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 In this article, we first construct family of two-step optimal fourth order iterative 

methods for finding single root of non-linear equation.  We then extend these 

methods for determining all the distinct as well as multiple roots of single 

variable non-linear equation simultaneously. Convergence analysis is presented 

for both the cases to show that the optimal order of convergence is 4 in case of 

single root finding method and 6 for simultaneous determination of all distinct 

as well as multiple roots of a non-linear equation. The computational cost, basins 

of attraction, computational efficiency, log of residual fall and numerical test 

functions validate that the newly constructed methods are more efficient as 

compared to the existing methods in the literature. 

1. Introduction 

Solving non-linear equation, 𝑓(𝑠) = 0, is the oldest 

problem of science in general and in particular in 

mathematics. These non-linear equations have diverse 

applications in many areas of science and engineering. 

In general, to find the roots of the equation, we look 

towards iterative schemes, which further are classified 

in to single and simultaneous root finding methods. This 

article addresses both types of iterative schemes. A 

variety of iterative methods having different 

convergence orders can be seen in the literature [7, 10, 

16, 17, 22, 28, 31]. Iterative method which satisfies 

Kung and Traub conjecture is known as optimal as given 

in [26] and the efficiency index is defined by Ostrowski 

[25]. 

The afore-mentioned criteria are used for simple 

root finding algorithm, but mathematicians are also 

interested in finding of all roots of the non-liner equation 

simultaneously. This is due to the fact that simultaneous 

iterative methods are very popular due to their wider 

region of convergence and are more stable as compared 

to single root finding methods. The beauty of these 

methods lies in the fact that they are used in parallel 

computing which is more focused area presently. For 

more details, one can see [1-6, 9, 11-14, 19, 21, 29, 30] 

and references cited there in. The most famous of single 

root finding method is the classical Newton-Raphson 

method given by Eq. 1. 

 𝑠𝑖+1 = 𝑠𝑖 −
𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
= (𝑖 = 1,2, … )                   (1) 

Method in Eq. 1 is optimal having convergence order 

2 and efficiency index of 1.43 according to Kung and 

https://doi.org/10.22581/muet1982.2202.20
mailto:nazirahmad.mir@gmail.com


 
© Mehran University of Engineering and Technology 2022     209 

 

Traub conjecture. We use Weierstrass' Correction [23] 

as follows. 

𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
= 𝑤(𝑠𝑖) =

𝑓(𝑠𝑖)

∏ (𝑠𝑖−𝑠𝑗)𝑛
𝑖≠𝑗

𝑗=1

, 𝑖, 𝑗 = 1,2,3, … , 𝑛       (2) 

In Eq. 1, to get classical Weierstrass-Dochive method 

which approximates all roots of the non-linear equation 

as follows. 

𝑠𝑖+1 = 𝑠𝑖 −
𝑓(𝑠𝑖)

∏ (𝑠𝑖−𝑠𝑗)𝑛
𝑖≠𝑗

𝑗=1

.                                  (3) 

Method in Eq. 3 has convergence order 2. Later, 

Albert-Ehlirch presented 3rd. order simultaneous method 

given by Eq. 4. 

𝑠𝑖+1 = 𝑠𝑖 −
1

1

𝑁(𝑠𝑖)
−∑ (

1

𝑠𝑖−𝑠𝑗
)𝑛

𝑖≠𝑗
𝑗=1

,                                 (4) 

where 𝑁(𝑠𝑖) =
𝑓′(𝑠𝑖)

𝑓(𝑠𝑖)
 

The main aim of this paper is to construct family of 

optimal fourth order methods for determining single root 

of nonlinear equation without increasing the function 

values using weight function which will be a good 

addition of optimal methods in the literature. We, then 

further convert these methods into simultaneous 

iterative methods for finding all distinct as well as 

multiple roots of the non-linear equation. Using complex 

dynamical system, we are able to choose values of 

parameter used in the construction of iterative methods 

which give a wider convergence region. 

2. Constructions of Single Root Finding Methods 

King et al. [18] presented the following two-point 

optimal family of fourth order method (abbreviated as 

YM): 

𝑦𝑖 = 𝑠𝑖 − (
𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
),  

 𝑠𝑖+1 = 𝑠𝑖 − (
𝑓(𝑦𝑖)

𝑓′(𝑠𝑖)
) (

𝑓(𝑠𝑖)+𝛽𝑓(𝑦𝑖)

𝑓(𝑠𝑖)+(𝛽−2)𝑓(𝑦𝑖)
),                    (5) 

where  𝛽𝜖ℜ.    

Chun et al. [20] presented the two-step fourth order 

optimal method (abbreviated as CM) as follows. 

𝑦𝑖 = 𝑠𝑖 − (
𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
),  

𝑠𝑖+1 = 𝑠𝑖 − (
𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
) (1 + (

𝑓(𝑦𝑖)

𝑓(𝑠𝑖)
) + 2 (

𝑓(𝑦𝑖)

𝑓(𝑠𝑖)
)

2
).      (6) 

Jarrat et al. [26] gave the following fourth order 

optimal method as (abbreviated as JM) follows. 

𝑦𝑖 = 𝑠𝑖 −
2

3
(

𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
),  

𝑠𝑖+1 = 𝑠𝑖 − (
𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
) (1 −

2

3
(

𝑓′( 𝑦𝑖)−𝑓′(𝑠𝑖)

3𝑓′( 𝑦𝑖)−𝑓′(𝑠𝑖)
)),        (7) 

Here, we propose the following family of iterative 

methods for solving single variable non-linear equation 

(1) 

𝑦𝑖 = 𝑠𝑖 − (
𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
),  

𝑧𝑖 = 𝑦𝑖 − (
𝑓(𝑦𝑖)

𝑓′(𝑠𝑖)
) (

1

𝐴−𝐻(𝑟)
),                       (8) 

where 𝐴 − 𝐻(𝑟) is the weight function using 

parameter A and 𝑟 = (
𝑓(𝑦𝑖)

𝑓(𝑠𝑖)
). It can be seen from the 

following theorem that the order of convergence of 

newly proposed Eq. 8 is four. 

2.1 Theorem 

Let ξϵI be single zero of a sufficiently differentiable 

function s: 𝐼 → ℜ for an open interval I. Let 𝑒𝑖 = 𝑠𝑖 − 𝜉  

and 𝐻(𝑟) weight function with the conditions H(0) =

1, 𝐻′(0) = 2 and 𝐴 = 2, 𝛽 = 1. Then, order of 

convergence of the proposed method in Eq. 8 is 4 and 

error relation is given by Eq. 9. 

  𝑒𝑖+1 = (𝑐2
3 − 𝑐2𝑐3)𝑒𝑖

4 + 𝑂(𝑒𝑖
5),        (9) 

where 𝑐𝑘 =
𝑠𝑘(𝜉)

𝑘!𝑠′(𝜉)
, 𝑘 = 2,3, … 

2.2 Proof 

Let 𝑒𝑖 = 𝑠𝑖 − 𝜉                                            (10) 

Using Taylor series, we have Eqs. 11 and 12. 

𝑓(𝑠𝑖) = 𝑓′(𝜉)(𝑒𝑖 + 𝑐2𝑒𝑖
2 + 𝑐3𝑒𝑖

3 + 𝑐4𝑒𝑖
4) + 𝑂(𝑒𝑖

5) (11) 

𝑓′(𝑠𝑖) = 𝑓′(𝜉)(1 + 2𝑐2𝑒𝑖 + 3𝑐3𝑒𝑖
2 + 4𝑐4𝑒𝑖

3) + 𝑂(𝑒𝑖
4).  

      …(12) 

Dividing Eq. 11 by Eq. 12, we get Eq. 13. 

𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
= 𝑒𝑖 + 𝑐2𝑒𝑖

2 + (−2𝑐3 + 2𝑐2
2)𝑒𝑖

3 + ⋯              (13) 

Now, 

𝑒𝑖 = 𝑐2𝑒𝑖
2 − (−2𝑐3 + 2𝑐2

2)𝑒𝑖
3 − (3𝑐4 + 7𝑐2𝑐3 −

4𝑐2
3)𝑒𝑖

4 + 𝑂(𝑒𝑖
5)                         (14) 

𝑓(𝑦𝑖) = 𝑓′(𝜉)(𝑐2𝑒𝑖
2 + (−2𝑐3 + 2𝑐2

2)𝑒𝑖
3 + (−3𝑐4 +

7𝑐2𝑐3 − 4𝑐2
3)𝑒𝑖

4) + ⋯                  (15) 

Dividing Eq. 15 by Eq. 12, we have Eq. 16. 

𝑓(𝑦𝑖)

𝑓′(𝑠𝑖)
= 𝑐2𝑒𝑖

2 + (2𝑐3 − 4𝑐2
2)𝑒𝑖

3 + (3𝑐4 − 14𝑐2𝑐3 +

13𝑐2
3)𝑒𝑖

4 + ⋯                            (16) 
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Expanding 𝐻(𝑟) about origin, we have Eq. 17. 

𝐻(𝑟) = 𝐻(0) + 𝐻′(0)𝑟 + 𝐻′′(0)
𝑟2

2!
+ ⋯      (17) 

where 𝑟 =
𝑓(𝑦𝑖)

𝑓(𝑠𝑖)
. 

Now, 

1

𝐴−𝐻(𝑟)
=

1

𝐴−𝐻(0)
+

𝐻(0)𝑐2

(𝐴−𝐻(0))2 𝑒𝑖 +

−3𝐻′(0)𝑐2
2−2𝐻′(0)𝑐3

𝐴−𝐻(0)
+

(𝐻′(0))2𝑐2
2

(𝐴−𝐻(0))2

𝐴−𝐻(0)
𝑒𝑖

2 + ⋯            (18) 

where 𝑧𝑖 = 𝑦𝑖 − (
𝑓(𝑦𝑖)

𝑓′(𝑠𝑖)
) (

1

𝐴−𝐻(𝑟)
),  

= (𝑐2 −
𝛽𝑐2

𝐴−𝐻(𝑟)
) 𝑒𝑖

2 + (−2𝑐2
2 + 2𝑐3 −

(
𝛽𝐻′(0)𝑐2

2

(𝐴−𝐻(𝑟))2 +
4𝛽𝑐2

2

𝐴−𝐻(𝑟)
−

2𝛽𝑐3

𝐴−𝐻(𝑟)
)) 𝑒𝑖

3 + ⋯      (19) 

Using the value 𝐻(0) = 1, 𝛽 = 1, 𝐴 = 2 in Eq. 19, 

we have Eq. 20. 

𝑒𝑖+1 = (2𝑐2
2 − 𝐻′(0)𝑐2

2)𝑒𝑖
3 + ⋯                     (20) 

Now, using 𝐻′(0) = 2 in Eq. 20, we get Eq. 21.   

𝑒𝑖+1 = (𝑐2
3 − 𝑐2𝑐3)𝑒𝑖

4 + 𝑂(𝑒𝑖
5)                                (21) 

Hence, it proves the theorem. 

3. Concrete Methods 

Here, we discuss some concrete optimal fourth order 

methods. 

3.1 Construction of Method MS1 

Let, 𝐻(𝑟) = 1 + 2𝑟, 𝑤ℎ𝑒𝑟𝑒 𝐻(0) = 1, 𝐻′(0) = 2. 
Thus, we have the following optimal fourth order 

method. 

 𝑧𝑖 = 𝑦𝑖 − (
𝑓(𝑦𝑖)

𝑓′(𝑠𝑖)
) (

1

2−(1+2𝑟)
),                   (22) 

where 𝑦𝑖 = 𝑠𝑖 − (
𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
) and 𝑟 = (

𝑓(𝑦𝑖)

𝑓(𝑠𝑖)
). 

3.2 Construction of Method MS2 

Let 𝐻(𝑟) =
2+𝑟 

2−𝑟
+ 𝑟 𝑤ℎ𝑒𝑟𝑒 𝐻(0) = 1, 𝐻′(0) = 2. 

Thus, we have the following optimal fourth order 

method. 

𝑧𝑖 = 𝑦𝑖 − (
𝑓(𝑦𝑖)

𝑓′(𝑠𝑖)
) (

1

2−(
2+𝑟 

2−𝑟
+𝑟)

),                   (23) 

where 𝑦𝑖 = 𝑠𝑖 − (
𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
) and 𝑟 = (

𝑓(𝑦𝑖)

𝑓(𝑠𝑖)
) 

3.3 Construction of Method MS3 

Let 𝐻(𝑟) = 1 +
2𝑟 

1+𝑟2 , 𝑤ℎ𝑒𝑟𝑒 𝐻(0) = 1, 𝐻′(0) = 2. 

Thus, we have the following optimal fourth order 

method. 

𝑧𝑖 = 𝑦𝑖 − (
𝑓(𝑦𝑖)

𝑓′(𝑠𝑖)
) (

1

2−(1+
2𝑟 

1+𝑟2)
),                   (24) 

where 𝑦𝑖 = 𝑠𝑖 − (
𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
) and 𝑟 = (

𝑓(𝑦𝑖)

𝑓(𝑠𝑖)
). 

Thus, we have constructed here new methods Eq. 22, 

Eq. 23 and Eq. 24 abbreviated as (MS1, MS2 and MS3). 

4. Complex Dynamical Study of Families of Iterative 

Methods 

Here, we discuss stability of family of iterative method 

(MS1-MS3, KM, CM, and JM) only in the background 

contexture of complex dynamics. Recalling some basic 

concepts of this theory (detail information can be found 

in [10, 17, 24, 27]). Taking a rational function 𝑅: 𝐶 → 𝐶, 

where C denotes the Riemann sphere, the orbit 𝑠0 ∈ 𝐶 

defines a set such as 𝑜𝑟𝑏(𝑠) = {𝑠0, 𝑅𝑓(𝑠0), … , 𝑅𝑓
𝑚(𝑠0)}. 

An attracting point defines basin of attraction, 𝑅𝑓
𝑚(𝑠∗) 

as the set of starting points whose orbit tends to  𝑠∗.  

Further, the implementation of the dynamical plane 

of rational operator corresponding to iterative methods 

divides the complex plane into a mesh of values of real 

part along x-axis and imaginary part along y-axis. The 

initial estimates is depicted in a colour depending on 

where its orbit converges and thus basins of attraction of 

corresponding iterative methods are obtained. 

Here, we find the basins of attraction for non-linear 

equations. We use the mesh of [400×400]. Divergence 

is represented by black colour. We use absolute error 

value as a stopping criteria and maximum number of 

iterations are taken as 25. If the method converges to a 

root then a specific colour is assigned to it. Let us 

consider the basins of attraction for non-linear equation, 

Fig. 1. 

                    
1(a)                        1(b)                         1(c) 

            
1(d)                     1(e)                         1(f) 

Fig. 1. (a-f), shows the basins of attraction of methods MS1-

MS3, KM, CM and JM respectively for non-linear function 

f_1 (s)=s^3+1having roots1,0.5+0.8i,0.5-0.8i. Brightness in 

colour shows less number of iteration for approximating the 

roots 
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 2(a)                        2(b)                         2(c) 

     
2(d)                       2(e)                          2(f) 

Fig. 2. (a-f), shows the basins of attraction of method MS1-

MS3, KM, CM and JM) respectively for non-linear function 

f_2 (s)=s^4+2s^3+3s^2+4s+5  having roots 0.2+1.4i,0.2-

1.4i,-1.2+0.8i,-1.2-0.8i. Brightness in colour shows less 

number of iteration for approximating the roots 

 

          3(a)                          3(b)                        3(c) 

 

         3(d)                              3(e)                        3(f) 

Fig. 3. (a-f), shows the basins of attraction of method (MS1-

MS3, KM, CM, JM) respectively for non-linear function f_3 

(s)=s^5+5   having roots-1.3,-0.4+1.3i,-0.4-1.3i,1.1+0.8i,1.1-

0.8i. Brightness in colour shows less number of iteration for 

approximating the roots 

 

         4(a)                             4(b)                       4(c) 

 

          4(d)                            4(e)                        4(f) 

Fig. 4. (a-f), shows the basins of attraction of methods MS1-

MS3, KM, CM and JM) respectively for non-linear function 

f_4 (s)=s^6-s^3-1 having roots  1.1,0.8,-0.5+1.01i,-0.5-

1.01i,0.4+0.7i,0.4-0.7i. Brightness in colour shows less 

number of iteration for approximating the roots 

5. Generalization to Simultaneous Iterative Methods 

Consider non-linear equation having n roots, then 

𝑓(𝑠) 𝑎𝑛𝑑 𝑓′(𝑠) can be approximated as Eqs. 25 and 26. 

𝑓(𝑠) = ∏(𝑠 − 𝑠𝑖)

𝑛

𝑗=1

 

      𝑓′(𝑠) = ∑ ∏ (𝑠 − 𝑠𝑖)𝑛
𝑗=1

𝑛
𝑗=1                       (25) 

    
𝑓′(𝑠𝑖)

𝑓(𝑠𝑖)
=

1

(𝑠−𝑠𝑗)
+ ∑

1

𝑠𝑖−𝑠𝑗

𝑛
𝑖≠𝑗
𝑗=1

=
1

1

𝑠−𝑠𝑖
−∑

1

𝑠𝑖−𝑠𝑗

𝑛
𝑖≠𝑗
𝑗=1

              (26) 

This gives Eqs. 27 and 28. 

𝑠𝑖+1 = 𝑠𝑖 −
1

1

𝑁(𝑠𝑖)
−∑ (

1

𝑠𝑖−𝑠𝑗
)𝑛

𝑖≠𝑗
𝑗=1

                  (27) 

𝑁(𝑠𝑖) =
𝑓′(𝑠𝑖)

𝑓(𝑠𝑖)
.                               (28) 

Now, from (27), an approximation of 
𝑓′(𝑠𝑖)

𝑓(𝑠𝑖)
 is formed 

by replacing 𝑠𝑗 𝑤𝑖𝑡ℎ 𝑧𝑡𝑗, we get Eq. 29. 

𝑓′(𝑠𝑖)

𝑓(𝑠𝑖)
=

1

1

𝑁(𝑠𝑖)
−∑ (

1

𝑠𝑖−𝑧𝑡𝑗
)𝑛

𝑖≠𝑗
𝑗=1

, 𝑡 = 1,2,3,                 (29) 

where 𝑧𝑡𝑗, 𝑡 = 1,2,3
 

are given in Eqs. 22-24 

respectively. 

Using Eq. 29 in Eq. 1, we get Eq. 30. 

𝑠𝑖+1 = 𝑠𝑖 −
1

1

𝑁(𝑠𝑖)
−∑ (

1

𝑠𝑖−𝑧𝑡𝑗
)𝑛

𝑖≠𝑗
𝑗=1

, (𝑡 = 1,2,3)     (30) 

In case of multiple roots, we have Eq. 31. 

𝑠𝑖+1 = 𝑠𝑖 −
𝜎𝑖

1

𝑁(𝑠𝑖)
−∑ (

𝜎𝑗

𝑠𝑖−𝑧𝑡𝑗
)𝑛

𝑖≠𝑗
𝑗=1

, (𝑡 = 1,2,3)   (31) 

where   

𝑧1𝑗 = 𝑦𝑗 − (
𝑓(𝑦𝑗)

𝑓′(𝑠𝑗)
) (

1

2−(1+2𝑟1)
),   

𝑧3𝑗 = 𝑦𝑗 − (
𝑓(𝑦𝑗)

𝑓′(𝑠𝑗)
) (

1

2−(
2+𝑟1 

2−𝑟1
+𝑟1)

),  

𝑧3𝑗 = 𝑦𝑗 − (
𝑓(𝑦𝑗)

𝑓′(𝑠𝑗)
) (

1

2−(
2+𝑟1 

2−𝑟1
+𝑟1)

),   

and 𝑦𝑗 = 𝑠𝑗 − (
𝑓(𝑠𝑗)

𝑓′(𝑠𝑗)
) , 𝑟1 = (

𝑓(𝑦𝑗)

𝑓(𝑠𝑗)
). 

6. Convergence of Simultaneous Method of Order 

Six 

Using correction 𝑧𝑡𝑗, 𝑡 = 1,2,3, we get the following 

three simultaneous iterative methods for extracting 

distinct as well as multiple roots of non-linear equation 
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as Eq. 32. 

𝑠𝑖+1 = 𝑠𝑖 −
𝜎𝑖

1

𝑁(𝑠𝑖)
−∑ (

𝜎𝑗

𝑠𝑖−𝑧𝑡𝑗
)𝑛

𝑖≠𝑗
𝑗=1

, (𝑡 = 1,2,3)                  (32)                                        

where 𝑖, 𝑗 = 1, ,3, … , 𝑛. 

Thus, we have presented three simultaneous iterative 

methods for 𝑡 = 1,2,3 abbreviated as M1, M2, M3 

respectively. 

7. Convergence Analysis 

In this section, the convergence analysis of a family of 

simultaneous methods  1 3M M , for multiple roots is 

given in the form of the following theorem. Obviously, 

convergence for distinct roots will follow from the 

convergence of the theorem when the multiplicities of 

the roots are simple. 

7.1 Theorem 

Let 𝜉1, 𝜉2, 𝜉3,…,𝜉𝑛 be the n number of simple roots of the 

non-linear equation. If 𝑠1
(0)

, 𝑠2
(0)

, 𝑠3
(0)

, … , 𝑠𝑛
(0)

, be the 

initial approximations of the roots respectively and 

sufficiently close to actual roots, the order of 

convergence of methods (M1-M3) equals six. 

7.2 Proof 

Let  𝜀𝑖 = 𝑠𝑖 − 𝜉𝑖 𝑎𝑛𝑑 𝜀′𝑖 = 𝑠𝑖+1 − 𝜉𝑖     be the errors in 

𝑠𝑖  and 𝑠𝑖+1  approximations respectively. 

𝑠𝑖+1 = 𝑠𝑖 −
𝜎𝑖

1

𝑁(𝑠𝑖)
−∑ (

𝜎𝑗

𝑠𝑖−𝑧𝑡𝑗
)𝑛

𝑖≠𝑗
𝑗=1

      (33) 

𝑓(𝑠) = ∏ (𝑠 − 𝑠𝑖)𝑛
𝑗=1 ,                                                  (34) 

Then obviously for distinct roots, we have Eq. 35. 

1

𝑁(𝑠𝑖)
=

𝑓(𝑠𝑖)

𝑓′(𝑠𝑖)
= ∑ (

1

𝑠𝑖−𝜉𝑗
) =

1

𝑠𝑖−𝜉𝑖
+ ∑ (

1

𝑠𝑖−𝜉𝑗
)𝑛

𝑖≠𝑗
𝑗=1

𝑛
𝑖≠𝑗
𝑗=1

(35) 

Then for the multiple roots we have Eqs. 36-40. 

𝑠𝑖+1 = 𝑠𝑖 −
𝜎𝑖

𝜎𝑖
𝑠𝑖−𝜉𝑗

−∑ (
𝜎𝑖

𝑠𝑖−𝜉𝑖
)−∑ (

𝜎𝑗

𝑠𝑖−𝑧𝑡𝑗
)𝑛

𝑖≠𝑗
𝑗=1

𝑛
𝑖≠𝑗
𝑗=1

      (36) 

𝑠𝑖+1 = 𝑠𝑖 −
𝜎𝑖

𝜎𝑖
𝑠𝑖−𝜉𝑗

−∑ (
𝜎𝑖(𝑠𝑖−𝑧𝑡𝑗−𝑠𝑖−𝜉𝑗)

(𝑠𝑖−𝜉𝑗)(𝑠𝑖−𝑧𝑡𝑗)
)𝑛

𝑖≠𝑗
𝑗=1

      (37) 

𝑠𝑖+1 = 𝑠𝑖 −
𝜎𝑖

𝜎𝑖
𝑠𝑖−𝜉𝑗

−∑ (
−𝜎𝑖(𝑧𝑡𝑗−𝜉𝑗)

(𝑠𝑖−𝜉𝑗)(𝑠𝑖−𝑧𝑡𝑗)
)𝑛

𝑖≠𝑗
𝑗=1

      (38) 

𝑠𝑖+1 − 𝜉𝑖 = 𝑠𝑖 − 𝜉𝑖 −
𝜎𝑖

𝜎𝑖
𝑠𝑖−𝜉𝑗

−∑ (
−𝜎𝑖(𝑧𝑡𝑗−𝜉𝑗)

(𝑠𝑖−𝜉𝑗)(𝑠𝑖−𝑧𝑡𝑗)
)𝑛

𝑖≠𝑗
𝑗=1

     (39) 

𝜀′𝑖 = 𝜀𝑖 −
𝜎𝑖

1

𝜀𝑖
−∑ 𝜀𝑖𝐿𝑖𝑗

𝑛
𝑖≠𝑗
𝑗=1

,        (40) 

where 𝐿𝑖𝑗 =
−𝜎𝑗

(𝑠𝑖−𝜉𝑗)(𝑠𝑖−𝑧𝑡𝑗)
 and 𝑧𝑡𝑗 − 𝜉𝑗 = 𝜀𝑗

4 from 

Eq. 21. Thus, 

𝜀′𝑖 = 𝜀𝑖 −
𝜎𝑖𝜀𝑖

1−𝜀𝑖 ∑ 𝜀𝑖𝐿𝑖𝑗
𝑛
𝑖≠𝑗

𝑗=1

            (41) 

𝜀′𝑖 =

𝜀𝑖−𝜀𝑖
2 ∑ 𝜀𝑖

2𝐿𝑖𝑗−𝜀𝑖
𝑛
𝑖≠𝑗
𝑗=1

1−𝜀𝑖 ∑ 𝜀𝑖𝐿𝑖𝑗
𝑛
𝑖≠𝑗

𝑗=1

        (42) 

Since the errors 𝜀𝑗𝑠  , are very small and due to 

convergence order of the method, we can assume that 

absolute values of all errors 𝜀𝑗, (𝑗 = 1,2,3, … ) are of the 

same order, say |𝜀𝑗| = 𝑂|𝜀𝑖|.  For further detail, see the 

reference ([9]). Therefore, from Eq. 41, we have         

Eqs. 43-44. 

𝜀′𝑖 = 𝜀𝑖
2(𝑂(𝜀𝑖

4))       (43) 

𝜀′𝑖 = 𝑂(𝜀𝑖
6)        (44) 

Hence, the theorem is proved. 

8. Computational Aspect 

Here, we compare the computational efficiency of the 

M. S. Petković, L. Rančić, M. R. Milošević method [8] 

and the new methods (M1-M3). As presented in [8], the 

efficiency of an iterative method can be estimated using 

the efficiency index given by 

                       𝐸𝐿(𝑀) =
𝐿𝑜𝑔𝑢

𝐷
         (45) 

where D is the computational cost and u is the order 

of convergence of the iterative method. Using arithmetic 

operation per iteration with certain weight depending on 

the execution time of operation, we evaluate the 

computational cost D. The weights used for division, 

multiplication and addition plus subtraction are 

𝑤𝑑 , 𝑤𝑚, 𝑤𝑎𝑠 respectively. For a given polynomial of 

degree m and n roots, the number of division, 

multiplication addition and subtraction per iteration for 

all roots are denoted by 𝐷𝑚, 𝑀𝑚 𝑎𝑛𝑑 𝐴𝑆𝑚.  The cost of 

computation can be calculated as: 

𝐷 = 𝐷(𝑀) = 𝑤𝑎𝑠𝐴𝑆𝑚 + 𝑤𝑚𝑀𝑚 + 𝑤𝑑𝐷𝑚.       (46) 

Thus, Eq. 46 becomes Eq. 47.  

𝐸𝐿(𝑀) =
𝐿𝑜𝑔𝑢

𝑤𝑎𝑠𝐴𝑆𝑚+𝑤𝑚𝑀𝑚+𝑤𝑑𝐷𝑚
     (47) 

Considering the number of operations of a complex 

polynomial with real and complex roots reduce to 

operation of real arithmetic, given in Table 1 as 

polynomial degree m taking the dominant term of 
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order (𝑚2). Applying Eq. 45 and data given in Table 1, 

we calculate the percentage ratio 𝜌(𝑀1 − 𝑀3), 𝑋) [8] 

given by Eq. 48. 

𝜌(𝑀1 − 𝑀3), 𝑋) = (
𝐸𝐿(𝑀1−𝑀3)

𝐸𝐿(𝑋)
− 1) × 100         (48)        

where X is Petkovic method [8] of order 4. Figure 

5(a-d) graphically illustrates these percentage ratios. It 

is evident from Figure 5(a-d) that the newly constructed 

simultaneous methods (M1-M3) are more efficient as 

compared to Petkovic method [8]. 

 

5(a) 

 

5(b) 

 

5(c) 

                          

5(d) 

Fig. 5. (a-d), shows computational efficiency of methods 

(M1-M3) w.r.t M.S. Petković, L. Rančić, M. R. Milošević 

method respectively. 

We also calculate the CPU execution time, as all the 

calculations are done using maple 18 on a Processor 

Intel(R) Core(TM) i3-3110m CPU@2.4GHz with 64-bit 

Operating System. We observe from Tables that CPU 

time of the methods M1-M3 is less than M.S. Petković, 

et al method [8], showing the dominance efficiency of 

our methods (M1-M3) as compared to them. 

Table 1 

Number of basic arithmetic operations   

Methods CO 𝐴𝑆𝑚 𝑀𝑚 𝐷𝑚 

M1 6 7𝑚2 + 𝑂(𝑚) 1𝑚2 + 𝑂(𝑚) 2𝑚2 + 𝑂(𝑚) 

M2 6 8𝑚2 + 𝑂(𝑚) 1𝑚2 + 𝑂(𝑚) 2𝑚2 + 𝑂(𝑚) 

M3 6 8𝑚2 + 𝑂(𝑚) 2𝑚2 + 𝑂(𝑚) 2𝑚2 + 𝑂(𝑚) 

PJ 6 8𝑚2 + 𝑂(𝑚) 6𝑚2 + 𝑂(𝑚) 2𝑚2 + 𝑂(𝑚) 

9. Numerical Results 

Here, some numerical examples are considered in order 

to demonstrate the performance of our family of two-

step optimal fourth order single root finding methods 

(MS1-MS3) and sixth order simultaneous methods (M1-

M3) respectively. We compare our family of single root 

finding optimal fourth order methods (M1-M3) with 

optimal fourth order methods (KM, CM) methods. 

Family of simultaneous methods of order six is 

compared with M.S. Petković, et al method [8] of same 

order (abbreviated as PJ method). All the computations 

are performed using MAPLE 18 with 2500 (64 digits 

floating point arithmetic in case of simultaneous 

methods) significant digits with stopping criteria as 

follows. 

1.       𝑒𝑖 = |𝑓(𝑠𝑖)| < 𝜖,  

2.         𝑒𝑖 = |𝑠𝑖 − 𝛼| < 𝜖  

where 𝑒𝑖 represents the absolute error of function 

values in norm-2. We take  𝜖−600  for single root finding 

method and 𝜖−30 for simultaneous determination of all 

roots of non-linear equation (1). 

Numerical tests examples from [14-15, 30-31] are 

provided in Tables 2-8 and 9. In Tables 2, 4, 6, 8 the 

stopping criterion 2 is used while in Tables 3, 5, 7 and 9 

stopping criteria 1 and 2 both are used. In all tables, CO 

represents the convergence order, n represents the 

number of iterations,   represents computational order 

of convergence [15], 𝛾 = 1 represents all distinct roots, 

𝛾 ≠ 1  represents multiple roots and CPU represents  

computational time in seconds. We observe that 

numerical results of the methods (in case of single root 

finding methods MS1-MS3) as well as simultaneous 

determination (M1-M3 of all roots) are better than KM, 

CM, JM and PJ respectively on same number of 

iterations. Figure 6(a-k) represents the residual falls for 

the iterative methods (MS1-MS3, KM, CM, JM and PJ). 
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9.1 Example 1: Beam Designing Model (Application in 

Engineering) [31] 

An engineer considers a problem of embedment t of a 

sheet-pile wall resulting in a non-linear function, given 

as Eq. 49. 

𝑓5(𝑠) =
𝑠3+2.87𝑠2−10.28

4.62
− 𝑠                 (49) 

The exact roots of Eq. 49 are as follows. 

𝜉1 = 2.0021, 𝜉2 = −3.3304, 𝜉3 = −1.5417  

The initial estimates are taken as follows. 

𝑠1
(0)

= 2.5, 𝑠2
(0)

= −7.4641, 𝑠3
(0)

= −0.5359 

Table 2 

Simultaneous determination of all roots 

𝑓5(𝑠) =
𝑠3 + 2.87𝑠2 − 10.28

4.62
− 𝑠 

𝜉1 = 2.0021, 𝜉2 = −3.3304, 𝜉3 = −1.5417  

 

𝑠1
(0)

= 2.5, 𝑠2
(0)

= −7.4641, 𝑠3
(0)

= −0.5359 

Method CO CPU 𝛾
 

n 𝑒1
 

𝑒2
 

𝑒3
 

PJ 6 0.063 𝛾 = 1 4 5.1e-21 5.5e-20 2.2e-20 

M1-M4 6 0.032 𝛾 = 1 4 6.7e-20 1.0e-20 4.1e-21 

Table 3 

Comparison of single roots finding methods 

𝑓5(𝑠) =
𝑠3+2.87𝑠2−10.28

4.62
− 𝑠, 𝑠0 = 2.5, 𝛼 = 2,CO=4 

Method |𝑠𝑖
(6)

− 𝛼| |𝑓𝑖
(6)

(𝑠𝑖)| CPU 𝜌 

MS1 6.9e-99 3.5e-87 0.032 4.0 

MS2 5.7e-74 2.2e-93 0.063 4.0 

MS3 1.7e-68 9.0e-87 0.047 4.01 

KM 1.6e-67 8.5e-86 0.031 4.0 

CM 3.2e-65 1.6e-83 0.047 4.0 

JM 1.0e-40 1.6e-49 0.016 3.9 

9.2 Example 2 [15] 

Here, we consider another standard test function for the 

demonstration of convergence behaviour of newly 

constructed methods. 

Consider, 

𝑓6(𝑠) = 𝑠𝑖𝑛3 (
𝑠−1

2
) 𝑠𝑖𝑛3 (

𝑠−2

2
) 𝑠𝑖𝑛3 (

𝑠−2.5

2
)      (50)                                               

with multiple exact roots (𝛾 ≠ 1). 

             𝜉1 = 1, 𝜉2 = 2, 𝜉3 = 2.5  

The initial guessed values have been taken as 

follows. 

            𝑠1
(0)

= −0.2, 𝑠2
(0)

= 1.7, 𝑠3
(0)

= 3  

For distinct roots (𝛾 =1), we have the following. 

𝑓6(𝑠) = 𝑠𝑖𝑛 (
𝑠 − 1

2
) 𝑠𝑖𝑛 (

𝑠 − 2

2
) 𝑠𝑖𝑛 (

𝑠 − 2.5

2
) 

Table 4 

Simultaneous determination of all roots 

𝑓6(𝑠) = 𝑠𝑖𝑛3 (
𝑠 − 1

2
) 𝑠𝑖𝑛3 (

𝑠 − 2

2
) 𝑠𝑖𝑛3 (

𝑠 − 2.5

2
), 

𝜉1 = 1, 𝜉2 = 2, 𝜉3 = 2.5  

𝑠1
(0)

= −0.2, 𝑠2
(0)

= 1.7, 𝑠3
(0)

= 3 

Method CO CPU 𝛾
 

n 𝑒1 
𝑒2 

𝑒3 
PJ 6 0.063 𝛾 = 1 5 0.019 4.6e-3 9.9e-10 

PJ 6 0.109 𝛾 ≠ 1 5 2.9e-9 1.7e-4 1.9e-9 

M1-M3 6 0.063 𝛾 = 1 5 2.6e-13 2.1e-7 9.5e-10 

M1-M3 6 0.109 𝛾 ≠ 1 5 6.1e-2 6.8e-8 7.5e-9 

Table 5 

Comparison of single roots finding methods 

𝑓6(𝑠) = 𝑠𝑖𝑛 (
𝑠−1

2
) 𝑠𝑖𝑛 (

𝑠−2

2
) 𝑠𝑖𝑛 (

𝑠−2.5

2
), 𝑠0 = 0.5, 𝛼 = 1,CO=4 

Method |𝑠𝑖
(6)

− 𝛼| |𝑓𝑖
(6)

(𝑠𝑖)| CPU 𝜌 

MS1 2.5e-550 8.3e-2200 0.860 4.0 

MS2 1.1e-558 2.5e-2233 0.875 4.0 

MS3 8.8e-551 1.1e-2201 0.890 4.0 

KM 1.2e-536 7.5e-2145 0.859 4.0 

CM 8.0e-507 1.9e-2025 0.906 4.0 

JM 3.7e-550 3.6e-2199 1.282 4.0 

9.3 Example 3 [14] 

Here, we consider another standard test function for the 

demonstration of convergence behaviour of newly 

constructed methods. 

 Consider, 

𝑓7(𝑠) = 𝑒𝑠(𝑠−1)2(𝑠−2)2(𝑠−3)3
,            (51)                                               

with multiple exact roots (𝛾 ≠ 1), 𝜉1 = 0, 𝜉2 =

1, 𝜉3 = 2, 𝜉4 = 2. The initial guessed values have been 

taken as follows. 

            𝑠1
(0)

= 0.1, 𝑠2
(0)

= 0.9, 𝑠3
(0)

= 1.8, 𝑠4
(0)

= 2.9  

For distinct roots (𝛾 =1), 𝑓7(𝑠) = 𝑒𝑠(𝑠−1)(𝑠−2)(𝑠−3) . 

9.4 Example 4 [14] 

Here, we consider another standard test function for the 

demonstration of convergence behaviour of newly 

constructed methods. 
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 Consider 

𝑓8(𝑠) = 𝑠𝑖𝑛ℎ5 (
𝑠+2

2
) 𝑠𝑖𝑛ℎ6 (

𝑠−3

2
)              (52)                                               

with multiple exact roots (𝛾 ≠ 1), 𝜉1 = −2, 𝜉2 = 3. 

The initial guessed values have been taken as, 

𝑠1
(0)

= −1, 𝑠2
(0)

= 4. For distinct roots (𝛾 =1), 

𝑓8(𝑠) = 𝑠𝑖𝑛ℎ (
𝑥+2

2
) 𝑠𝑖𝑛ℎ (

𝑥−3

2
).  

 

Table 6 

Simultaneous determination of all roots 

𝑓7(𝑠) = 𝑒𝑠(𝑠−1)2(𝑠−2)2(𝑠−3)3
 

𝜉1 = 0, 𝜉2 = 1, 𝜉3 = 2, 𝜉4 = 2  

𝑠1
(0)

= 0.1, 𝑠2
(0)

= 0.9, 𝑠3
(0)

= 1.8, 𝑠4
(0)

= 2.9 

Method CO CPU 𝛾
 

n 𝑒1
 

𝑒2
 

𝑒3
 

𝑒4 

PJ 6 0.203 𝛾 = 1 5 0.5 0.008 0.002 0.01 

PJ 6 0.422 𝛾 ≠ 1 5 0.05 0.003 1.9e-7 8.1e-3 

M1-M3 6 0.094 𝛾 = 1 5 1.0e-5 1.6e-4 0.3e-3 2.1e-4 

M1-M3 6 0.063 𝛾 ≠ 1 5 1.3e-4 1.3e-3 2.5e-9 1.9e-5 

 

Table 7 

Comparison of single roots finding methods 

𝑓7(𝑠) = 𝑒𝑠(𝑠−1)(𝑠−2)(𝑠−3) , 𝑠0 = 0.0, 𝛼 = 0.1,CO=4 

Method |𝑠𝑖
(6)

− 𝛼| |𝑓𝑖
(6)

(𝑠𝑖)| CPU 𝜌 

MS1 0.01 0.8e-3 0.160 3.0 

MS2 0.008 1.5e-7 0.075 3.01 

MS3 0.02 1.8e-30 0.290 3.32 

KM 0.1 3.0e-2 0.759 1.3 

CM 0.02 4.1e-16 0.606 2.5 

JM 0.05 6.7e-11 1.982 2.9 

Table 8 

Simultaneous determination of all roots 

𝑓8(𝑠) = 𝑠𝑖𝑛ℎ5 (
𝑠 + 2

2
) 𝑠𝑖𝑛ℎ6 (

𝑠 − 3

2
) 

𝑠1
(0)

= −1, 𝑠2
(0)

= 4 

𝜉1 = −2, 𝜉2 = 3 

Method CO CPU 𝛾
 

n 𝑒1 
𝑒2 

PJ 6 0.203 𝛾 = 1 5 2.2e-9 1.5e-8 

PJ 6 0.422 𝛾 ≠ 1 5 9.8e-8 9.9e-7 

M1-M3 6 0.094 𝛾 = 1 5 2.1e-9 1.4e-10 

M1-M3 6 0.063 𝛾 ≠ 1 5 5.5e-11 1.9e-9 

Table 9 

Comparison of single roots finding methods 

𝑓8(𝑠) = 𝑠𝑖𝑛ℎ (
𝑥+2

2
) 𝑠𝑖𝑛ℎ (

𝑥−3

2
), 𝑠0 = 2.5, 𝛼 = 0.1,CO=4 

Method |𝑠𝑖
(6)

− 𝛼| |𝑓𝑖
(6)

(𝑠𝑖)| CPU 𝜌 

MS1 4.3e-741 4.9e-2963 0.031 4.01 

MS2 4.4e-804 2.2e-3215 0.036 4.32 

MS3 2.1e-656 2.8e-2624 0.041 4.21 

KM 1.2e-271 3.5e-1084 0.069 3.91 

CM 3.7e-727 8.2e-2907 0.606 4.01 

JM 3.2e-500 6.4e-1999 1.531 4.12 

4. Conclusion 

We have developed here a family of optimal fourth order 

two-step single root finding methods. We, then derived 

concrete three fourth order iterative methods for single 

root finding methods, MS1-MS3 and three simultaneous 

methods M1-M3 of order six for finding all distinct as 

well as multiple roots of nonlinear equation. From 

Tables 2-9 and Figures 1, 2, 3, 4, 5 and 6, we observe 

that our single root finding methods as well as 

simultaneous methods (MS1-MS3, M1-M3, 

respectively) are superior in terms of efficiency, 

Stability, CPU time and residual errors as compared to 

the single root finding methods KM, CM, JM and 

simultaneous M.S. Petković, et al (PJ) [8] method 

respectively. Higher order single root finding as well as 

all root finding simultaneous methods ca be developed 

adopting the similar ways. 
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6(a)                                                       6(b)                                                        6(c)  

        

6(d)                                                      6(e)                                                       6(f) 

        

6(g)  6(h)     6(i) 

     

                                            6(j)                                              6(k) 

Fig. 6. (a-d), shows residual fall of iterative methods MS1-MS3, KM, CM, JM, (e, g, i, k) presents the residual fall of simultaneous 

iterative methods (MM1-MM3,PJ6) for finding all distinct roots while, (f, h, j) are for all multiple roots of non-linear function 

f_5(s), f_6 (s), f_7(s) and f_8(s)  respectively 
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