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 Power system control and operation studies have been experienced essential 

changes due to increasing the penetration of uncertain renewable energy 

resources. One of the most critical issues in this regard is the optimal power flow 

(OPF). As a result, the deterministic methods do not have the capability of 

different modeling uncertainties raised in new power systems, and there is a need 

to investigate the effective models in this regard. This paper focuses on 

probabilistic optimal power flow (POPF) methods applied to power systems with 

uncertain wind and Photovoltaic power generations. In this paper, the Monte 

Carlo simulation (MCS) and analytical methods such as the three-point 

estimation method (3PEM), unscented transformation (UT), and Interior-Point 

method (IPM) are applied to solve the probabilistic optimal power flow problem. 

MCS has been widely applied as a framework to assess the ability of analytical 

methods. The mentioned techniques are applied to a sample case study extracted 

from the IEEE 300-bus system. The main contribution of this work is the 

comparison of analytical methods concluding 3PEM, UT, and IPM, and with 

MCS as well. The obtained results on the studied networks by the suggested 

techniques show that in the 3PEM, due to the limited points, the optimal solution 

is achieved in less calculation time than the other methods. From another 

perspective, the voltage changes at the buses would be more stable in the IPM. 

Also, this method is much faster than the MCS method in terms of the 

convergence rate. To show the effectiveness of the mentioned methods, this 

paper presents probabilistic load flow method based on the statistical methods 

to deal with fluctuations because of large-scale renewable energy integration. 

The proposed methods are validated on the improved industrial 85–bus system 

of Kermanshah region (in the west of Iran) by adding solar and wind farms. 

1. Introduction 

Replacing fossil fuels with renewable energy resources 

is inevitable due to environmental concerns. Wind and 

solar power are the dominant technologies in this 

context [1]. Because of the uncertain behavior of 

renewable energies, it is necessary to use suitable 

methods [2]. POPF analysis is one of the essential tools 

in this field. 
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Power Flow (PF) analysis determines load, 

generation, and the other electrical variables based on 

system conditions. The most critical uncertainties in the 

power system are mainly related to the restructuring of 

the power system as well as to the unprecedented use of 

renewable energy. In such systems, the calculation of the 

Deterministic Optimal Power Flow (DOPF) cannot 

describe the actual status of the power system. The 

probabilistic analysis then becomes necessary. POPF 

analysis is one of the basic tools in the operation and 

control of uncertain power systems. The history of 

research in this field is mainly referred to as the early 

1970s [3]. 

Probabilistic power transmission can accurately 

examine the state of the power system and calculate base 

voltages and line conditions in the presence of 

uncertainty, so this method can provide useful 

information for researchers for making necessary 

decisions on the power system. The green-house side 

effects and environmental concerns are becoming more 

critical. As a result, and as a relatively clean and 

renewable energy generation, wind power plants and 

solar panels are being focused on by researchers and 

operators. However, these technologies pose significant 

challenges and problems to power system operation and 

control due to their uncertain inputs. So, it is essential to 

consider the probabilistic models to ensure safety and 

stability [4]. 

Wind power plants as a clean and environmentally 

friendly generation are increasingly integrated into the 

power systems more and more. As a result, the impacts 

of relevant uncertainties on power system planning, 

operation, and control should be taken in10to account. 

In this context, POPF results provide some 

comprehensive references for electricity researchers, 

planners, and operators to make an accurate decision 

based on this uncertain analysis. Therefore, it is essential 

to investigate POPF considering relevant uncertainties 

as well as their mutual dependence [5]. 

There are several methods for solving optimal 

probability flow, including MCS, the PEM, IPM, and 

UT methods. Although MCS gives accurate values 

based on random sampling, it is very time-consuming 

and is therefore not suitable for large systems. PEM has 

high efficiency and high accuracy in calculating an 

average and standard deviation [6]. Last, UT is a 

recently proposed method with excellent performance in 

nonlinear modes compared to the estimation method 

presented in [7]. This method has a high computation 

accuracy and is considerably faster than the MCS 

method. One of the advantageous features of the UT 

method is the possibility of modeling the uncertainty 

variables directly. To investigate uncertainty in the wind 

power system, the Weibull distribution of [8-10] and the 

Rayleigh distribution [10] are used. Then, the active 

power injected by the wind power system is 

calculated using the generator's power and speed ratio. 

The correlation between wind generators and power 

plants is considered [10-14]. In the literature, it seems 

that no model has considered this uncertainty in its direct 

form [1]. To investigate the uncertainty associated with 

solar energy, the beta distribution is used, using which 

we can calculate the injection power of the solar cell 

[15]. Analytical methods are applied based on a set of 

mathematical assumptions and relatively complex 

algorithms. In the case of using Probabilistic Power 

Flow Analysis, the following shortcomings are 

probable: The Jacobean matrix should be calculated 

during linearization, which might be a problematic and 

process and prone to errors. The linearization 

transformation is reliable when we approximate the 

error propagation by applying some linear functions. 

Therefore, the new analysis methods for nonlinear 

probabilistic systems are essential, having a high level 

of accuracy, having a suitable run time for each issue, 

ease of use, and the possibility of managing the 

correlated variables. 

A new PEM was used for probabilistic calculations 

to calculate the probabilistic power flow [16]. The two-

PEM was used as an articular version of the PEM for 

examining the optimal probability distribution in [16]. 

The calculation time for the PEM and its different 

versions are proportional to the dimensions of the 

problem and the number of uncertainties, which may 

make this method inefficient for large-scale problems. 

To meet the requirements of the analytical methods, a 

new nonlinear transformation method and the 

covariance of output variables were used in [16]. The 

UT method has high computational accuracy and is 

considerably faster than the MCS method. One of the 

practical features of the UT method is the possibility of 

modeling the uncertainty variables directly. A new 

approach is proposed to conduct a probabilistic study 

based on the PEM [17-19]. This method also was 

proposed to investigate the optimal probability 

distribution in [20]. Two distinct mathematical methods 

for managing variables were suggested using the PEM 

[21-22]. However, it was claimed that PEM is not 

appropriate for large-scale problems with high levels of 

uncertainty [20]. 

The internal point method for solving the 

optimization problems is based on constructing a path 



 
© Mehran University of Engineering and Technology 2022                    56 

from a given point to search for the final solution in a 

possible region. This method was firstly proposed in 

1984 [23] and has since been investigated in several 

studies [24]. This method has been used in various fields 

of power system operation such as economic load 

dispatch security-constrained optimal power flow, 

assessment of power system load-ability, and loss 

reduction [25]. This method is often used to solve linear 

optimization problems such as transmission expansion 

planning [26]. The main weakness of the internal point 

method is when the active constraints prevent the point 

from reaching the zero point or the acceptable boundary. 

Therefore, the great challenge in applying this method 

to solving the optimal power flow problem is to 

introduce a robust convergence approach to show the 

current limitations to prevent inefficiency. To deal with 

this problem in [27], some guidelines were discussed. 

The penalty function method is used to solve the 

nonlinear optimization problem in which a quadratic 

approximation is used to solve the internal point method 

problem [28]. 

Probability theory is used to indicate the uncertainty 

of optimal power flow [29]. A fuzzy-based optimization 

approach is proposed to schedule the generation in 

power systems considering various uncertainties [30]. 

Addressed the different types of probabilistic 

uncertainties in load-flow studies in the modern power 

system [31]. 

The point estimation method has been 

expanded using random variables with an arbitrary 

distribution in the probability optimal power flow [32]. 

Presented a method for combining (1+2m) to investigate 

the impacts of different random inputs concluding 

spatial and temporal variables [33]. Also, a modified 

PEM is analyzed POPF problem considering the 

correlation between sole, wind as well as the demanded 

loads [9, 21]. 

The OPF problem has been studied in a multi-

objective optimization framework [34]. Also, 

investigating this complex problem in the stochastic 

condition in the presence of random variables arising 

from wind and solar energy resources and their 

correlation by using the probability density functions is 

of great importance. The authors in [35] have addressed 

this concept by applying the MCS method. Two MCS 

methods are proposed, along with the point estimation 

method [36]. 

The MCS method is usually a basic framework for 

POPF since it uses the real nonlinear power flow 

equations, and it is simple to expand. The answers to this 

method are used as a benchmark. MCS is among the 

widely applied numerical methods for POPF. Analytical 

solutions provide another option for solving POPF using 

probability densities. A PEM is a solution option for a 

probabilistic problem that operates with random 

variables [37]. PEM is considered a state-of-the-art 

method for solving OPF problems with accuracy and 

efficiency. Rosenblueth modified the PEM as 2 m [17]. 

Probabilistic methods, including the MCS Method 

and the PEM, have been used [38]. By using the MCS 

Method, we can achieve the exact voltage and power 

flow of branches. PEM is widely used to distribute the 

probability of the optimal probability flow problem, 

which can be used to calculate the significant statistical 

results of a deterministic optimal flow [37]. 

PEM for analyzing the statistical moments of a 

random value as a function of “m input random 

variables” is proposed. The load is modeled as a random 

variable, and two individual cases of PEM concluding 

2m and 2m+1 concentration schemes were considered 

[39]. In the 2m scheme, only the skewness is considered, 

but in the 2m+1 scheme, both skewness and kurtosis are 

mentioned in PDF. As the value of a random variable 

change based on predetermined distribution, the 

expected values for voltage of the buses and line loading 

are determined. Also, the results of deterministic PLF 

are entirely compared with the obtained results applying 

2m and 2m+1 scheme. 

We have modeled the wind speed as a Weibull 

distribution using actual data and normal distributions 

for modeling the demanded loads [40]. The PEMs are 

compared with MCS results. As it was reported in this 

reference, the PEMs reach acceptable results in 

acceptable calculation time. However, in some 

conditions, PEMs may give inaccurate results. 

Combined Zhao's PEM with Nataf transformation 

and applied the combined method to solve the correlated 

PLF [9]. As it was stated in that reference, the mentioned 

technique can quickly deal with correlated input random 

variables in non-normal and normal Probability Density 

Functions (PDFs). 

Applied power system graph in which a novel 

probabilistic strategy for generating all probable 

islanding solutions are mentioned, and they are 

reduced using different evaluating static and dynamic 

constraints they are reduced [41]. The presented 

technique considers the relevant uncertainties to the 

wind farm and demanded loads and analyzed the steady-

state stability of all partitions in each possible solution. 
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A probabilistic multi-objective OPF concluding the load 

and wind speed correlations is presented [2]. It applied 

a PEM based on Nataf transformation. Furthermore, 

Hong's PEM as a popular tool is applied to deal with 

uncertainty. Both and schemes of Hong's PEM have 

been analyzed, and the obtained results are 

compared with MCS [42]. 

The most important contributions of this paper are 

highlighted as under. 

1. Applying three analytical methods of PEMs based on 

three points, UT and IPM, to POPF problem. 

2. Comparing the obtained results of above-mentioned 

techniques with the standard MCS method. 

3. Reporting the simulation results on the 300-bus IEEE 

case study, as a large-scale power system. 

4. Demonstrating the obtained results on an improved 

industrial 85–bus system of Kermanshah region (in 

the west of Iran), as a practical case study. 

Investigating and comparing the methods in terms of 

accuracy, convergence of the optimal solutions, the 

value of objective function and run-time.  

2. The Problem Formulation 

The optimal power flow is a nonlinear optimization 

problem and its primary purpose is minimizing the fuel 

cost of power plants taking into account the equality and 

inequality constraints.  

One of the most important goals of the OPF problem 

is to minimize the fuel cost of generators. To achieve 

this goal, the quadratic Eq. 1 is used [43]. 

                 (1) 𝑓(𝑥, 𝑢) = ∑ 𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖
+ 𝑐𝑖𝑃𝐺𝑖

2

𝑁𝐺

𝑖=1

 

Where, 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are the generator's cost 

coefficients for ith generator, with the output power of  

𝑃𝐺𝑖
. The OPF is an optimization problem with a single-

objective function that serves to minimize the cost of 

exploitation [44]. 

Any external parameter may affect the parameters of 

the power system and apply uncertainty to the system. 

To evaluate the uncertainty of a system, probability 

theory is employed in the form of probabilistic methods 

to define the status of the power system.  

 

2.1 Modeling Methods for POPF   

2.1.1 Numerical method 

MCS is one of the precise random methods. The MCS, 

as an approach independent of the size of the system, is 

used for a complex and nonlinear system that contains 

uncertain variables [45]. The MCS is based on the 

repetition, which is as follows. 

Step 1: Set Monte Carlo simulator counter c = 1, 

Step 2: Generate random sample vector x by using 

probability density function for each component 𝑥𝑖, 

Step 3: Calculate y = f (𝑥𝑖) assuming 𝑥 = 𝑥𝑐, 

Step 4: Calculate the mean value of y applying 

𝐸(𝑦) =
∑ 𝑦𝑐𝑐

𝑐
, 

Step 5: Calculate the variance y by 𝜎(𝑦) = 𝐸(𝑦2) −

𝐸2(𝑦), 

Step 6: Stop the process, and end or count at c = c +1 

and return to Step 2, 

Step 7: End [5]. 

2.1.2 Analytical methods 

Analytical methods are based on the approximation of 

PDFs. This process is more straightforward than the 

approximation of the nonlinear transformation function. 

The basis of these methods is how to produce suitable 

examples of input variables that can obtain sufficient 

information about the PDF.  

2.1.2.1 Three-PEM 

In this technique, h is the number of points in the 

estimated PDF. The general theory of the method h is in 

[46]. However, a three-PEM is used in this work, and the 

probabilistic optimal power flow method by using this 

method is given as below. 

The estimation method from 3 to h points, which is 

estimated by Eq. 2, is as under. 

𝑥𝑙.𝑘 = 𝜇𝑙 + 𝜉𝑙.𝑘𝜎𝑙                                       (2) 

Where μl and σl are, respectively, the mean and 

standard deviation of 𝑥𝑙,𝑘.  𝜉𝑙.𝑘 can be obtained in two 

parts of the method of 3 to h points. The three PEM for 

each variable  𝑥𝑙  with their respective weights is 

described as follows. 

Using the skewness and kurtosis coefficients, 

 𝑥𝑙  can be calculated from Eq. 3 and Eq. 4, respectively. 
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𝜆𝑙.3 =
𝐸[(𝑥𝑙 − 𝜇𝑙)3]

𝜎𝑙
3        (3) 

𝜆𝑙.4 =
𝐸[(𝑥𝑙 − 𝜇𝑙)4]

𝜎𝑙
4        (4) 

Where 𝐸[(𝑥𝑙 − 𝜇1)𝑃] = ∑ (𝑥1(𝑡) − 𝜇1)𝑃 ×𝑁
𝑡=1

𝑃𝑟(𝑥1(𝑡)), P = 3 or 4. N is the number of observations 

for  𝑥1(𝑡) the value of t is the observation of  𝑥𝑙  and 

𝑃𝑟(𝑥1(𝑡)) is the probability 𝑥1(𝑡). 

In Eq. 5, we can obtain 𝜉𝑙.1 and  𝜉𝑙.2 , whereas      

𝜉𝑙.3 = 0. 

𝜉𝑙.𝑘 =
𝜆𝑙.3

2
+ (−1)3−𝑘 × √𝜆𝑙.4 −

3

4
𝜆𝑙.3

2  . 𝑘

= 1.2 

  (5) 

To estimate the density function, the probability of 

estimating the three points of y = f(x) is used. Also, the 

values of the weight coefficients 𝑤𝑙.1  . 𝑤𝑙.2 , and  𝑤𝑙.3 

are obtained using Eqs. 6 and 7. 

𝑤𝑙.𝑘 =
(−1)3−𝑘

𝜉𝑙.𝑘(𝜉𝑙.1 − 𝜉𝑙.2)
 .  𝑘 = 1.2     (6) 

𝑤𝑙.3 =
1

𝑛
−

1

𝜆𝑙.4 − 𝜆𝑙.3
2      (7) 

2.1.2.2 Unscented transformation method 

The Unscented Transformation (UT) method was 

introduced to overcome the drawbacks of ordinary 

probabilistic methods, especially those that used the 

linearization process. Analytical methods are developed 

based on some mathematical-based assumptions as well 

as sophisticated algorithms. This technique is used as a 

powerful method for computing random issues with and 

without uncertain variables [16]. 

The heart of the UT method is how we can generate 

suitable examples of input variables that can maintain 

the proper information about the PDF of the input 

variables. The assumption is that x is the vector of n-

dimensional random variables with mean x = m and 

covariance 𝑃𝑋𝑋. The other random variable Y is x-

dependent, which is calculated by y = f(x), and f can be 

a set of non-linear functions. 

In UT, the mean and covariance of output variables 

Y as well as  𝑃𝑌𝑌 can be calculated applying the 

following steps. 

Step 1: (1 + 2n) samples or sample points can be 

obtained by using following equations. 

𝑋0 = 𝑚       (8) 

𝑋𝑘 = 𝑚 + (√
𝑛

1 − 𝑤0
𝑃𝑋𝑋)

𝑘

.  𝑘 = 1.2. … . 𝑛       (9) 

𝑋𝑘+𝑛 = 𝑚 + (√
𝑛

1 − 𝑤0
𝑃𝑋𝑋)

𝑘

.   

𝑘 + 𝑛 = 1.2. … . 𝑛 

    (10) 

Step 2: Using following Eqs. 11-13, the relative 

weights to each x can be calculated based on the 

conditions given in Eq. 14. 

𝑤0 = 𝑤0      (11) 

𝑤𝑘 =
1 − 𝑤0

2𝑛
.  𝑘 = 1.2. … . 𝑛      (12) 

𝑤𝑘+𝑛 =
1 − 𝑤0

2𝑛
.  𝑘 + 𝑛 = 1.2. … . 𝑛      (13) 

∑ 𝑤𝑘 = 1

2𝑛

𝑘=0

  (14) 

In Eqs. 9 and 10, (√(𝑛) (1 − 𝑤0)𝑃𝑥𝑥⁄ )
k

 . k is the 

value of the row or column k of the second root of the 

matrix √(𝑛) (1 − 𝑤0)𝑃𝑥𝑥⁄ . The second root of the 

matrix P means that the matrix 𝐴 = √𝑃 and 𝑃 = 𝐴𝐴𝑇. 

Here, 𝑤0 is the weight assigned to point  �̅� = 𝑚, which 

is known as the "zero points" that controls the position 

of the other points around the mean value of x.  

Step 3: Subject to a nonlinear function, each sample 

point is calculated to obtain a set of sample points that 

are converted using Eq. 15. 

𝑦𝑘 = 𝑓(𝑋𝑘)      (15) 

As an important note, the nonlinear function is 

modeled as a black box in the UT. 

Step 4: The mean and the covariance of the output 

variable Y was calculated by applying Eqs. 16 and 17, 

respectively. 

�̅� = ∑ 𝑤𝑘𝑌𝑘

2𝑛

𝑘=0

      (16) 
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𝑃𝑌𝑌 = ∑ 𝑤𝑘

2𝑛

𝑘=0

(𝑌𝑘 − �̅�)(𝑌𝑘 − �̅�)
𝑇
      (17) 

The UT has two essential features: first of all, 

sample points are not randomly selected, but they are 

calculated in a way that to have a predicted mean and 

covariance, secondly; the weights of the selected points 

should not be placed in the range (1, 0), but they can 

have positive or negative values, which should meet the 

condition of Eq. 14 in the weights equal to unity [7]. 

2.1.2.3 Internal point method 

In this section, the main steps of the Internal Point 

Method (IPM) as a powerful conventional method are 

briefly presented. The interested readers are referred to 

see [33] for detailed descriptions of IPM; the 

formulation of this nonlinear optimization constrained 

method is presented in Eq. 18. 

 (18) 
𝑀𝑖𝑛. f(𝑧), 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 to h(𝑧) = 0      

 𝑧 − 𝑠𝑙 = 𝑙      𝑧 + 𝑠𝑢 = 𝑢      𝑠𝑙 ≥ 0 , 𝑠𝑢 ≥ 0 

In this formulation, the operational constraints 

(inequality constraints) are converted to equality ones 

and are entered using the remaining variables in ℎ(𝑧) 

[47]. The vector 𝑧 contains both the original and the 

remaining variables. Slack variables 𝑠𝑙 and 𝑠𝑢 converge 

to equality constraints. 

The constraints of Eq. 18 are eliminated by adding a 

logarithmic barrier function to the objective function, 

which is shown in Eq. 19. As a result, variables 𝑠𝑙 and 

𝑠𝑢 should be greater than zero, and variables z can never 

be assumed to be on boundary values. 

(19) 𝑀𝑖𝑛 f(𝑧) − 𝜇. ∑ 𝑙𝑛 (𝑠𝑙𝑗
) − 𝜇. ∑ 𝑙𝑛 (𝑠𝑢𝑗

)

𝑛

𝑗=1

𝑛

𝑗=1

 

First, the barrier parameter of μ must be 

supposed to be higher than zero; the value  μ0 at the end 

of the iteration process should be close to zero. Thus, the 

Lagrange function is defined as Eq. 20. 

The optimal conditions of the first-order Karush 

Kuhn Tucker (KKT) method for the optimization 

problem with the results of the Newton-Raphson method 

are shown in Eq. 21. The mathematical expansion to 

obtain Eq. 21 is presented in the Appendix. 

 

(20) 

𝐿 = 𝑓(𝑧) − ∑ 𝜆𝑖. ℎ𝑖(𝑧)

𝑚

𝑗=1

− 𝜇. ∑ 𝑙𝑛 (𝑠𝑙𝑗
)

𝑛

𝑗=1

− 𝜇. ∑ 𝑙𝑛 (𝑠𝑢𝑗
)

𝑛

𝑗=1

− ∑ 𝜋𝑙𝑗
. (𝑧𝑗 − 𝑠𝑙𝑗

− 𝑙𝑗)

𝑛

𝑗=1

− ∑ 𝜋𝑢𝑗
. (𝑧𝑗 + 𝑠𝑢𝑗

− 𝑢𝑗)

𝑛

𝑗=1

 

(21) [
𝐻𝑧 −𝐽𝑡

−𝐽 0
] [

∆𝑧
∆𝜆

] = − [
𝐺𝑧

ℎ(𝑧)
] 

(22) 

𝐻𝑧 = 𝑤(𝑧. 𝜆) + ∑ (
𝜇

𝑠𝑙𝑗

2 +
𝜇

𝑠𝑢𝑗
2 )

𝑗

𝐺𝑧

= 𝑟(𝑧. 𝜆)

+ ∑ (
𝜇

𝑠𝑙𝑗

+
𝜇

𝑠𝑢𝑗

)

𝑗

𝑟(𝑧. 𝜆)

= −𝛻𝑧𝑓(𝑧) + 𝛻𝑧ℎ(𝑧)𝑡 . 𝜆 

Eq. 22 shows the barrier parameters and the slack 

variables to matrix diameter elements 𝐻𝑧 and also the 

gradient vector  𝐺𝑧. It can be seen that zero values cannot 

be considered for slack variables. 

By solving the Eq. 21, 𝛥𝑧 and 𝛥𝜆 are obtained. On 

the other hand, 𝛥𝑠𝑙, 𝛥𝑠𝑢,  𝛥𝜋𝑙 and 𝛥𝜋𝑢 are obtained from 

Eq. 53 and Eq. 54 respectively, which are shown in the 

Appendix. The lengths of the steps 𝛼𝑝 and 𝛼𝑑 ∈ 0,1 are 

calculated from Eq. 23. These equations are used to 

maintain the positive 𝑠𝑙 and 𝑠𝑢 also the proper signal 𝜋𝑙 

and 𝜋𝑢. 

 (23) 

𝛼𝑝 = 𝑚𝑖𝑛 { 𝑚𝑖𝑛
𝛥𝑠𝑙𝑗

<0

𝑠𝑙𝑗

|𝛥𝑠𝑙𝑗
|

, 𝑚𝑖𝑛
𝛥𝑠𝑢𝑗

<0

𝑠𝑢𝑗

|𝛥𝑠𝑢𝑗
|

, 1.0} 

𝛼𝑑

= 𝑚𝑖𝑛 { 𝑚𝑖𝑛
𝛥𝜋𝑙𝑗

<0

𝜋𝑙𝑗

|𝛥𝜋𝑙𝑗
|

, 𝑚𝑖𝑛
𝛥𝜋𝑢𝑗

<0

−𝜋𝑢𝑗

|𝛥𝜋𝑢𝑗
|

, 1.0} 

The parameter σ with the value of 0.9995 is usually 

added to Eqs. 24 to maintain values 𝑠 and 𝜋. Then, the 

variable optimization problem is updated by these 

equations. 
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     (24) 

  

𝑧 = 𝑧 + 𝜎. 𝛼𝑝.  

𝛥𝑧𝑠𝑙 = 𝑠𝑙 + 𝜎. 𝛼𝑝.   

𝛥𝑠𝑙𝑠𝑢 = 𝑠𝑢 + 𝜎. 𝛼𝑝.   

𝛥𝑠𝑢𝜆 = 𝜆 + 𝜎. 𝛼𝑑 . 

 𝛥𝜆𝜋𝑙 = 𝜋𝑙 + 𝜎. 𝛼𝑑 .  

𝛥𝜋𝑙𝜋𝑢 = 𝜋𝑢 + 𝜎. 𝛼𝑑 . 𝛥𝜋𝑢 

The barrier parameter μ is updated concerning the 

duality gap by Eq. 25 [48]. The parameter 𝛽 in Eq. 25 is 

introduced for control μ to improve the convergence 

process [49]. 

   (25) 𝜇 = 𝛽.
∑ (𝑠𝑙𝑗

. 𝜋𝑙𝑗
− 𝑠𝑢𝑗

. 𝜋𝑢𝑗
)𝑛

𝑗=1

2 . 𝑛
 

As can be seen from Eq. 25, the product of the 𝑠𝑙𝑗
. 𝜋𝑙𝑗

 

or 𝑠𝑢𝑗
. 𝜋𝑢𝑗

 when the corresponding restriction is 

activated leads to the inclusion of 𝜋𝑙𝑗
 or 𝜋𝑢𝑗

 to a high 

value while slj
 or suj

 cannot be worthless. The result of 

the multiplication  𝑠𝑙𝑗
. 𝜋𝑙𝑗

 or  𝑠𝑢𝑗
. 𝜋𝑢𝑗

 will be high, while 

it should be zero. This feature has caused the problem of 

the optimal power flow to be unstable numerically or 

difficult for convergence. 

From Eq. 19, we can see that variables 𝑧 cannot 

consider their limit since slack variables cannot be 

exactly zero, which affects the quality of the solution. 

As mentioned in the introduction, many of the proposed 

works in the literature are presented to overcome these 

challenges. 

To solve the problem, first, the new parameter 𝛿 is 

added in Eq. 19. The amount of 𝛿 is always definite. In 

this new formulation, the convergence process is 

controlled by the parameter 𝛿 instead of 𝑠𝑙 and 𝑠𝑢. 

Entering 𝛿 the logarithmic barrier function causes the 

slack variables are now able to reach a value of zero. 

During the Newton Raphson repeat process, the value of 

𝛿 is independent of the parameter value 𝛾 defined in Eq. 

26.  

     (26) 𝛿𝑘+1 = 𝛾 . 𝛿𝑘 

In Eq. 26, 𝑘 is the iteration number, γ is the reduction 

coefficient 𝛿. 𝛾  is the defined parameter 𝛿 to accelerate 

the convergence rate. Finally, the parameter 𝜇 is 

corrected. The Eq. 52 of the appendix is used to reduce 

the barrier parameter 𝜇, and the parameter 𝛿 for 𝑗 is 

rewritten as Eq. 27. 

(27) 

2 . 𝑛 .  𝜇 = + ∑ [𝑠𝑙𝑗
. 𝜋𝑙𝑗

− 𝑠𝑢𝑗
. 𝜋𝑢𝑗

]

𝑛

𝑗=1

+ 

𝛿. ∑ [𝜋𝑙𝑗
− 𝜋𝑢𝑗

]

𝑛

𝑗=1

 

The first plural term on the right of Eq. 27 is similar 

to the GAP known in [49] and [50]. Also, given the 

positive 𝜋𝑙 and the negative 𝜋𝑢, the new correction that 

appears at the end of Eq. 47 is always positive and tends 

to be very small because the assumption of 𝛿 it can be 

seen to be a close to zero value that can be seen in the 

initial criteria and convergence. The value of y can be 

calculated from Eq. 28. 

𝜇 = 

𝛽.
∑ (𝑠𝑙𝑗

.𝜋𝑙𝑗
−𝑠𝑢𝑗

.𝜋𝑢𝑗
)𝑛

𝑗=1 +𝛿.∑ (𝜋𝑙𝑗
−𝜋𝑢𝑗

)1
𝑗=1

2 .𝑛
       (28) 

A parameter 𝛽 is usually introduced in the 

calculations 𝜇 to accelerate the convergence process. 

When the slack variable 𝑠𝑙𝑗
 is zero, the Lagrange 

coefficient 𝜋𝑙𝑗
 is assumed to be significant because the 

optimization variable zj is at the minimum limit. As a 

result, the coefficients 𝑠𝑙𝑗
. 𝜋𝑙𝑗

and  𝑠𝑢𝑗
. 𝜋𝑢𝑗

 become zero, 

which causes the OPF problem to be numerically stable 

and more straightforward to achieve convergence. 

2.2 Modeling Constraints    

As already mentioned, the OPF and POPF problem has 

consisted of both equality and inequality constraints. 

These constraints are detailed in this section separately. 

2.2.1 Equality constraints 

The power balance equations are represented by Eq. 29 

and Eq. 30, for active and reactive powers, separately. 

(29) 
𝑃𝐺𝑖

− 𝑃𝐷𝑖
− 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗 𝑐𝑜𝑠(𝛿𝑖𝑗)

𝑁𝐵

𝑗=1

+ 𝐵𝑖𝑗 𝑠𝑖𝑛(𝛿𝑖𝑗)] = 0 ∀ i ∈ NB 

(30) 
𝑄𝐺𝑖

− 𝑄𝐷𝑖
− 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗 𝑠𝑖𝑛(𝛿𝑖𝑗)

𝑁𝐵

𝑗=1

− 𝐵𝑖𝑗 𝑐𝑜𝑠(𝛿𝑖𝑗)] = 0 ∀ i ∈ NB 
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Where,  𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗  is the difference of the voltage 

angles between buses i and j,  NB is the number of buses, 

𝑃𝐷 and  𝑄𝐷, are the active and reactive demanded loads 

respectively, 𝐺𝑖𝑗 is the conductance, and  𝐵𝑖𝑗 is the 

Susceptances of the line between buses 𝑖 and 𝑗. 

2.2.2 Inequality constraints 

Inequality constraints in the problem reflect the 

constraints of operating states of equipment in the power 

system, as well as the constraints imposed on 

transmission lines and the load buses to ensure the 

security of the power system. The inequality constraints 

can be described as follows. 

 Generator constraints: 

  (31) 𝑉𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖
≤ 𝑉𝐺𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 𝑁𝐺  

  (32) 𝑃𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖
≤ 𝑃𝐺𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 𝑁𝐺  

  (33) 𝑄𝐺𝑖

𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖
≤ 𝑄𝐺𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 𝑁𝐺  

 Transformer constraints: 

     (34) 𝑇𝑗
𝑚𝑖𝑛 ≤ 𝑇𝑗 ≤ 𝑇𝑗

𝑚𝑎𝑥  ∀ 𝑗 𝜖 𝑁𝑇 

 Parallel compensator constraints: 

     (35) 𝑄𝐶𝑖

𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖
≤ 𝑄𝐶𝑖

𝑚𝑎𝑥  ∀ 𝑖 𝜖 𝑁𝐶 

 Security constraints: 

      (36) 𝑉𝐿𝑝

𝑚𝑖𝑛 ≤ 𝑉𝐿𝑝
≤ 𝑉𝐿𝑝

𝑚𝑎𝑥  ∀ 𝑝 𝜖 𝑁𝐿 

      (37) 𝑆𝑙𝑞
≤ 𝑆𝑙𝑞

𝑚𝑎𝑥  qnl
 

As mentioned previously, POPF is an optimization 

problem concluding some equality and inequality 

constraints. In this paper, the considered uncertainties 

are discussed and modeled. 

2.2.3 Modeling wind power 

The cost function for the  𝑖th wind generator is 

determined, as follows [51]. 

𝐶𝑑.𝑤.𝑖 = 𝑑𝑤.𝑖𝑃𝑤.𝑖                                 (38) 

As an important note, the wind power unit operators 

schedule a certain value of energy, so the relevant 

penalty factors should be charged to provide the given 

amount in failure conditions [52]. The underestimation 

and overestimation costs [46] are mathematically 

modeled as follows. 

𝐶𝑢𝑒.𝑤.𝑖 = 𝐾𝑢𝑒.𝑤.𝑖 ∫ (𝑃 − 𝑃𝑤.𝑖)𝑓(𝑃)𝑑𝑃
𝑃𝑤.𝑟.𝑖

𝑃𝑤.𝑖

   (39) 

𝐶𝑢𝑒.𝑤.𝑖 = 𝐾𝑜𝑒.𝑤.𝑖 ∫ (𝑃𝑤.𝑖 − 𝑃)𝑓(𝑃)𝑑𝑃
𝑃𝑤.𝑖

0

   (40) 

Where i = 1, 2, …, 𝑛𝑤 . f (P) represents the PDF of 

the wind output power. The total cost of wind energy is 

calculated as follows. 

𝐶𝑂𝑆𝑇𝑤.𝑖 = 𝐶𝑑.𝑤.𝑖 + 𝐶𝑢𝑒.𝑤.𝑖 + 𝐶𝑢𝑒.𝑤.𝑖     (41) 

The PDF of the output power of the ith wind power 

plant is addressed applying the following method: 

Step 1: Generally, the Weibull distribution function 

is used to describe wind speed behavior. It needs two 

parameters, shape and scale. The Weibull PDF 𝑓 (𝑉𝑤) 

and the cumulative distribution function (CDF) F(𝑉𝑤) 

[53] are given as under. 

𝑓(𝑉𝑤) =
𝐾

𝐶
(

𝑉𝑤

𝐶
)

𝑘−1

𝑒−(𝑉𝑤 𝐶⁄ )𝐾
.  𝑉𝑤 > 0          (42) 

𝐹(𝑉𝑤) = 1 − 𝑒−(𝑉𝑤 𝐶⁄ )𝐾
. 𝑉𝑤 > 0          (43) 

Step 2: Calculate the produced power by the wind 

power plant as follows. 

𝑃𝑤(𝑉𝑤) = 

{

0 𝑉𝑤 < 𝑉𝑤.𝑖𝑛 . 𝑉𝑤 > 𝑉𝑤.𝑜𝑢𝑡

𝑉𝑤𝑃𝑤.𝑟

𝑉𝑤.𝑟 − 𝑉𝑤.𝑖𝑛
−

𝑉𝑤.𝑖𝑛𝑃𝑤.𝑟

𝑉𝑤.𝑟 − 𝑉𝑤.𝑖𝑛
𝑉𝑤.𝑖𝑛 ≤ 𝑉𝑤 ≤ 𝑉𝑤.𝑟

𝑃𝑤.𝑟 𝑉𝑤.𝑟 ≤ 𝑉𝑤 ≤ 𝑉𝑤.𝑜𝑢𝑡

 

 

(44) 

Where 𝑉𝑤 and  𝑉𝑤.𝑟 are the speed and rated speed of 

the wind energy generators, respectively. 𝑉𝑤.𝑖𝑛 and   

𝑉𝑤.𝑜𝑢𝑡  are the cut-in and cut-out speeds.  K, C 

determines the shape and scale factors of the Weibull 

PDF. The PDF of the wind speed is shown in Fig. 1. 

2.2.4 Probabilistic nature of Photovoltaic Cell 

generated energy 

The generation of photovoltaic power plants is mostly 

influenced by weather conditions. Generally, the output 

power varies based on the intensity of the light. The light 

intensity in a short time is demonstrated by the beta 

distribution function [47]. The PDF can be presented by 

Eq. 45. 



 
© Mehran University of Engineering and Technology 2022                    57 

 

Fig. 1. PDF of wind speed (m/s) 

𝑓(𝑟) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
(

𝑟

𝑟𝑚𝑎𝑥
)

𝛼−1

(1 −
𝑟

𝑟𝑚𝑎𝑥
)

𝛽−1

   (45) 

Where α and β are Beta distribution parameters, Γ 

gamma function, r is the actual light intensity in a period, 

and 𝑟𝑚𝑎𝑥 is the maximum intensity of light during a 

period. 

The parameters of α and β can be described by mean 

μ and standard deviation σ of light intensity using Eqs. 

46 and 47. 

α = μ [
𝜇(1 − 𝜇)

𝜎2
− 1]   (46) 

𝛽 = (1 − 𝜇) [
𝜇(1 − 𝜇)

𝜎2
− 1]   (47) 

After obtaining the light probability density function, 

we can calculate the output power PM and the maximum 

output power  𝑃𝑀𝑚𝑎𝑥
. 𝑃𝑀 and 𝑃𝑀𝑚𝑎𝑥

 were obtained 

through Eqs. 48 and 49, respectively. 

𝑃𝑀 = 𝑟. 𝐴. 𝜂  (48) 

𝑃𝑀 𝑚𝑎𝑥 = 𝑟𝑚𝑎𝑥. 𝐴. 𝜂  (49) 

Where A is the photovoltaic total area array, and η is 

the battery efficiency. Therefore, the probability density 

function of the output power  𝑃𝑀 is obtained by Eq. 50. 

𝑓(𝑃𝑀) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
(

𝑃𝑀

𝑃𝑀 𝑚𝑎𝑥
)

𝛼−1

 (50) 

(1 −
𝑃𝑀

𝑃𝑀 𝑚𝑎𝑥
)

𝛽−1

 

As a result, the PDF of the output power PM is described 

by the Beta distribution. The PDF of the photovoltaic 

cells is shown in Fig. 2. 

2.2.5 Probabilistic load model 

In the deterministic model, the load demand in each bus 

is considered to be constant. Time and weather are two 

critical factors affecting the load. The random 

components of the random variables are independent. 

The behavioral patterns of energy consumers lead to 

some changes in the demanded load. These changes can 

be calculated by statistical analysis. As a result, the 

demanded load is consistently different, with a high 

degree of uncertainty. 

In this paper, the load is considered a normal PDF 

with a mean value μ and standard deviation 𝜎. Normal 

PDF can be accessed via Eq. 51. The form of this 

function is shown in Fig. 3. 

      (51) 𝑓(𝑃𝐿) =
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

(𝑃𝐿 − 𝜇)2

2𝜎2 ) 

3. Software Simulation 

The suggested techniques are programmed in MATLAB 

software environment and implemented on an Intel 

Pentium CPU 1.8 GHz PC with 8 GB RAM 

3.1 The 300 – bus IEEE system   

To study the utilization of the POPF analysis and the 

performance of the presented methods, a 300-bus IEEE 

system consisting of 69 generators, 300-bus, and wind 

turbines and solar cells were implemented [48]. 
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Information on generators, transmission lines, and 

consumers is presented in [48]. 

Before running this system in MATLAB software, 

solar and wind power plants were located in various 

buses; in this paper, the location of the mentioned power 

plants is considered in buses 7 and 8, respectively. 

Changing the location causes changes in the reported 

results. 

Diagram of the 300 – bus IEEE system is shown in 

the appendix. By comparing the four numerical and 

analytical methods shown in Table 1, it can be 

verified that MCS methods, 3-PEM, and UT methods 

have a close range of variations. However, according to 

the results, it can be seen that in the IPM, due to the 

existence of barrier and finite parameters limiting the 

range of generation, the results are more different than 

from methods. However, all results are still within the 

specified range according to the requirements of power 

generation. 

Table 1  

Comparison of the results in term of the average change in 

generated powers [MW] 

Gen. No. Mean active power [MW] 

MCS 3PEM UT IPM 

1 0.0002 0.0002 0.0002 50 

2 0.0002 0.0002 0.0002 66 

3 8.5646 7.6196 10.196 35 

4 62.158 62.068 62.273 71 

5 99.999 99.999 99.999 100 

6 403.43 403.34 403.55 433 

7 156.88 156.80 157.01 181 

8 285.21 285.09 285.40 280 

9 75.760 75.722 75.819 115 

10 140.86 140.80 140.95 136 

11 1983.5 1982.9 1984.5 1991 

12 249.35 249.27 249.47 256 

13 92.040 91.630 92.735 90 

14 0.9811 0.7152 1.4994 25 

15 277.50 277.42 277.63 265 

16 658.67 658.49 658.93 670 

17 79.993 79.971 80.028 83 

18 198.53 198.48 198.62 210 

19 96.523 96.496 96.561 103 

20 340.38 340.26 340.59 356 

21 199.09 199.03 199.20 221 

22 0.0002 0.0002 0.0002 80 

23 199.05 198.88 199.35 200 

24 42.966 42.482 43.792 44 

25 195.885 195.84 195.94 230 

26 79.6980 79.679 79.724 95 

27 202.972 202.88 203.11 230 

28 1175.22 1174.7 1175.9 1200 

29 1179.43 1178.9 1180.1 1999 

30 507.291 507.21 507.38 498 

31 1867.08 1866.9 1867.2 1900 

32 440.492 440.41 440.56 441 

33 274.907 274.86 274.94 280 

34 108.184 108.16 108.20 121 

35 487.474 487.40 487.55 487 

36 269.621 269.57 269.67 280 

37 328.436 328.38 328.49 330 

38 360.766 360.71 360.83 381 

39 325.727 325.67 325.78 321 

40 634.352 634.25 634.46 650 

41 265.625 265.58 265.67 270 

42 578.008 577.92 578.10 581 

43 612.284 612.18 612.40 620 

44 176.164 176.13 176.18 182 

45 85.6029 85.591 85.612 100 

46 434.300 433.85 435.11 432 

47 556.153 555.33 557.50 545 

48 1138.01 1136.7 1140.2 1200 

49 224.054 223.70 224.60 256 

50 354.367 353.98 355.03 360 

51 387.436 387.20 387.80 390 

52 165.895 165.75 166.14 170 

53 383.404 383.05 384.00 400 

54 515.481 515.19 515.93 521 

55 39.8789 39.863 39.902 81 

56 71.8833 71.578 72.347 99 

57 47.8626 47.847 47.884 113 

58 159.177 159.14 159.21 171 

59 375.723 375.67 375.78 400 

60 379.667 379.60 379.75 391 

61 137.529 137.49 137.56 150 

62 1219.62 1218.4 1221.6 1250 

63 716.004 715.77 716.38 730 

64 491.081 490.92 491.33 501 

65 27.9801 27.879 28.080 30 

66 53.0252 52.792 53.373 70 

67 49.5611 49.331 49.903 50 

68 53.1748 53.155 53.204 55 

69 8.50904 8.5059 8.5137 35 
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Fig. 2. PDF of photovoltaic cells (irradiance)

 

Fig. 3. Normal PDF of load (w)

As the MCS method is iterative, this method achieves 

the optimal solutions over a more extended period. 

However, the solutions are closer to real conditions. So, 

this method can be considered the basis for comparing 

the calculations. 

To correct the estimation methods, in the three-point 

estimation method, in addition to calculating the weight 

for each variable of the Eqs. 18 and 19, the coefficients 

of skewness and kurtosis are used. These equations 

increase the accuracy of this method.  

The skewness coefficients represent the probability 

distribution asymmetry and are assumed to be equal to 

the third-order torque. If the data are (symmetric) than 

the mean, then it is equal to zero. Its value is equal to an 

asymmetric distribution with a definite upward 

elongation, and it is negative for asymmetric distribution 

with elongation to smaller values. 

Also, the kurtosis coefficient describes the sum of the 

peak or flatness of the probability distribution equal to 

the fourth-order torque. The value of this coefficient for 

the densities of the sharp probability and the large 

sequence will be higher and will be a criterion of 

sharpness of the standard curve. So, using the three-

point estimation method is recommended. 

According to the results, in the UT method, using 

Eqs. 23 to 32, it can be concluded that this method does 

not randomly select the sample points, unlike the PEMs. 

These points are selected to have mean values and 

covariance. The weights of the points should be positive 

and negative, according to Eq. 29. The results show that 
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the accuracy of this method is similar to the MCS 

method. 

Analyzing the results in the generator voltage profile 

viewpoint shows that, according to Fig. 4, all of the 

voltages are in the predefined range. The IPM has the 

lowest voltage variation. These changes are in the range 

of 1 to 1.01 p.u. Therefore, this method has more voltage 

stability. The three MCS methods, the 3-PEM, and UT 

method, have a similar range of variations. The 

minimum variation range of these three methods is 

0.499 p.u. for generator 23, and the maximum amount is 

equal to 1.05 p.u. for generators 6, 8, 11, 14, 14, 18, 19, 

20, 25, 28, 31, 46, 50, 52, 59, 62 and 64. 

 

Fig. 4. Profiles of generator voltage (per unit) 

The voltage variations in different buses of the 

network are shown in Fig. 5. In Fig. 5, the maximum and 

minimum range of voltage variations are specified. The 

minimum voltage variations in the buses are related to 

the IPM. The voltage variations in this method are in the 

range of 1 to 1.009 p.u. Other methods also have the 

same range of changes, and all voltage variations are 

also within the predefined minimum and maximum 

limits. 

According to the results shown in Fig. 6, it can be 

seen that the MCS method has the highest run-time. The 

IPM has the lowest run-time as it uses the penalty 

coefficients in problem-solving. The results of other 

methods are between these two methods. If we select the 

IPM solutions as the best, in terms of running time, the 

run-time of 3-PEM, UT, and MCS methods will be 

increased equal to 10.9%, 158.9%, and 2708.8% 

compare to it. 

Figs. 7 and 8 depict the convergence of the POPF 

problem in the MCS method and IPM based on the 

number of iterations. The starting point in these figures 

is the cost of the deterministic OPF problem, neglecting 

all uncertainties. As the figures show, the starting point 

for deterministic OPF is more expensive than the states 

which consider the uncertainties or POPF problem. 

These results indicate a reduction in the cost of network 

operation considering renewable energies. 

 

Fig. 5. Profiles of bus voltage (per unit) 

 

Fig. 6.  The runtime of the studied methods (s) 

 

Fig. 7. Convergence curve Monte Carlo simulation method 

($/h) 

Fig. 7 shows the convergence diagram of the MCS 

method, with the wind and solar resource's penetration. 

The cost of OPF decreases from 723,548 ($/hr.) to 
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718,400 ($/hr.). When the iteration numbers are selected 

equal to 60,000, the final results converged to 718,400 

($/hr.). 

Also, Fig. 8 shows the convergence of the IPM, 

which starts at 810,215 ($/hr.), reduces to 800,114 

($/hr.) By comparing Fig. 7 and Fig. 8, it can be 

concluded that the speed of convergence in IPM is much 

higher than the MCS method. However, in terms of cost 

optimization, the MCS method has a better solution than 

IPM. 

 

Fig. 8. Convergence curve Interior Point Method ($/h) 

According to the results of Fig. 9, it can be seen that the 

POPF problem cost in the 3-PEM is the lowest value 

compared to other methods. This value is 0.071%, 

0.187%, and 11.45% higher than for MCS UT, and IP 

methods, respectively. In 3-PEM, the number of 

sampling points is limited, so this method has the 

optimal solution. 

 

Fig. 9. The cost function of the studied methods ($/h) 

3.2 An industrial 85–bus system of Kermanshah region   

In this section, the case study of Kermanshah 

distribution network is investigated by applying the 

proposed probabilistic power flow techniques. For this 

purpose, the relevant data, including the specification of 

lines, load capacity, environmental information of solar 

power, temperature, and wind speed in 5 years are used. 

The total demand is 2.14 MW and 1.54 MVA. The solar 

radiation curve of the region and the PDF of the 

Kermanshah region are shown in Fig. 10. The maximum 

radiation level of the region is 70% and a and b 

coefficients of the estimated beta function are 3.215 and 

2.02 by using nonlinear squares method. 

 

Fig. 10. Sunlight curve and PDF of Beta function 

Also, the distribution wind speed of the region is shown 

in Fig.11, which leads to the maximum wind speed of 

the region equal to 12 meters per second. The Weibull 

and Normal distribution curves of wind speed based on 

the obtained data are depicted in the black and the green 

diagram. The PDF of the Weibull is better and more 

appropriate than the Normal distribution. Furthermore, 

the a and b coefficients of the Weibull function are 2.79 

and 1.50. 

 

Fig.11. Wind speed curve and probability distribution 

function of Weibull 

The curve of average seasonal load consumption 

profile of the distribution network during the mentioned 

period is shown in Fig.12. 
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Fig. 12. The load curve profile 

The estimated distribution curve for load power data 

is shown in Fig.13, which fits with a normal distribution 

with an average of 0.31 and a variance of 0.17 MW. 

 

Fig. 13. Load power distribution curve 

For completing the simulation process, a 

probabilistic scenario for resource capacity and examine 

the estimation of probabilistic methods is assumed. It 

should be noted that this scenario is intended for better 

operation, management, and feasibility of solar and 

wind resources. 

In this study, we assume that the wind power plants 

are allocated in high-consumption industrial buses, by a 

capacity of 200 kW. Also, the solar generation power 

plants are mentioned in high-consumption industrial 

buses, each one by a capacity of 300 kW. 

A scenario including the normal distribution function 

of load, wind Weibull distribution, and solar beta 

distribution is considered. Then the probabilistic load 

flow methods are investigated on the mentioned 

network. Here, the voltage of bus 46 in the prescience of 

all sources is demonstrated, which shows the magnitude 

between 0.9 and 1 per unit. Also, the multi-point 

estimation method overlaps well with the cumulative 

distribution of the Monte Carlo simulation method. 

 

Fig. 14. The 46-bus voltage cumulative distribution function 

diagram 

The comparative diagram of the squares of the mean 

voltage error of bus 46 between the Monte Carlo 

simulation method and other methods is shown in Fig. 

15. The maximum error rate in three-point estimation, 

interior point, and UT methods, are equal to 0.00061, 

0.0075, and 0.0076, respectively. This confirms that the 

error rate in the UT method is higher than the other 

techniques. 

The comparison results are shown in Table 2. They 

show that the mean voltage error in the three-point 

estimation method is less than the other methods. 

Therefore, it can be concluded that the three-point 

estimation method is one of the most suitable methods 

for solving the POPF in the presence of uncertainties. 

Table 2  

The comparison results for the three scenarios examined 

Scenario Method 

0.0075 IPM 

0.00061 3PEM 

0.0076 UT 

4. Conclusion 

In this paper, probabilistic methods for solving the 

POPF problem are reported in the presence of the 

uncertainties raised by wind power plants and solar 

cells. These probabilistic methods include MCS, 3PEM, 

UT, and IPM. Also, the uncertainty in demanded loads 

is modeled. 



 
© Mehran University of Engineering and Technology 2022                    69 

The proposed methods are simulated on a 300-bus 

IEEE standard network and an 85-buses feeder of 

Kermanshah industrial. 

 

Fig.15. The comparative diagram of the squares of the mean 

bus voltage error 

The most important findings 300-bus IEEE standard 

network can be classified as follows. 

1. In terms of the objective function of optimizing the 

cost of power generation, the 3PEM has the best 

solutions among the other methods. 

2. The MCS method and the IPM are iterative-based 

methods. In the case of convergence, the IPM has the 

fastest mode of convergence. This method converges 

in the same primitive repetition, but the MCS method 

is converged only after tens and even hundreds of 

iterations. 

3. In terms of run time, the IPM is the fastest method, 

and other methods are the 3PEM, UT, and MCS, 

respectively. 

4. Due to some limitations in the IPM, there are no 

oscillations in generator voltage changes in the 

network, so this method has a stable voltage profile.  

In total, among the studied methods for the 300-buses 

IEEE network, the 3PEM has the optimal response time, 

voltage profile, and optimal cost comparing to other 

methods. The most important findings an 85-buses 

feeder of Kermanshah industrial can be classified. 

These results show that the mean voltage error in the 

three-point estimation method for all three scenarios is 

less than the other studied methods. Therefore, it can be 

concluded that the three-point estimation method is one 

of the most suitable methods for solving probabilistic 

power distribution in the presence of uncertainties. 

5. Appendix 

The optimality mode of the first-order Karush Kuhn 

Tucker method for the Lagrangian function of Eq. 20 is 

obtained from the Newton-Raphson method in a 

nonlinear system as Eq. 52. 

 (52) 

𝛻𝑧𝐿 = 𝛻𝑧𝑓(𝑧) − 𝐽𝑡(𝑧). 𝜆 − 𝜋𝑙 − 𝜋𝑢 = 0𝛻𝜆𝐿

= −ℎ(𝑧) = 0𝛻𝜋𝑙
𝐿

= −(𝑧 − 𝑠𝑙 − 𝑙) = 0𝛻𝜋𝑢
𝐿

= −(𝑧 + 𝑠𝑢 − 𝑢) = 0𝛻𝑠𝑙𝑗
𝐿

= −
𝜇

𝑠𝑙𝑗

+ 𝜋𝑙𝑗
= 0𝛻𝑠𝑢𝑗

𝐿

= −
𝜇

𝑠𝑢𝑗

+ 𝜋𝑢𝑗
= 0 

According to the Newton equations, the direction of 

𝛥 for each variable is defined in Eq. 53: 

 (53) 

𝑤(𝑧, 𝜆). 𝛥𝑧 − 𝐽𝑡(𝑧). 𝛥𝜆 − 𝛥𝜋𝑙 − 𝛥𝜋𝑢

= −𝛻𝑧𝐿𝐽(𝑧). 𝛥𝑧

= −𝛻𝜆𝐿𝛥𝑧 − 𝛥𝑠𝑙

= 0𝛥𝑧 + 𝛥𝑠𝑢

= 0
𝜇

𝑠𝑙𝑗

2 𝛥𝑠𝑙𝑗
+ 𝛥𝜋𝑙𝑗

= −𝛻𝑠𝑙𝑗
𝐿

𝜇

𝑠𝑢𝑗
2 𝛥𝑠𝑢𝑗

+ 𝛥𝜋𝑢𝑗

= −𝛻𝑠𝑢𝑗
𝐿 

The steps of 𝛥𝜋𝑙 and 𝛥𝜋𝑢 can be shown in Eq. 54 by 

replacing Eq. 52in Eq. 53. 

(54) 

𝛥𝜋𝑙𝑗
= −

𝜇

𝑠𝑙𝑗

2 𝛥𝑧𝑗 +
𝜇

𝑠𝑙𝑗

− 𝜋𝑙𝑗
𝛥𝜋𝑢𝑗

= −
𝜇

𝑠𝑢𝑗
2 𝛥𝑧𝑗 +

𝜇

𝑠𝑢𝑗

− 𝜋𝑢𝑗
 

The structure of the matrix (21) can be rewritten in 

Eq. 53 by replacing Eq. 54 in Eq. 53. 
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Fig. 16. Diagram of the 300 – bus IEEE system 
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