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 Heading and position control system of ships has remained a challenging control 

problem. It is a nonlinear multiple input multiple output system. Moreover, the 

dynamics of the system vary with operating as well as environmental conditions. 

Conventionally, simple Proportional Integral Derivative controller is used which 

has well known limitations. Other conventional control techniques have also 

been investigated but they require an accurate mathematical model of a ship. 

Unfortunately, accuracy of mathematical models is very difficult to achieve. 

During the past few decades computational intelligence techniques such as 

artificial neural networks have been very successful when an accurate 

mathematical model is not available. Therefore, in this paper, an artificial neural 

network controller is proposed for heading and position control system. For 

simulation purposes, a mathematical model with four effective thrusters have 

been chosen to test the performance of the proposed controller. The final closed 

loop system has been analysed and tested through simulation studies. The results 

are very encouraging. 

1. Introduction 

Control of surface ships has always remained a 

challenging problem. Ship control systems are being 

developed for more than a century but research on better 

controller design continues. The International Federation 

of Automatic Control (IFAC) considers the ship control 

problem among one of its benchmarking problems 

because it is a highly non-linear control problem. 

Moreover, the ship dynamics vary with operating as well 

as environmental conditions. The operating conditions 

include the speed of the vessel, the loading conditions 

and trim etc. On the other hand, the environmental 

conditions include the wind generated waves, the depth of 

water and the ocean currents. The design of a robust 

controller under all these conditions is not an easy task. 

During the past hundred years, almost all conventional 

controller techniques such the Proportional Integral 

Derivative (PID), Pole Placement, the Least Quadratic 

Gaussian (LQG), Feedback Linearization, Sliding Mode 

Control, Back Stepping Control and various adaptive 

techniques have been explored. A comprehensive review 

of the mentioned conventional techniques and their 

references can be found in [1]. Unfortunately, every 

technique suffers from one or another problem and it has 
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not been possible to design a controller which is free 

from all disadvantages.  

One common problem in almost all of the   above 

control techniques is that an accurate mathematical 

model is required to tune the parameters of the controller.  

A ship is generally modelled as a 6 Degree of Freedom 

(DoF) non-linear model representing three linear and 

three angular motions. A detailed derivation of these 

equations can be found elsewhere [2]. 

Neural Network based techniques may be suitable for 

course control system because they do not require 

mathematical model of the vessel for controller design.  

A neural network based control system may be 

developed which may behave optimally at varying 

operating and environmental conditions without 

compromising stability boundaries.  

In this paper, a neural network based controller is 

proposed which controls heading and position of a ship. 

This is done by controlling the azimuth angles of four 

thrusters. 

2. Ship Course Control Problem 

In a ship course control system, controller is designed so 

that the ship follows a desired course. This is called 

course keeping control problem. On the other hand, a 

controller may be designed so that the ship turns at a 

desired heading angle. This is termed to as the course 

changing problem. In both of these control systems, 

usually rudder motion is controlled to achieve a desired 

heading during the course keeping or course changing 

mode. However, in some modern ships, effective 

thrusters are used instead of a rudder. Thruster based 

control system is particularly suitable in position keeping 

applications.  

A typical course control system is shown in Fig. 1, in 

which r, d   and   are the reference heading, desired 

heading and actual heading respectively. c is the 

commanded rudder angle and   is the actual rudder angle. 

This simple control system is also called a ship autopilot 

where only rudder angle is controlled to achieve the 

desired course. Sometimes, roll motion is also controlled 

along with the heading angle. This is called the rudder roll 

stabilization. However, this aspect will not be considered 

in this paper. 

In Fig. 1, reference model is used to generate the 

desired heading angle. For a course changing maneuver, 

a second order transfer function of the following form 

may be used. 

Ψd

Ψr
=

ωn
2

s2+2ωns+ωn
2                                                     (1)                                                        

where n and   are un-damped natural frequency and 

damping ratio respectively.  The damping ratio should be 

unity or near unity for a critically damped system.  The 

steering machine model is shown in Fig, 2. This model of 

the steering machine was first proposed by Van 

Amerongen [3]. 

The controller of Fig. 1 is also called autopilot because 

it automatically controls the heading of the ship under 

consideration under varying operating and environmental 

conditions. In case of thruster driven ship, the effective 

thrusters are used instead of a rudder. In general, the 

rudder based control system is a Single Input Single 

Output (SISO) control system whereas the thruster based 

system is a multivariable control system because more 

than one thrusters are used to control heading and position 

of a ship.

 

Fig. 1. Ship steering control system 
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Fig. 2. Steering machine 

3. Literature Review 

In the past, artificial neural networks have been 

extensively used for both for course keeping and course 

changing manoeuvres. Richter and Burns [4], Witt et al. 

[5], Burns [6] and Simensen and Murray-Smith [7] were 

among the first who explored the applicability of 

artificial neural networks for heading control of a ship. 

They developed neural network based controller in such 

a way that it behaved like a conventional PID controller. 

They trained the controller by using the conventional 

error back propagation algorithm. Unar and Murray-

Smith [1, 8] introduced the applicability of Radial Basis 

Function networks for the application. After that 

pioneering work, a lot of neural network based control 

systems have been proposed.  Most recent work include 

Tung [9], Haouari et al. [10], Wang et al. [11], and Wang 

[12]. 

Due to space limitation, it is not possible to present a 

comprehensive literature review. However, it can easily 

be concluded as follows. 

1. In most of the previous work, the feedforward 

neural networks (either Multilayer Perceptron (MLP) 

networks or Radial Basis Function (RBF) networks) 

have been used. 

2. In almost all closed loop control systems, a rudder 

angle has been controlled for course keeping or course 

changing or both control systems. 

3. Very little work has been done on thruster driven 

ships. 

Almost all of the researchers have applied the 

feedforward neural networks (either Multilayer 

Perceptron Networks or Radial Basis Function 

Networks) for the application. Moreover, the controlling 

variable in all of the above mentioned papers is the 

rudder angle.  

This paper proposes a neural network based 

controller for a thruster driven ship. As mentioned, 

thruster based control system is more challenging 

because more than one thrusters are to be controlled.  In 

other words, the thruster based control system is a 

Multiple Input Multiple Output (MIMO) control system. 

4. Thruster Based Control System 

Thruster based control systems are very effective in 

Dynamic Positioning (DP) of ships.  A thruster based 

control system is able to maintain a predetermined 

position and heading automatically by means of thruster 

force.  

The advantages of thruster based control systems are 

many and include the following [13, 14]. 

1. Enhance the manoeuvrability of the vessel 

especially at low speeds 

2. Less sensitive to vibration and noise 

3. Make docking easier, since they allow the captain 

to turn the vessel to port or starboard side, without using 

the main propulsion mechanism which requires some 

forward motion for turning. 

4. Provide better electrical efficiency, better use of 

ship space and better hydrodynamic efficiency. 

5. Lower maintenance cost 

5. Mathematical Model 

The mathematical model chosen has been taken from 

McGookin et al. [15]. This is a scale model of an 

experimental ship available at the Engineering 

Cybernetics Department of Trondheim University 

Norway.  The ship is titled as Cyber-Ship-I. The length 

of this scale is 1.17 m. This is 1/70th the size of the actual 

ship.  The linear as well as angular velocities of Cyber-

Ship-I are approximately eight times larger than the 

actual vessel's [15].  This ship has four thrusters, two at 

the bow and two at the stern, as shown in Fig. 3. These 

thrusters are used to control heading and position of the 

ship. The surface motion of this ship can be represented 

by Eq. 2. 

Mν̇ + C(υ)υ + D = τ                                                (2)                                                                                   

where M, C and D are the mass/inertia,  Coriolis and 

damping matrices respectively.  

Rudder rate limiter 
Rudder limiter 

- 

+  


c
   

  1/s 
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Fig. 3. Cyber-Ship-I 

The variable  in Eq. 1 is the vector υ = [u    v    r] 

where u is the surge velocity in m/s, v is the sway 

velocity in m/s, and r is the heading rate in degrees/s.  

The variable  is the input force vector provided by the 

thrusters. It is a vector τ =  [τx     τy      τz ], where x is 

the thrust force along the body fixed x-axis, y is the 

thrust force along the body fixed y-axis and z is the 

thrust force along the body fixed z-axis.  

For the ship under consideration, the matrices M, C 

and D have been computed as follows [15]. 

M = [
19 0 0
0 35.2 0
0 0 20

],    

C(υ) =  [
0 0 −35.2ν
0 0 19u

35.2ν −19u 0
]   

and D = [
6.3 0 0
0 7 0
0 0 2

] 

Eq. 2 may also be re-written as Eq. 3. 

υ̇ =  −M−1(C(υ)υ +   D)  +  M−1τ                           (3)                                                   

The Kinematics equations are mathematically 

represented as Eq. 4. 

η̇ = J(η)υ                                                                     (4)                                                                                                                              

where   J(η)  =   [
cosΨ −sinΨ 0
sinΨ cosΨ 0

0 0 r
] denotes Euler 

equations relating the body fixed and the Earth fixed 

reference frames and  η = [x   y     Ψ], where  is the 

yaw (heading) angle in degrees and (x, y) is the x and y 

position of the ship. 

In the standard state space representation, Eqs. (2) 

and (3) can be re-arranged as Eq. 5. 

ẋ = Ax + Bτ                                                                 (5)                                                                                                                                              

where  ẋ = [
υ̇
η̇

], x =  [
υ
η],  

A = [
−M−1(C(υ))υ + D) 0

J(η) 0
],  B = [M−1

0
] 

The thruster configuration for Cyber-Ship-I is shown 

in Fig 4.  In the Figure, the position of the thrusters is 

given relative to the center of gravity which is also the 

origin of the body fixed reference frame. Each thruster 

is represented by (a) the force it produces (i. e. f; i=1, 2, 

3, 4) and (b) the azimuth angle a; defining the direction 

of the corresponding force, as shown in Fig. 2.  The 

azimuth angles 1 and 2 can be set independently, 

however, 3 must be equal to 4 so that the thruster 3 

and thruster 4 operate in the same direction. 

The thruster forces and azimuth angles are 

mathematically related to each other as Eq. 6. 

τ = H(α)f                                                                     (6)                                                                         

where 

f = [f1, f2, f3,    f4 ]T, = [α1,   α2,   α3,    α4]T   and  

H(α) =

  [

cosα1 cosα2 cosα3

sinα1 sinα2 sinα3

0.497 sin(α1 − θ1) 0.497 sin(α2 − θ2) 0.407sinα3

    

cosα4

sinα4

0.527sinα3

]                                   

  …(7) 

where 1 and 2 are the phase shift angles of the 

thrusters relative to the center of gravity. Due to their 

very small values, these phase shift angles are assumed 

to be zero in this paper. 

 

Fig. 4. Thruster configuration 

In the simulation studies, following values of 1, 2, 

3 and 4 have been used as suggested by McGookin 

[15]. 

1 = 2 =  radians   and   3 = 4 = /2 radians   

 Substituting the above values of the azimuth angles 

and ignoring phase shifts, we get Eq. 8. 

H(α) =   [
−1 −1 0
0 0 1
0 0 0.407

    
0
1

0.527
]                           (8)                       
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This indicates that the surge motion is governed by 

thrusters I and 2 at the stern and the sway and yaw 

motion is governed by thrusters 3 and 4.  

6. Results and Discussion 

A multilayer Perceptron neural network with an input 

layer, hidden layer and output layer is trained with 10 

neurons in the hidden layer. Because such a network is 

trained by using the supervised learning, so a well 

optimized sliding mode controller is used for generating 

the desired data for training. The heading response 

should be critically damped with zero overshoot. 

1. After turning at a particular angle, the ship should 

follow a path parallel to the original path. 

2. The difference between the actual and the desired   

heading   should   be   as   small   as possible. 

3. The Heading angle rate should be smooth and 

should approach towards zero after turning.  

4. The difference between the actual and desired 

heading should be minimum 

Fig. 5 shows heading response for a step command 

of 20o. The response is very smooth and critically 

damped.  After turning, the ship’s heading is parallel to 

the actual path. The heading error is plotted in Fig. 6. 

For the given ship, the maximum allowable heading 

angle error is 1o, however, the maximum heading error 

generated by the proposed controller is approximately 

0.4o which is well within the acceptable limits. It can 

easily be seen that the steady-state error is zero. The 

heading rate is depicted in Fig. 7. The heading rate error 

is less than 1o and its steady state value is zero. It is 

therefore concluded that the heading response is highly 

satisfactory.  

The graph between x-position and y-position is 

shown in Fig. 8. It is desired that none of the control 

signals which reach saturation. The smooth responses 

indicate that none of the three control signals saturate.          

 

Fig. 5. Actual heading and desired heading when the 

vessel turns at an angle of 20o 

 

Fig. 6. Heading error in degree 

 

Fig. 7. Heading error rate in degrees 

 

Fig. 8. x and y position 

7. Conclusion 

This paper proposes an artificial neural network based 

controller for heading and position control of a ship. A 

mathematical model of a ship has been derived from the   

physical model of   Cyber-Ship-I,   which is an 

experimental facility available at University of 

Trondheim Norway. The simulation results show that 

the proposed controller has produced satisfactory 

results. The controller has controlled heading and 

position of the vessel with reasonable accuracy. In the 

future work, the performance of the proposed controller 

may be investigated under external disturbances.   
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