗

𝑛𝑖
∗)

−𝑙∗−𝑙𝑖
∗−𝑘−3

[
𝑛𝑓
∗4Γ(𝑛𝑓

∗ + 𝑙𝑓
∗ + 1)

4𝑍𝑓
∗3(𝑛𝑓 − 𝑙𝑓 − 1)!

]

−
1
2

[
𝑛𝑖
∗4Γ(𝑛𝑖

∗ + 𝑙𝑖
∗ + 1)

4𝑍𝑖
∗3(𝑛𝑖 − 𝑙𝑖 − 1)!

]

−
1
2

                                                 (20)
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∑ ∑
(−1)𝑚2

𝑚1!𝑚2!

(

 
 

𝑍𝑓
∗

𝑛𝑓
∗ −

𝑍𝑖
∗

𝑛𝑖
∗
)

 
 

𝑎

(

 
 

𝑍𝑓
∗

𝑛𝑓
∗ +

𝑍𝑖
∗

𝑛𝑖
∗
)

 
 

−𝑎

𝑛𝑖−𝑙𝑖−1

𝑚2=0

𝑛𝑓−𝑙𝑓−1

𝑚1=0

 

Where,               𝑎 = 𝑚1 +𝑚2                                         (21) 

Γ(𝑙𝑓
∗ + 𝑙𝑖

∗ +𝑚1 +𝑚2 + 𝑘 + 3) (22) 

∑

(
𝑙𝑖
∗ − 𝑙𝑓

∗ + 𝑘 +𝑚2 + 1

𝑛𝑓
∗ − 𝑙𝑓

∗ − 1 −𝑚1 −𝑚3
) (

𝑙𝑓
∗ − 𝑙𝑖

∗ + 𝑘 +𝑚1 + 1

𝑛𝑖
∗ − 𝑙𝑖

∗ − 1 −𝑚2 −𝑚3
)

(
𝑙𝑖
∗ − 𝑙𝑓

∗ + 𝑘 +𝑚1 +𝑚2 +𝑚3 + 2

𝑚3
)                         (23)

𝑆

𝑚3=1

 

Where, 𝑆 = min(𝑛𝑓 − 𝑙𝑓 − 1 −𝑚1, 𝑛𝑖 − 𝑙𝑖 − 1 −

𝑚2) and 𝑘 > −𝑙𝑓
∗ − 𝑙𝑖

∗ − 3. 

If we let 𝑘 = 1 and 𝑓 = 𝑖, we can further derive Eq. 

24. 

< 𝑟 >=
3𝑛∗2 − 𝑙∗(𝑙∗ + 1)

2𝑍∗
 (24) 

Where, < 𝑟 > is the Radial expectation value of the 

weakest bound electron i. 

The negative value of  𝜖 of the weakest bound 

electron in Eq. 14 equal to the ionization energy of the 

weakest bound electron that is Eq. 25. 

𝐼 = −𝜖 =
𝑍∗2

2𝑛∗2
(25) 

Where, 𝑛∗ is the effective principal quantum number. 

The 𝑍∗ and 𝑛∗ are unknown values and are calculated by 

the transformation between Eigen-values of quantum 

defect theory (QDT) and WBEPM theory, which gives 

Eq. 26. 

𝑍∗

𝑛∗
=

𝑍𝑜

𝑛−𝛿𝑛
                        (26) 

Where, Zo is the atomic kernel net charge number and 

δn is the Quantum defect as a function of principal 

quantum number n.  

During the process of successive ionization there are 

many possible values of ionization limits, corresponding 

to different WBE in each residual ion, provided that each 

residual ion should lie in the ground state. Therefore, the 

energy of the source atom, in which all electrons and 

nucleus are infinitely apart from each other, we have   

Eq. 27. 

𝐸 = − 𝐼𝑖
𝑁
𝑖=0                   (27) 

Where, E is the total electronic energy of source 

system in its ground state, Ii are the ionization limits at 

each stage of ionization. Thus, there is no problem of 

freezing orbits in the ionization procedure [45-47]. 

Now, the WBE of an atom or residual-ion is 

considered to be rotated around an ionic-core. So, the 

term energy of spectrum like Rydberg energy levels (E) 

is equal to the sum of ionization limit (E limit) and 

Rydberg energy (𝐸′) of WBE. 

                       E = Elim + 𝐸′             (28) 

We can rewrite Eq. 28 as Eq. 29.     

                        E= Elim −
1

2
(
Zo

n−δn
)
2
                   (29) 

The Quantum defect (δn) without considering 

perturbation correction is computed by Martin’s 

equation (Eq. 30) [48]. 

𝛿𝑛 =∑𝑎𝑖

4

𝑖=1

𝑚−2(𝑖−1) (30) 

Where, δ0 is the lowest Rydberg state Quantum 

defect of the series, coefficients (ai’s, i =1,2,3,4) in        

Eq. 30 are obtained by the method of least-square fitting 

of the first few low-lying experimental values of the 

Rydberg energy states of the given series [48]. 

3. Results and Discussion 

In this investigation spectral properties of Lithium like-

ions (Be II, B III and C IV) is presented in which 6 series 

having configurations: 1s2ns2Se
1/2, 1s2np2Po

1/2 are 

computed by utilizing coupled equations developed in 

semi-empirical method developed by Zheng et al. [44]. 

Total 43 low-lying Rydberg energy levels are listed at 

NIST [50] for above mentioned spectral series in lithium 

like-ions. The program is developed base on the coupled 

equations (see Eqs. 24, 29 and 30) in the theory [44]. 

The program first compute and compared quantum 

defects and Rydberg energies of 43 low lying levels by 

computing the coefficients of coupled equations (listed 

in Table 1). The deviation with the previously published 

expected values listed at NIST is not greater than 1 cm-1 

(listed in Tables 2-7). In the second part program utilized 

the quantum defects determined in the first part of 

investigation and compute and compared 25 low-lying 

expected radial values listed in previously published 

paper [49]. The deviation is not greater than 0.1 cm-1, 

except for few values (listed in Tables 2-7). Since the 

computed data agrees well with the previously published 

experimental / theoretical data [49]. The program finally 

computes the quantum defects, Rydberg energy levels 

and radial expected values up to n = 50. 
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Table 1 

The coefficients of coupled Eqs. 24, 29 and 30 with nature of series 

Lithium 

Like-Ions 

Elim
 [50]

 

 cm-1 
Series δ0 a1 a2 a3 a4 δ50 

Nature  

of Series 

Be II  

(Z = 4), Li 

isoelectronic  

sequence 

146882.86 1s2ns2Se
1/2 0.26429 0.25953 0.04385 -0.12908 0.50433 0.25955 low lying  

core-

penetration  

1s2np2Po
1/2 0.04591 0.04998 -0.01018 -0.03036 0.03747 0.04998 High lying  

core-

polarization 

B III (Z = 5),  

Li 

isoelectronic  

sequence 

305930.8 1s2ns2Se
1/2 0.19731 0.19321 0.03998 -0.14276 0.64072 0.19323 low lying  

core-

penetration  

1s2np2Po
1/2 0.04184 0.04419 -0.00494 -0.02360 0.03064 0.04418 High lying 

 core-

polarization 

C IV  

(Z = 6), Li 

isoelectronic  

sequence 

520175.3  1s2ns2Se
1/2 0.15763 0.15393 0.03472 -0.07139 0.25934 0.15395 low lying  

core-

penetration  

1s2np2Po
1/2 0.03708 0.03831 0.00036 -0.03389 0.05515 0.03831 High lying  

core-

penetration 

Table 2 

Spectral Rydberg Energy Series with Quantum Defects and Radii of Li iso-electronic sequence in 1s2ns 2Se
1/2 (Be II) 

State Quantum Defects Rydberg Energies (cm-1) Ry (NIST)-Ry (cm-1) Radii (cm-1) 

n δ(NIST) 
[50] δ Ry (NIST) [50] Ry < r > < r > [49] 

3 0.264 0.264 88231.915 88231.91 0.000 5.662 5.613 

4 0.262 0.262 115464.44 115464.44 0.000 10.527 10.479 

5 0.261 0.261 127335.12 127335.12 0.000 16.890 16.843 

6 0.261 0.261 133556.44 133556.44 0.000 24.752 24.711 

7 0.260 0.260 137218.78 137218.73 -0.047 34.114 

 

8 0.260 0.260 139555.16 139555.06 -0.096 44.976 

 

9 0.260 0.260 141136.3 141136.15 -0.150 57.338 

 

10 

 

0.260 

 

142255.65 

 

71.199 

 

20 

 

0.260 

 

145756.17 

 

292.309 

 

30 

 

0.260 

 

146386.33 

 

663.418 

 

40 

 

0.260 

 

146604.66 

 

1184.525 

 

50 

 

0.260 

 

146705.18 

 

1855.633 
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Table 3 

Spectral Rydberg Energy Series with Quantum Defects and Radii of Li iso-electronic sequence in 1s2np2Po
1/2 (Be II) 

State Quantum Defects Rydberg Energies (cm-1) Ry (NIST)-Ry (cm-1) Radii (cm-1) 

n δ(NIST) 
[50] δ Ry (NIST) 

[50] Ry < r > < r > [49] 

2 0.046 0.046 31928.744 31928.74 0.000 2.398 2.364 

3 0.048 0.048 96495.36 96495.36 0.000 6.069 6.034 

4 0.049 0.049 118760.51 118760.51 0.000 11.243 11.207 

5 0.050 0.050 128971.62 128971.62 0.000 17.917 17.880 

6 0.050 0.050 134485.37 134485.15 -0.216 26.091 26.058 

7 0.050 0.050 137795.97 137795.73 -0.241 35.766 

 

8 0.050 0.050 139938.08 139937.80 -0.276 46.941 

 

9 0.050 0.050 141403.24 141402.94 -0.299 59.616 

 

10 

 

0.050 

 

142448.99 

 

73.791 

 

20 

 

0.050 

 

145779.72 

 

298.040 

 

30 

 

0.050 

 

146393.25 

 

672.290 

 

40 

 

0.050 

 

146607.57 

 

1196.540 

 

50 

 

0.050 

 

146706.67 

 

1870.790 

 

Table 4 

Spectral Rydberg Energy Series with Quantum Defects and Radii of Li iso-electronic sequence in 1s2ns2Se
1/2 (B III) 

State Quantum Defects Rydberg Energies (cm-1) Ry (NIST)-Ry (cm-1) Radii (cm-1) 

n δ(NIST) 
[50] δ Ry (NIST) [50] Ry < r > < r > [49] 

3 0.197 0.197 180201.92 180201.92 0.000 3.954 3.928 

4 0.195 0.196 237698.27 237698.27 0.000 7.263 7.237 

5 0.195 0.195 263159.78 263159.78 0.000 11.571 11.545 

6 0.194 0.194 276630.32 276630.32 0.000 16.879 

 

7 0.194 0.194 284609.86 284610.00 0.139 23.187 

 

8 0.194 0.194 289723.38 289723.53 0.155 30.494 

 

9 0.194 0.194 293195.66 293195.80 0.138 38.801 

 

10 

 

0.194 

 

295660.87 

 

48.109 

 

20 

 

0.193 

 

303413.34 

 

196.178 

 

30 

 

0.193 

 

304819.18 

 

444.247 

 

40 

 

0.193 

 

305307.54 

 

792.315 

 

50 

 

0.193 

 

305532.68 

 

1240.383 
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Table 5 

Spectral Rydberg Energy Series with Quantum Defects and Radii of Li iso-electronic sequence in 1s2np2Po
1/2 (B III) 

State Quantum Defects Rydberg Energies (cm-1) Ry (NIST)-Ry (cm-1) Radii (cm-1) 

n δ(NIST) 
[50] δ Ry (NIST) 

[50] Ry < r > < r > [49] 

2 0.042 0.042 48358.335 48358.33 0.000 1.604 1.584 

3 0.043 0.043 192951.23 192951.23 0.000 4.059 4.037 

4 0.044 0.044 242829.74 242829.74 0.000 7.514 7.493 

5 0.044 0.044 265721.62 265721.62 0.000 11.970 11.947 

6 0.044 0.044 278090.15 278089.36 -0.791 17.425 

 

7 0.044 0.044 285519.29 285518.73 -0.557 23.881 

 

8 0.044 0.044 290327.86 290327.43 -0.432 31.337 

 

9 

 

0.044 

 

293617.33 

 

39.792 

 

10 

 

0.044 

 

295966.68 

 

49.248 

 

20 

 

0.044 

 

303450.77 

 

198.806 

 

30 

 

0.044 

 

304830.19 

 

448.364 

 

40 

 

0.044 

 

305312.16 

 

797.922 

 

50 

 

0.044 

 

305535.05 

 

1247.480 

 

Table 6 

Spectral Rydberg Energy Series with Quantum Defects and Radii of Li iso-electronic sequence in 1s2ns2Se
1/2 (C IV) 

State Quantum Defects Rydberg Energies (cm-1) Ry (NIST)-Ry (cm-1) Radii (cm-1) 

n δ(NIST) 
[50] δ Ry (NIST) [50] Ry < r > < r > [49] 

3 0.158 0.158 302849 302849.00 0.000 3.046253 3.029605 

4 0.156 0.156 401348.1 401348.10 0.000 5.557480 5.540836 

5 0.155 0.155 445368.5 445368.50 0.000 8.818055 8.801080 

6 0.155 0.155 468784 468784.00 0.000 12.828333 12.806610 

7 0.155 0.155 482706 482705.43 -0.570 17.588428 

 

8 0.154 0.154 491650.8 491649.97 -0.832 23.098400 

 

9 0.154 0.154 497736.7 497735.64 -1.060 29.358286 

 

10 

 

0.154 

 

502062.75 

 

36.368109 

 

20 

 

0.154 

 

515717.41 

 

147.714878 

 

30 

 

0.154 

 

518204.23 

 

334.060815 

 

40 

 

0.154 

 

519069.43 

 

595.406536 

 

50 

 

0.154 

 

519468.64 

 

931.752172 
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Table 7 

Spectral Rydberg Energy Series with Quantum Defects and Radii of Li iso-electronic sequence in 1s2np2Po
1/2 (C IV) 

State Quantum Defects Rydberg Energies (cm-1) Ry(NIST)-Ry (cm-1) Radii (cm-1) 

n δ(NIST) 
[50] δ Ry(NIST) 

[50] Ry < r > < r > [49] 

2 0.037 0.037 64484 64484.00 0.000 1.209 1.266 

3 0.038 0.038 320050.1 320050.10 0.000 3.054 3.030 

4 0.038 0.038 408311.1 408311.10 0.000 5.650 5.541 

5 0.038 0.038 448855.8 448855.80 0.000 8.996 8.801 

6 0.038 0.038 470775 470774.60 -0.401 13.092 12.807 

7 0.038 0.038 483948.4 483947.33 -1.069 17.939 

 

8 0.038 0.038 492477.7 492476.35 -1.354 23.535 

 

9 

 

0.038 

 

498313.08 

 

29.881 

 

10 

 

0.038 

 

502482.03 

 

36.977 

 

20 

 

0.038 

 

515768.94 

 

149.190 

 

30 

 

0.038 

 

518219.42 

 

336.403 

 

40 

 

0.038 

 

519075.82 

 

598.615 

 

50 

 

0.038 

 

519471.90 

 

935.828 

 

 

Fig. 1. n-δ and n-Ry curves in comparisons for Z = 4-6, up to n = 50 for 1s2ns2Se
1/2 and 1s2np2Po

1/2. Showing the core penetration 

nature for all 1s2ns2Se
1/2 and the core polarization in 1s2np2Po

1/2 for Z = 4 and 5, but an exception is occurred at Z = 6, that is core 

penetration in 1s2np2Po1/2 

For all above mentioned 6 series in Lithium like-ions 

having configurations 1s2ns2Se
1/2, 1s2np2Po

1/2, the 

coefficients of coupled equations (Eqs. 24, 29 and 30), 

ai’s(i = 1,2,3,4) and δ0, are computed by low-lying expected 

value listed at NIST [50]. In Table 1, one can easily 

observe that the nature and convergence of series 
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depends upon the 1st two coefficients (a1, a2) of Eq. 30. 

In the case all unperturbed series, all series of quantum 

defects converge towards the a1, i.e. a1= δ50 and by the 

sign of a2 the nature of series can be easily determined; 

i.e., if a2 is positive the series is core-penetration series 

and if a2 is negative the series is core penetration series.  

The results compute in the present computation for 

spectral Rydberg energy series of Lithium like-ions up 

to n = 50 and Z = 4-6 are listed in Tables 2-6. Due to the 

constancy of quantum defects and degeneracy of 

Rydberg states at higher n only few computed values are 

shown in Tables 2-6. The detail evaluation is shown in 

Fig. 1. The comparison with previously published data 

[49-50] shows good agreement with the computed 

values. The absolute deviation in general is not greater 

than 1 cm-1.  

Also, in the graphical section by plotting graphs of 

quantum defects and Rydberg levels as a function of 

principal quantum numbers called n-δ and n-Ry curves. 

The change in the regularity of the quantum defects and 

Rydberg energy levels series can be easily observed with 

the convergence under same ionization limit and nature 

of series as describe in Table 1.

 

 

Fig. 2. n-<r> curves show good agreement between computed and previously published excepted value for 1s2ns2Se
1/2 and 

1s2np2Po
1/2 configurations in lithium like-ions for Z = 4-6, up to n = 50. Also presented general 2nd order polynomial equation for 

each series

All 1s2ns2Se
1/2 series in lithium like ions are low-lying 

core penetration series, converges under same ionization 

potentials. In 3 n-δ curves, at low n curve first decreases 

exponentially shows the regular decrease in Quantum 

defects and at high n the constancy of Quantum defects 

shows by asymptotic nature. In contrast, in 3 n-Ry curves 

at low n the curve first increases exponentially shows the 

regular increase in the Rydberg States energy and at high 

n the degeneracy of Rydberg energy states shows by 

asymptotic nature. Similarly, in 1s2np2Po
1/2 series in 

Lithium like-ions 2 out of 3 are high-lying core 

polarization series, except 1 in C IV shows high-lying 

core-penetration series converges under same ionization 

potentials. In 3 n-δ curves, at low n curve first increases 

exponentially shows the regular increase in Quantum 

defects and at high n the constancy of Quantum defects 

shows by asymptotic nature. In all n-Ry curves shows the 

same behaviour as in low-lying core penetration series 

(see Fig. 1). 

Finally, in the graphs of radial expected values as the 

function of principal quantum numbers called n-<r> 

curves (see Fig. 2). The computed curves fitted quite 
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well with the curves of previously published data [49]. 

By curve fitting the general equation of 2nd order 

polynomial for each series of Radial expected values are 

also presented with each graph (see Fig. 2). Within the 

same series as the n increase the Radial expected value 

increases exponentially in each case. But as the Z 

increases the Radial expected values decrease in 

comparison from Z = 4-6 in both configurations: 

1s2ns2Se
1/2, 1s2np2Po

1/2. So, it can be concluded that at 

high Z the probability of finding WBE near an ionic-core 

increase where it can polarize or penetrate towards an 

ionic-core forming a strong dipole generating both kind 

of spectral series, core penetration as well as core-

polarization series under same ionization limit. 

4. Conclusion 

Within the limits of semi-empirical method, relatively 

have simple analytical solutions utilizing the coupled 

equations. The results computed for the quantum 

defects, Rydberg energy levels and expected radial 

values for ns and np states for Z = 4-6, up to n = 50 are 

accurate and shows good accordance with previously 

published values [49-50]. 

The graphical description clearly presents the nature 

and convergence of all series. In general, all ns series 

belongs to core-penetration and all np series belongs to 

core-penetration series with an exception in C IV both 

ns and np series belongs to low and high-lying core-

penetration series (see Fig. 1 and Table 1). 

The Radial expected values having great importance 

in computation of transition probabilities are not only 

agreed well with the previously published data [49]. A 

general 2nd order polynomial equation for each series is 

also generated by curve fitting shows an excellent 

agreement with both computed and previously 

published data [49]. 
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7. Explanation of Tables 
T

ab
le

 1
 

 
Shows the coefficients of coupled Eqs. 24, 29 and 

30 with nature of series for Lithium like-ions. 

 

Lithium Like-Ions: Shows the nomenclature, atomic 

number and electronic sequence of ionic state. 
 

a1: 1st Coefficient of Eq. 30 for both ns and np series. 
 

a2: 2nd Coefficient of Eq. 30 for both ns and np 

series. 
 

a3: 3rd Coefficient of Eq. 30 for both ns and np series. 
 

a4: 4th Coefficient of Eq. 30 for both ns and np series. 
 

δ0: Quantum defects of lowest possible state of each 

series. 
 

δ50: Quantum defects of highest state of each series. 

T
ab

le
s 

2
-7

 Quantum Defects and Rydberg Energies and Radii 

of Spectral Rydberg series up to n =50 in Be II, B 

III and C IV. 

 State: Principal Quantum number. 

 δ(NIST) [50]: Computed values of Quantum defects by 

utilizing energy levels listed at NIST [50]. 

 δ: Computed values of Quantum defects by Eq. 30. 

 Ry(NIST) 
[50]: Experimental values of Spectral Rydberg 

energies listed at NIST [50] in cm-1. 

 Ry: Spectral Rydberg energies computed By 

WBEPMT in cm-1. 

 Ry(NIST)-Ry: Deviation between excepted values 

listed at NIST with the values computed in this work 

in cm-1. 

 <r>: Radial expected values computed in this work 

by WBEPMT. 

 <r> [49]: Radial expected values from previously 

published data [49]. 

 

 

 


