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K E Y W O R D S  A B S T R A C T  

Ball and Beam System 

Adaptive Neuro-Fuzzy Control 

PID Control 

 Controlling an uncertain mechatronic system is challenging and crucial for its 

automation. In this regard, several control-strategies are developed to handle 

such systems. However, these control-strategies are complex to design, and 

require in-depth knowledge of the system and its dynamics. In this study, we are 

testing the performance of a rather simple control-strategy (Adaptive Neuro-

Fuzzy Inference System) using an uncertain Ball and Beam System. The custom-

designed apparatus utilizes image processing technique to acquire the position 

of the ball on the beam. Then, desired position is achieved by controlling the 

beam angle using Adaptive Neuro-Fuzzy and PID control. We are showing that 

adaptive neuro-fuzzy control can effectively handle the system uncertainties, 

which traditional controllers (i.e., PID) cannot handle. 

1. Introduction 

Control systems play a crucial role in the design and 

automation of mechatronic systems. In this regard, 

numerous control-strategies have been proposed. 

Systems with uncertainties can easily jeopardize a 

control-strategy if the nature of the uncertainties are not 

taken into account while designing. These uncertainties 

can arise due to imperfection in design, measurement 

errors, time-varying properties, higher-order dynamics, 

and non-linearities in a system [1].  To deal with such 

systems, researchers have proposed several control-

strategies. For example; H-infinity loop shaping and 

parametric estimation can make the system insensitive to 

uncertainties [2], adaptive control is suitable to handle 

the changes in time-varying systems [3]; and Lyapanov 

technique is better to control non-linear systems [4], etc. 

Although, these techniques are very successful; yet, they 

require mathematical models of the systems. Obtaining an 

admissible mathematical model is viable for a simple 

system, but this is not always possible for complex cases. 

To bridge this gap, non-model based control-strategies 

like neural and fuzzy techniques were later developed [5] 

and implemented in a number of control applications like, 

cruise control [6-9], industrial processes [10-12], robotics 

[13-14] and ball and beam/plate systems [15-19], etc.  

Notwithstanding the advancements in control 

literature, the classical Proportional-Integral-Derivative 

(PID) control remained as a widely used control-strategy 

https://doi.org/10.22581/muet1982.2201.01
mailto:khurram.saleem@uettaxila.edu.pk


 
© Mehran University of Engineering and Technology 2022     179 

 

in the industry [3]. Since, PID can handle numerous 

applications without a need of mathematical model. As a 

result, researchers have often compared the performance 

of different control-strategies with classic PID. Keshmiri 

et al. [20] have compared classic PID (non-model-based 

control), and hybrid PID and Linear Quadratic Regulator 

(combination of model and non-model-based control). 

They have used ball and beam system for the comparison 

and reported a superior performance of model-based 

control-strategy. Similarly, Choudhary [21] has reported 

a better performance of fractional order PID over classic 

PID controller by simulating the ball and beam system. 

Studies have shown that fuzzy control can outperform 

PID control in a number of applications. Perez et al. [8] 

have studied the throttle/brake control to improve the 

comfort level for passengers during acceleration/de-

acceleration of a car.  The results showed improved 

performance with the neuro-fuzzy controller (Adaptive 

Neuro-Fuzzy Inference System, ANFIS) compared with 

manually tuned control (typically used in the industries). 

Munyaneza et al. [7] concluded that PD control produces 

small rise time (in cruise-control system), yet it creates a 

high percentage of overshoot, resulting in overall poor 

performance as compared with fuzzy control. Similarly, 

Dawood et al. [6] have compared PID, fuzzy logic, and 

genetic-algorithm for the cruise control application. 

They reported fuzzy control as best in handling the 

overshoot, settling time, and steady-state error. 

Furthermore, it has been shown that fuzzy control can 

outperform PID in controlling a non-linear flow process 

[10-12]. A step further, Safwan et al. [14] noted that 

fuzzy-based PID controller was better in trajectory 

tracking as compared with a fuzzy logic controller itself 

(tested on non-holonomic mobile robot). However, their 

results were based on simulations only. 

In this study, we tested the effectiveness of ANFIS to 

control a real-time system, i.e., ball and beam, similar to 

the earlier studies [15-17]. A step further, we used 

different balls to tune and test the controller; hence, 

introducing an uncertainty in the system. For a 

comparison, we choose classic PID controller. We 

speculated that PID control will fail, and ANFIS will 

handle the uncertainty. Since, neuro-fuzzy control works 

in a manner our brain performs, and humans are best in 

handling the uncertain systems [22]. Additionally, 

ANFIS combines a set of fuzzy rules that have learning 

capability to realize a nonlinear behaviour. 

In the subsequent sections, we are explaining the 

working principle of ANFIS and Ball and Beam System. 

Then the designs of ball and beam apparatus and both 

control-strategies used in this study are presented. Finally, 

we are presenting the experimental design, presenting the 

results, and concluding this work. 

1.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Fuzzy control or Fuzzy Inference System (FIS) uses 

linguistic rules to control a system [5, 23]. These rules are 

represented in the form of ‘If-then’ paradigm called 

knowledge-base (or rule-base). However, inputs and 

outputs of a physical system are real values; hence, 

incompatible with the knowledge-base. Therefore, 

fuzzification is used to make the inputs compatible with 

the knowledge-base. Finally, the control decisions made 

by FIS are converted back to real values using 

defuzzification. There are different methods to infer the 

linguistic rules for FIS. A human can directly define the 

rules by using his/her experience (heuristics). For 

example, a driver can intuitively state the rules for 

implementing a cruise control in a car. Alternatively, 

numerical data (inputs and outputs) are collected while a 

human expert controls the system in real-time or using 

simulations [16]. Then, input-output mapping is used to 

establish the heuristic rules for FIS. In this regard, several 

techniques have been proposed; Neuro-Fuzzy Control 

(e.g. ANFIS) is one such method. ANFIS is a hybrid 

approach proposed by Jang [24]. It is a FIS with adaptive 

nodes (neural network). The parameters (weights) of these 

nodes are adjusted to minimize the error in measurement 

through training. The architecture of ANFIS is further 

explained in context of this study in the design of ANFIS. 

1.2 Ball and Beam System 

The Ball and Beam system is simple; yet, it is non-linear, 

under-actuated, and inherently unstable system. It 

consists of a ball placed on the beam. Ball is only allowed 

to move along the axis of the beam. The position of the 

ball and beam (x) is controlled by changing the angle of 

beam (θ) as shown in Fig. 1. The dynamics of ball and 

beam can be represented as a function of beam angle (θ) 

and acceleration due to gravity (g) using Eq. 1 [25]. 

𝑔 sin 𝜃 = 𝑑2𝑥 𝑑𝑡2⁄                       (1) 

2. Methodology 

2.1 Hardware Setup 

We used a 50 cm channel bar (made of aluminium) to 

create the beam. The beam was coupled with a servo 

motor (Tower Pro, MG945R), having a response time of 

60ºs-1. The motor was controlled by pulse-width-

modulation (PWM) generated by a microcontroller 

(Microchip, PIC16F873A). The position of the ball on the 

beam was obtained from images taken by a USB webcam. 
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The webcam was placed at a distance of 80 cm from the 

ball and beam assembly. A white screen was placed 

behind the beam to facilitate image processing, as shown 

in Fig. 2.  

 

Fig. 1. Illustration of ball and beam system 

We used a joystick to manually control the position of 

ball on the beam (i.e., to implement human-in-the-loop 

control). 

 

Fig. 2. Hardware implementation of Ball and Beam system 

The image processing and control-strategies were 

implemented in Simulink (using Normal Mode), and 

sampling time (Ts) was maintained at 0.16 s 

approximately. The block diagram depicting our setup is 

given in Fig. 3. 

2.2 Image Processing 

The steps involved in acquiring the position (x) of ball 

on the beam are elaborated in Error! Reference source 

not found.. First, we converted the RGB image to 

Binary image. Then the boundary of the beam was 

traced, and its edges were identified. Finally, the 

position of the ball was located across the pivot point 

(where, pivot point is at the centre of the beam). The 

velocity of the ball was computed by dividing the 

difference in position (in two samples) by sampling 

time, i.e., v = ∆x/∆ t. 

 

Fig. 3. Implementation of control strategies 

 

Fig. 4. Steps to acquire the position of a ball on the beam 

using image processing 

2.3 Controller Design 

The aim of closed-loop control was to keep the ball at 

desired position (x = 0 cm), and velocity (v = 0 cm/s) 

under uncertainty. To better judge the performance of 

ANFIS we opted for PID-control as a reference control-

strategy. The details of each control-strategy are 

discussed below. 

2.3.1 Design of ANFIS 

We considered the position (x) and velocity (v) of the ball 

as input variables and defined three linguistic-states: 

Negative (-ve), Desired (D) and Positive (+ve) for each 
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input variable. Where, x to the right of the pivot point, 

and v towards the right edge were considered as positive 

(see Error! Reference source not found.). Moreover, 

Gaussian membership functions were used to represent 

each linguistic state. Gaussian membership function is 

used because of its smoothness and suitability in small 

rule-base designs [26-27]. 

The angle of beam (θ)  was output variable. It has 

seven linguistic states; high negative (-veHigh), negative 

(-ve), low negative (-veLow), zero (Z), low positive 

(+veLow), positive (+ve), and high positive (+veHigh). 

Where, θ was positive in counter clockwise direction, as 

shown in Error! Reference source not found.. The 

output membership functions were constant values 

(Sugeno, type-3 [24], [28]). 

We defined rule-base using heuristics to control 

the ball on the beam, as follows. 

R1: If x is D, And v is D, Then θ is Z. 

R2: If x is −ve, And v is D, Then θ is +veLow.  

R3: If x is +ve, And v is D, Then θ is −veLow. 

R4:  If x is −ve, And v is +ve, Then θ is Z.  

R5: If x is +ve, And v is −ve, Then θ is Z. 

R6: If x is −ve, And v is −ve, Then θ is +veHigh. 

R7: If x is +ve, And v is +ve, Then θ is −veHigh. 

R8: If x is D, And v is +ve, Then θ is −ve. 

R9: If x is D, And v is −ve, Then θ is +ve. 

where, And method = product (Π). 

The weights (Wi) assigned to each linguistic-rule 

were adjusted by training (Neural-Network, Back-

Propagation technique). To get the training data, an 

expert participant controlled the ball on the beam with 

the joystick, and real-time data (x, v, and θ) were 

recorded. The fuzzy-output was defuzzified using a 

weighted average rule. Error! Reference source not 

found. shows the architecture of ANFIS used in this 

study. 

2.3.2 Design of PID Controller 

PID is a widely used control-strategy in various real-

time applications. Its simplicity and ability to work 

without the system model proved to be a great incentive 

for control engineers. The PID uses the difference (e(t)) 

between the desired and actual output of the system to 

decide the controller gain. Difference of actual and 

desired position of the ball is used to calculate the error 

𝑒(𝑡). Equation (2) shows the mathematical form of PID 

control in continuous time; where, Kp, Ki, and Kd 

represent the gains of proportional, integral and 

derivative terms, respectively. 

For discrete-time approximation of Eq. 2, we used 

backward difference rule (for derivation), and right-side 

rule (for integration) [16]. The discrete-time 

approximation thus obtained is given by Eq. 3 (where, Ts 

is the sampling time, n is the number of the sample, and 

𝐼𝑔(𝑛) is the discrete-time integration as given by equation 

(4). 

𝐾𝑝𝑒(𝑡) + 𝐾𝑑 𝑑𝑒(𝑡) 𝑑𝑡⁄ + 𝐾𝑖 ∫ 𝑒(𝑡)         (2) 

−𝐾𝑝𝑥(𝑛) + 𝐾𝑑
(𝑥(𝑛)−𝑥(𝑛−1))

𝑇𝑠
+ 𝐾𝑖𝐼𝑔(𝑛)          (3) 

𝐼𝑔(𝑛) = 𝐼𝑔(𝑛 − 1) − 𝑇𝑠(0 − 𝑥(𝑛))         (4) 

Finally, the gains of PID controller were adjusted 

using Ziegler-Nichols tuning method. The final values for 

each gain were 𝐾𝑝= 1.7, 𝐾𝑖 = 1.1, and 𝐾𝑑  = 0.7. 

2.4 Experimental Design and Procedures 

In order to evaluate the relative performance of the 

controllers (ANFIS and PID), we placed the ball at 6 

different initial positions (xinit = -20, -10, -5, +5, +10, +20 

cm). Moreover, to add a level of uncertainty we used 

three different balls during experiments (see Error! 

Reference source not found.). Different ball materials 

provide different friction coefficients to roll on the beam; 

therefore, ball material can be considered as an 

uncertainty. Hence, there were 18 different initial states 

(i.e., 6 xinit x 3 Balls). Each initial state was repeated 4 

times making 72 trials. During each trial, we noted if the 

controller was able to stabilize the ball at x = 0 cm. In 

case of success, settling time (tss) was measured from the 

response, and results were computed. It is important to 

mention that the maximum tilt angle (𝜃) that our system 

could achieve to balance the ball was ± 15°.  

Table 1 

Photovoltaic input parameter 

Ball-Type Material Weight (g) Diameter (cm) 

1 Plastic 3 4.0 

2 Rubber 80 3.0 

3 Rubber 50 1.5 

3. Results and Discussion 

We observed a clear difference in the performance of two 

control-strategies (ANFIS and PID), as shown in Table 2 

and Table 3. The key results are as follows. The failure 

rate of PID was higher as compared to ANFIS control (see 

Table 2).  
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Fig. 5. Model of ANFIS 

Particularly, PID controller gave a poor performance 

with Ball-Type 2 and 3. There was no effect of control-

strategy on settling time (tss), considering the successful 

cases only, as shown in Table 3. 

Table 2 

Comparison of success rate (%) 

Control 

Strategy 

Ball-

Type 

xinit (cm) 

±20 ±10 ±5 

ANFIS 1 62.5 87.5 100 

2 62.5 100 62.5 

3 62.5 87.5 37.5 

PID 1 87.5 62.5 87.5 

2 25 25 0 

3 0 0 0 

Our results showed that the performance of both 

controllers was alike with Ball-Type 1, (i.e., the 

controllers did not encounter uncertainty). This result is 

not in agreement with earlier studies, which reported a 

superior performance of fuzzy control over PID [6-8], 

[10-13]. The contradiction in results between this study 

and earlier ones might arise due to the difference in 

systems used for the comparison of control-strategies. 

Furthermore, the results in [10-13], were based on 

simulation; while, testing control-strategies on a real 

system is important to completely establish their 

effectiveness. Finally, as the tilt angle of the beam was 

limited in our setup (i.e., ±15°); therefore, the effect of 

nonlinearity was reduced. While the strength of the PID 

controller is renowned in handling a linear system. 

Table 3 

Comparison of settling time (seconds) 

Control 

Strategy 

Ball-

Type 

xinit (cm) 

±20 ±10 ±5 

ANFIS 1 7.1±2.0 4.1±1.0 5.4±2.3 

2 6.7±2.3 4.2±2.0 3.7±1.0 

3 6.8±2.6 3.3±0.7 3.3±1.5 

PID 1 6.3±2.0 7.9±2.2 5.7±2.0 

2 5.8±0.1 7.5±2.5 - 

3 - - - 

On the other hand, ANFIS outperformed PID 

controller when Ball-Type 2 and 3 were used (i.e., 

controllers encountered uncertainty). However, success 

rate was lower for shorter xinit (See Table 2). This is 

because, for shorter xinit, sudden surge in the control 

input deviated the ball more from the equilibrium point. 

As we have mentioned earlier, we used Ball-Type 1 

(made of plastic) for tuning of PID gains and ANFIS 

weights. On the other hand, we used Ball-Type 2 and 3 

besides Ball-Type 1 during the evaluation. Ball-Type 2 

and 3 were made of rubber material, which has a high 
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friction coefficient compared with plastic. Hence, this 

added uncertainty in the system.  

The poor performance of PID controller suggested 

that the level of uncertainty was considerable. As 

expected, the PID controller failed to balance the ball 

under uncertainty. This was expected as the 

conventional PID controller is not suitable to handle the 

uncertainties. On the other hand, ANFIS performed 

reasonably well under a similar uncertainty level. 

It is important to highlight that the scope of this study 

is limited, as disturbances and noise factor are not 

considered. Also, the beam surfaces of different 

materials are not taken into account which in turn 

produce different frictional effect for the ball to roll on 

the beam. Therefore, further work is indeed required to 

clearly establish the limits of neuro-fuzzy control in 

handling the uncertainties. In future, we are planning 

more extensive comparisons to clearly highlight the 

limits of neuro-fuzzy control. 

4. Conclusion 

This paper presented the comparison of two well-known 

control-strategies, Adaptive neuro-fuzzy inference 

system (ANFIS) and PID control, for the real-time Ball 

and Beam apparatus in the presence of uncertainties. 

Position of the ball on the beam is acquired through 

image processing which in turn used to find the error 

signal. The weights (Wi) assigned to each linguistic-rule 

of the fuzzy system are adjusted by training (Neural-

Network, Back-Propagation technique). The efficiency 

of the ANFIS is tested on the real time ball-beam system 

for 6 different initial positions of the ball on the beam. 

Also balls of different materials has been considered as 

uncertainty to evaluate the efficacy of the ANFIS 

control. We concluded that ANFIS can effectively 

control an uncertain system with minimum settling time 

and better success rate as compare to traditional 

controllers like PID.  

In future studies, we will compare the performance 

ANFIS with other robust control techniques to further 

elaborate its effectiveness. 
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