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 Many mathematical operations are implemented easily through transform 

domain operations. Multiple transform domain operations are used 

independently in large and complex applications. There is a need to develop 

integrated representations for multiple transform domain operations. This paper 

presents an integrated mathematical representation for the discrete Fourier 

transformation and the discrete wavelet transformation. The proposed combined 

representation utilizes the powerful vector notation. A mathematical operator, 

called the star operator, is formulated that merges coefficients from different 

transform domains. The star operator implements both convolution and 

correlation processes in a weighted fashion to compute the aggregated 

representation. The application of the proposed mathematical formulation is 

demonstrated successfully through merging transform domain representations of 

time-domain and image-domain representations. Heart sound signals and 

magnetic resonance images are used to describe transform-domain data merging 

applications. The significance of the proposed technique is demonstrated 

through merging time-domain and image-domain representations in a single-

stage that may be implemented as the primary processing engine inside a typical 

digital image processing and analysis system. 

1. Introduction 

The use of transformations is ubiquitous in almost all 

scientific disciplines and especially prominent in 

science, technology, engineering, and mathematics 

(STEM) disciplines. Signals (1D) and images (2D 

signals) are decomposed into a linear combination of 

basic waveforms for analysis [1-4]. The frequency-

domain representation achieved by the discrete Fourier 

transform (DFT) offers an intuitive way to analyse time 

domain and image domain representations. The image 

domain refers to the spatial domain. Many mathematical 

operations become easier to implement in the frequency 

domain. The wavelet representation [5-6] achieved by the 

discrete wavelet transform (DWT) provides a versatile 

alternative to the frequency domain representation.  
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A general transform-based signal or image processing 

approach transforms a time domain or image domain 

representation into a transform domain representation, 

See Fig. 1. The motivation to use a transform domain 

approach is its simplicity to implement computationally 

expensive time domain or image domain mathematical 

operations by the frequency domain or wavelet domain 

alternatives. The Fourier methods, however, do not 

perform well to analyse signals and images that have 

significant frequency content variations. The wavelet 

techniques provide an elegant, computationally efficient, 

and flexible solution to this problem [1, 7]. 

 

Fig. 1. General transform-based signal and image processing 

approach 

 A review of research literature on integrated 

transform domain approaches for data merging (fusion) 

revealed that generally, these approaches are 

implemented in either hybrid models or multi-model [8]. 

The research contributions using data fusion models 

include the robust watermarking scheme [9] and 

signature verification [10]. Other closely related 

contributions in the research literature that unified both 

DFT and DWT include compressed sensing [11-13] and 

defect detection [14]. These approaches use transform 

domain operations for pre-processing and post-

processing tasks. The research contributions in the 

literature are based on the use of frequency domain and 

wavelet domain operations in separate stages of the 

techniques [15-17].  

 The proposed approach in this paper is based on the 

development of an operation, called the star operator, 

based on the convolution and correlation processes that 

are central to both DFT and DWT computations [18], 

[19]. There are quite a few research pointers found in the 

literature towards the development of a combined 

Fourier and wavelet representation [20]. This work is 

different as the powerful vector notation is used to 

develop the mathematical expression. Furthermore, the 

developed algorithms have the inherent ability to merge 

time domain and image domain representations. 

This research proposes a joint mathematical 

representation for both DFT and DWT through the 

development of an integrated Discrete Fourier Wavelet 

Transformation (DFWT) framework. The developed 

DFWT framework uses the powerful vector space 

notation in the formulation of the integrated mathematical 

expression. The application of developed representation 

is presented through merging: heart sound signals and 

transform domain coefficients of example magnetic 

resonance imaging (MRI) image. Figures 2 and 3 show 

the normal heart sound signal and the example MRI 

image, respectively. 

The paper layout is as follows. Mathematical 

fundamentals, the star operator, and the integrated DFWT 

framework are presented in Section 2. The developed 

mathematical framework and proposed star operator to 

merge transform domain coefficients are applied and 

discussed in Section 3. The paper concludes in Section 4 

with anticipated future research directions. 

2. Materials and Methods 

2.1 Mathematical Fundamentals   

The notation used in this section is based on mathematical 

expressions in [1], [21]. A discrete signal, xn, is a sampled 

version of an analog signal, x(t), where n ∈ ℤ and t ∈ ℝ. 

A discrete image matrix, A, with elements, ars = f(xs,yr), is 

a sampled version of an analog image, f(x,y), where, {r,s} 

∈ ℤ and {x,y} ∈ ℝ. A discrete signal or image is 

mathematically represented and algebraically 

manipulated in the transform domain. The transform 

domain representation is obtained by the application of a 

mathematical operator on an input discrete signal or 

image. A digital version of discrete counterpart is used for 

computer storage and processing. 

    Vector space provides a natural mathematical 

framework for signal and image analysis. A discrete 

signal or image may be viewed as an element of a vector 

space V. The vector space L2(ℕ) contains 1D signals of 

the form xk with k ≥ 0 and satisfies Σk |xk|2 < ∞. The M x N 

matrix MATM,N(ℝ) forms an appropriate model that 

corresponds to a discrete image with elements ars ∈ ℝ such 

that 0 ≤  r  ≤ m − 1 and 0 ≤  s  ≤ n − 1, where {m, n} ∈ ℕ. 

The sequence of discrete basic waveforms is denoted by 

EN,K = Ek with mth component is given by e2πikm/N, where 

k ∈ ℤ, N is the sampling rate, and 0 ≤ m ≤ N − 1. Discrete 

basic waveforms for images take the form of m x n 

rectangular arrays (2D signals) or matrices with elements 

in Em,n,k,l = Ek,l.  
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A set S with members ek such that ek = 1 in kth 

position and zero elsewhere is the standard orthogonal 

bases as (ej, ek) = 0, when j ≠ k. Any 1D signal, v ∈ V, 

can be expressed as Σkαkvk, where αk = (v, vk)/(vk, vk). If a 

set is orthonormal, then αk = (v,vk). This leads to the 

following inverse discrete Fourier transform (IDFT) 

formulas (Eqs. 1 and 2) for 1-D signal X ∈ ℂN and 2D 

signal 𝐴̂ ∈ MATM,N(ℂ) [1]. 

 

Fig. 2. A normal heart sound signal with 8012 Hz sampling 

frequency and 30745 data points 

                                (1) 

                (2) 

Where, 0 ≤ k ≤ N -1 for 1D case, and 0 ≤ k ≤ M – 1 

and 0 ≤ l ≤ N – 1 for 2D case. 

    The discrete Fourier transform (DFT) of x ∈ ℂN is the 

1D signal X ∈ ℂN with components are given in Eq. 3. 

                                                            (3) 

Where k ≥ 0.   

    The IDFT has components are given in Eq. 4. 

                                                             (4) 

Where k ≥ 0. 

    The two-dimensional DFT of A, denoted by 𝐀̂ has 

components are given in Eq. 5. 

                                                       (5) 

Where k, l ≥ 0. 

The two-dimensional IDFT of  𝐀̂ has components are 

given in Eq. 5. 

                                                              (6) 

Where k, l, r, s  ≥ 0. 

The J-level orthogonal discrete wavelet transform 

(DWT) of x ∈ RN has components 𝑎𝑘
(𝐽)

, 𝛽𝑘
(𝐽)

, … , 𝛽𝑘
(𝐽)  

(Eq. 7) [1, 21] 

                                      (7) 

Where 1 ≤ l ≤ J.  

The inverse discrete wavelet transform (IDWT) has 

components are given in Eq. 8. 

                                  (8) 

The J-level two-dimensional orthogonal DWT of A 

has components are given in Eq. 9. 

                             (9) 

Where i ∈ {horizontal, vertical, diagonal} details.  

The two-dimensional IDWT has components are given 

in Eq. 10. 

                              (10) 

 

Fig. 3. The magnetic resonance image of ankle 

The convolution process is the heart of DFT and DWT 

computations. The steps in standard convolution 

operation are fold, shift, multiply, and add. These 

operations are repeatedly used in the convolution process. 

Use of 2D signals simplifies the implementation of 

convolution process. Mathematically, this is given as Eq. 

11. 
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            (11) 

Correlation is helpful to measure the similarity 

between signals or images with its time or frequency 

delayed version. The correlation process consists of 

multiple steps including shifting, multiplying, and 

addition. The correlation process for two different length 

signals is implemented by making length of smaller 

signal equal to the length of larger signal. This operation 

is usually accomplished by zero padding. 

2.2 The Star Operator   

The star operator (∗) is defined to merge matrices of 

different sizes as Eq. 12. 

                                         (12) 

Where the matrix Bpq has less number of rows and 

columns as compared to matrix Amn, γ = pq/mn ≤ 1, and 

Cmn is obtained as Eq. 13. 

                                                             (13) 

Where ωi is the correlation vector, 𝐴́ is an extension 

of A, and 𝐵́ is an extension of B, See Algorithms 1 and 

2. The number of members in the correlation vector are      

mn − pq + 1 and the size of matrix 𝐵́ is mn (mn − pq + 1). 

To merge three matrices, Eq. 14 is used. 

                        (14) 

Where the matrix B2 has less number of rows and 

columns as compared to matrix B1. A generalization of the 

star operator is as Eq. 15. 

            (15) 

    The vector notation enabled merging of 1D signals and 

2D signals, See Algorithms 1 and 2, respectively. The 

inputs to Algorithm 1 are signals. Both input signals Am 

and Bp are represented in the form of a and b, respectively. 

To ensure, the input signals have the required 

characteristics; parameters γ ≤1 and ∆ ≥1 are computed. 

Next, extensions 𝐴́ and 𝐵́ for input signals are computed. 

The correlation vector ωi is computed between a and each 

column of 𝐵́. Then, Eq. 13 is used to compute the 𝐶́  

matrix. The C matrix is obtained through norm of each 

column of 𝐶́. Finally, the S matrix is computed by 

multiplying γ and C. In a similar manner, the input Amn 

and Bpq, representing image data, are merged using the 

procedure in    Algorithm 2. 

 

Algorithm 1  

Star Operator for Merging 1D Signals 

Require: 1D Signals: Am, Bp 

Ensure: Merged 1D Signal: Sm  = Am ∗ Bp 

1: Convert input signals to 1D signal form: a, b 

2: Compute: γ = p/m ≤ 1 

3: Compute: ∆ = (m – p) ≥ 1 

4: Generate extension signal 𝐴́:  

5: Initialize signal 𝐴́(m (∆+1)) with all columns equal to a  

6: Generate extension signal 𝐵́: 

7: Initialize signal 𝐵́(m (∆+1)) with zero element values 

8: Fill each column of 𝐵́ with values from b 

9: Each successive column of 𝐵́ contains rotated version  

10: Compute ωi ∈ ω (∆+1) as correlation between a and each column of 𝐵́ 

11: Compute: 𝐶́ = 𝐴́ + ωi 𝐵́ 

12: Compute: C as vector norm of each row of 𝐶́ 

13: Compute: S = γ C  

In general form, the star operator is implemented by 

organizing matrices in descending order. Consider the 

Magic square function in MATLAB. The scaled, rounded 

version of the result obtained by merging seventh-order 
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and fifth-order magic square functions using (13) is 

given as under. 

[
 
 
 
 
 
 
30 38 47 1 11 20 28
37 46 7 9 19 28 29
45 6 8 18 26 36 37
5 14 15 25 35 36 45
13 15 24 33 42 44 5
21 23 32 41 43 5 13
22 30 39 49 3 12 20]

 
 
 
 
 
 

 

Where γ = 25/49 and the correlation has following 25 

members. 

[
 
 
 
 
−0.0854 +0.0146 −0.0458 +0.0915 −0.0345
−0.1079 −0.0134 +0.0686 −0.0832 +0.0480
−0.0889 −0.0320 −0.0355 +0.0223 +0.1011
−0.1284 −0.1239 +0.1229 +0.0952 +0.0957
−0.1883 +0.0327 +0.0312 +0.1458 +0.1317]

 
 
 
 

 

    The scaled, rounded version of the result obtained by 

merging seventh-order, fifth-order, and third-order 

magic square functions using (14) is given as under. 

[
 
 
 
 
 
 
30 38 46 01 12 21 28
37 45 07 09 20 28 29
45 06 08 18 27 37 37
06 14 15 25 36 37 45
13 15 24 33 43 44 06
21 23 32 41 43 06 14
22 30 39 49 03 13 20]

 
 
 
 
 
 

 

Where γ2 = 25/49 and γ1 = 9/49. Some typical cases 

of the star operator are presented below. 

2.2.1 Case – I 

Consider C = Amn ∗ Bpq   with A = 0 and/or B = 0. The star 

operator, introduced in this work, is defined only for non-

zero input matrices. 

2.2.2 Case - II 

Consider C = Amn ∗ Bpq   with m = p, n = q. The correlation 

between a seventh-order magic square function and two 

merged seventh-order magic square functions is 0.9998. 

The value is one if scaling and rounding effects are 

removed. 

2.2.3 Case - III 

Consider C = Amn ∗ Bpq with m = 2lp, n = 2lq. Consider l 

= 2, therefore, p = m/4, q = n/4; for m = n = 16 ⇒ p = q = 

4. The correlation between the result of merging 

sixteenth-order and fourth-order magic functions; and the 

sixteenth-order magic square function is one. 

2.2.4 Case - IV 

Consider C = A ∗ (B1,B2,…,BJ)  with A = 𝛼𝑘
(𝐽)

 and Bi = 

𝛽𝑘
(𝑙)𝑖

. Consider wavelet decomposition of thirty-

secondth-order magic square function using Haar basis 

with J = 2. The decomposition coefficients using (9) are: 

α(2), 𝛽(2)𝑖, 𝛽(1)𝑖. The result of applying (14) to A = 𝛽(1)𝐷, 

B1 = 𝛽(2)𝐷, and B2 = α(2) has correlation one with A. 

 

Algorithm 2  

Star Operator for Merging 2D Signals 

Require: 2D Signals: Amn,Bpq 

Ensure: Merged 1D Signal: Smn  = Amn ∗ Bpq 

1: Convert input signals to 1D signal form: a, b 

2: Compute: γ = pq/mn ≤ 1 

3: Compute: ∆ = (mn – pq) ≥ 1 

4: Generate extension signal 𝐴́:  

5: Initialize signal 𝐴́(mn(∆+1)) with all columns equal to a  

6: Generate extension signal 𝐵́: 

7: Initialize signal 𝐵́(mn(∆+1)) with zero element values 

8: Fill each column of 𝐵́ with values from b 

9: Each successive column of 𝐵́ contains rotated version  

10: Compute ωi ∈ ω(∆+1) as correlation between a and each column of 𝐵́ 

11: Compute: 𝐶́ = 𝐴́ + ωi 𝐵́ 

12: Compute: C as vector norm of each row of 𝐶́ 

13: Compute: S = γ C  
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2.3 DFWT Framework   

2.3.1 One-dimensional case 

The integrated mathematical representation of one-

dimensional forward DFWT is obtained, from Eqs. 3 and 

7, as Eq. 16. 

                    (16) 

Here p = 2lm for 1 ≤ l ≤ J. Applying (14) with A 

= (x, Ek), B1 = (x, Eβ,l), and B2 = (x, Eα,J): 

   (17) 

The integrated mathematical representation of one-

dimensional inverse DFWT is obtained, from Eqs. 4 and 

8, as Eq. 18. 

  (18) 

The mathematical expressions (18) and (20) used ⊛ 

to show an integrated representation, however, as 

coefficients in different transform domain 

representations have different meanings [21]; therefore, 

the star operator Eqs. 16 and 19 are used to merge 

coefficients. 

2.3.2 Two-dimensional case 

The integrated mathematical representation of two-

dimensional forward DFWT is obtained, from Eqs. 5 and 

9, as Eq. 19. 

       (19) 

The integrated mathematical representation of 2D 

inverse DFWT in (20) is obtained, from Eqs. 6 and 10, 

as Eq. 20. 

   (20) 

3. Results and Discussion 

The experimental setup includes Dell Inspiron 7577 with 

Windows 10 operating system and MATLAB R2019a. 

The signal and image data are from the public domain. 

Normal heart and early systolic murmur sound signals 

are from cprworks.com and the ankle image is from [22] 

website imageprocessingplace.com. 

3.1 DFWT Application   

Many physiological processes have associated signals 

due their nature and activities [2]. Examples of such 

signals are biochemical, electrical, and physical. 

Commonly encountered biomedical signals are electro-

cardiogram, electro-encephalogram, phonocardiogram, 

and vibromyogram. Biomedical imaging captures images 

of in vivo physiology and physiological processes. 

Examples are computed tomography scans, ultrasound, 

and magnetic resonance imaging. 

3.1.1 Merging 1D signals 

The sound signals of normal heart beat and early systolic 

murmur are shown in Figs. 2 and 4, respectively. Selected 

sound parts were used to generate the merged sound 

signal. The normal heart sound signal has 8012 Hz 

frequency and 30745 data points. From sound data, 800 

data points were extracted from 1203 to 2003. The early 

systolic murmur sound signal has 11025 Hz frequency 

and 56074 data points. From sound data, 3307 data points 

were extracted from 8821 to 12127. 

The Fourier transform of extracted normal heart sound 

signal and the wavelet transform of extracted early 

systolic murmur sound signal were merged using (12). 

The result is shown in Fig. 4. The use of signal dimension 

abbreviations 1D and 2D applies to the frequency and 

wavelet representations. The merged signal patterns may 

be stored in a dictionary and may be used to develop an 

application for symptom-specific disease diagnose 

decision support system.  

3.1.2 Merging 2D signals 

The image data shown in the Fig. 3 was extracted from 

the DICOM format and resized to 25%. The dimensions 

of extracted resized image were 64 x 64. Initially, both 

DFT and DWT were applied on the extracted resized 

image. Then the Fourier spectrum and approximate 

coefficients from level one wavelet decomposition were 

merged. 

The application of DFT on extracted resized image 

generated Fourier spectrum. A patch of size 10 x 10 was 

extracted from the Fourier spectrum from top-left 

coordinates (11, 11) to bottom-right coordinates (20, 20). 

The extracted patch was merged with the level one 

approximation coefficients with dimension 32 x 32. The 

result is shown in Fig. 5. In this manner, the proposed 

formulation may be utilized in an image fusion 

application – a well-established research discipline. 

3.1.3 Merging 1D and 2D signals 

The diagonal elements were extracted from the Fourier 

spectrum of extracted resized image to form a 1D signal 

with 64 elements. The extracted signal is merged with the 

level one approximation coefficients with dimension       
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32 x 32 (2D signal). The result is shown in Fig. 6. This 

result shows the potential of using powerful vector 

notation that has the ability to transforms a higher 

dimension signal in 1D signal. This is an essential 

requirement for the proposed technique.  

 

Fig. 4. The merged sound signals. From left to right: wavelet decomposition of extracted early systolic murmur sound signal, 

frequency spectrum of extracted normal heart sound signal, result of merging approximate wavelet coefficients and frequency 

spectrum, and result of merging detail wavelet coefficients and frequency spectrum. See section 3 for details. Number of data 

points are shown on x-axis. The amplitude are shown on y-axis 

 

 

 

Fig. 5. The merged ankle image. From left to right: example ankle MRI input image, frequency spectrum of the resized image, 

wavelet decomposition of resized image, and result of merging approximate wavelet coefficients and extracted patch from 

frequency spectrum of the resized image. See section 3 for details  

 



 

© Mehran University of Engineering and Technology 2022                                            182 

3.2 Discussion   

The developed star operator in the section 2 is used to 

formulate the integrated mathematical representation for 

the DFT and DWT and applied to merge heart sound 

signals and example MRI image in the section 3. 

Coefficients from frequency domain and wavelet domain 

representations are used as input to the star operator Eqs. 

12-15. The merging processes in Algorithms 1 and 2 are 

used for merging 1D signals and 2D signals, respectively. 

The mathematical expressions in Eqs. 3, 5, 7 and 9 are 

derived from [1], [21]. Integrated mathematical 

expressions for time domain signal and spatial domain 

image are given in Eqs. 18 and 20, respectively. The star 

operator Eqs. 16 and 19 is used to merge coefficients from 

frequency spectrum and wavelet decomposition. 

 

 

Fig. 6. The merged ankle – signal and image merging, See section 3 for details 

The application of star operator to compute integrated 

DFWT representations appeared in Algorithms 1 and 2. 

In both algorithms, merging achieved through 

application of the star operator, formulated in the   

section 2. The demonstration of application appeared in 

Figs. 4, 5, and 6. The results in Fig. 4 show merging in 

transform domain representations for the normal heart 

sound signal and early systolic murmur sound signal. 

The proposed star operator successfully generated two 

different representations corresponding to selection of 

coefficients in the transform domain. Fig. 5 shows 

another typical merging operation for the example MRI 

ankle image. The result appeared as a blur version of the 

input image. 

The proposed DFWT framework was successful in 

generating a composite representation for multiple 

applications. Furthermore, it has enabled merging 1D 

signal and 2D signal representations in transform 

domain. The implementation structure proposed in this 

paper, however, has the limitation in terms of memory 

needed during processing. In generating results, the time 

complexity issue are related to the transformation 

operations. The standard transformation functions in 

MATLAB are used for computation. The memory 

requirements are large to implement the proposed 

technique due to the use of large 2D signals. 

The work accomplished in this study focused on the 

formulation of an integrated representation for both 

discrete Fourier transform and discrete Wavelet 

transform using the powerful vector notation. There are 

numerous applications that implemented these well-

known transformation operations [11, 22]. The proposed 

formulation in this work, opens another dimension for the 

exploration possibility.   

The proposed formulation is compared with the recent 

research works [22-26], see Table 1. Javid et al. [22] 

proposed a fuzzy contrast enhancement system with 

multiple transform domain operations (FCES-MTDO). 

Jalayer et al. [23] proposed a multi-domain convolutional 

long short-term memory (MD-CLSTM) to generate fault 

signatures for fault detection and diagnosis of rotating 

machinery. Chaudhary et al. [24] used a two-dimensional 

Fourier-Bessel series expansion-based empirical wavelet 

transform (2D-FBSE-EWT) to automate the glaucoma 

diagnosis from medical images. Li et al. [25] proposed a 

double-encrypted watermarking algorithm based on 

cosine transform and fractional Fourier transform in 

invariant wavelet domain (DEWA-CTFFT). You et al. 

[26] combined Fourier-wavelet transforms for studying 

the dynamic response of anisotropic multi-layered 

flexible pavement with linear-gradual interlayers (DR-

AMFP-LGI). 

4. Conclusion 

An integrated mathematical formulation for the discrete 

Fourier transform and the wavelet transform has been 

presented. The proposed framework has been applied 

successfully to merge biomedical signals and images. The 

developed star operator was successful in merging 

transform domain representations. Furthermore, the star 

operator enabled merging data from different input 

domains, that is, one input from the time domain signal 

and another input from the image domain. The proposed 
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technique utilized powerful vector notation to convert 

input data to vector form and compute the integrated 

transformation.  Possible future research directions 

include exploring merging higher dimensional data, 

using fuzzy logic to integrate FFT and FWT in a single 

application, explore the application of integrated 

transformation for data fusion, and developing a 

computational approach to overcome the memory 

limitation experienced in implementation of the star 

operator. 

Table 1 

Comparison of the proposed technique with recent research works 

Technique Signal Image Multi-domain Vector notation Implementation Application 

FCES-MTDO [22] 

MD-CLSTM [23] 

2D-FBSE-EWT [24] 

DEWA-CTFFT [25] 

DR-AMFP-LGI [26] 

Proposed Technique 

No 

Yes 

No 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 

Yes 

Parallel 

Parallel 

Serial 

Serial 

Serial 

Integrated 

Image fusion 

Fault signature 

Object detection 

Watermarking 

Structural design 

Signal merging 
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