

© Mehran University of Engineering and Technology 2022 135

Mehran University Research Journal of Engineering and Technology

https://doi.org/10.22581/muet1982.2202.13

 2022, 41(2) 135-145

Ontological automation of software essence kernel to assess progress of software

project

Farooq Ali a,*, Asif Raza b, Muhammad Munwar Iqbal a, Tahira Nazir a

a Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan

b Department of Computer Science and Information Technology, University of Mianwali, Pakistan

* Corresponding author: Farooq Ali, Email: farooq.ali@uettaxila.edu.pk

Received: 24 December 2019, Accepted: 16 December 2020, Published: 01 April 2022

K E Y W O R D S A B S T R A C T

Alpha

Essence

Activity Space

Software Health

 Managing a software project with a large number of requirements is a challenging

task, a lot of effort and time is required to measure the software’s progress and

health. To tackle this, software development organizations look for different

development processes that would best assist them. Recently, software essence is

used to measure the progress and health of software development. However, these

are applied manually to assess the development and fitness of the system.

Therefore, it is very difficult for software organizations to access the required

information quickly. The aim of this study is the automation of Software Essence

Kernel through Ontology Development to quickly measure the progress and health

of the system. Experimental work is done with a hypothesis that if software

essence kernel is automated, then one can quickly measure the progress and health

of the system. The results of this study argue that software health of the system

can be quickly and easily measured if the ontology is automated.

1. Introduction

The software development method contains a large

number of practices, procedures, and techniques which

semantically help in the development of projects. In past

decades, different software development methods were

proposed including model-driven to agile approaches.

Currently, software essence is used to measure the

health of software projects [1]. However, these essences

are applied manually to measure the health of a software

project [1-4]. The software essence is significant in

numbers which were discussed in subsections. To

maintain large data, ontology is one of the best options

to use. [5-6] used ontology for different purposes.

Therefore, we have used ontology to maintain software

essence and by using the same ontology, we have done

reasoning to measure the health of software projects.

1.1 Essence of Software Engineering

The essence is the foremost and well-known output from

the Software Engineering Method and Theory

(SEMAT) community. As with the development of

software techniques, the way the people work with

software methods has been completely changed [1-2].

So, in order to deal with it, the Software Engineering

Method and Theory (SEMAT) community was set up by

Bertrand Meyer, Ivar Jacobson, and Richard Soley in

September 2009. The SEMAT community-produced it’s

the most distinguish output named as Essence [2]. There

were the two main goals of SEMAT community; (1)

Searching a kernel of extensively approved elements,

and (2) Describing a concrete theoretical basis. The aim

of this community was to introduce essence language

and essence kernel that can easily be scaled, learned,

https://doi.org/10.22581/muet1982.2202.13
mailto:farooq.ali@uettaxila.edu.pk

© Mehran University of Engineering and Technology 2022 136

used, modified and extended. Moreover, these

languages and kernel can help the users to quickly

describe the basics and fundamentals of their existing

used methods. Furthermore, the introduction of essence

language will assist the people to compare, evaluate,

analyse, simulate, adapt, and compose their methods

with each other and with academics’ researchers as well.

The Essence specification defines a domain-specific

language (i.e., the Essence language) and a kernel (i.e.,

the Essence kernel) in order to support the definition and

the enactment of methods in the context of software

engineering endeavours. While the language defines the

theoretical and conceptual base to define and describe

software engineering methods, practices and kernels, the

kernel aims to provide a set of essential and universal

elements that form the common ground of software

engineering.

The Essence kernel captures the idea of a common

ground based on the things we always have, the things

we always do, and the skills we still need in order to

conduct software engineering endeavours. The objective

of the kernel is to provide a set of universal elements to

define, use and adapt methods and practices supporting

the daily practices of the software development team in

a dynamic way while fostering communication and

collaboration. To establish a common ground, the

essence kernel addresses the three areas of concern

which are customer, solution and endeavour. Moreover,

within these areas of concern, the kernel defines activity

spaces, alphas and competencies.

1.1.1 Areas of concern

The kernel is structured alongside three areas of

concern: The solution area of concern, the customer area

of concern and the endeavour area of concern [3]. The

solution area of concern addresses the specification,

design and implementation of the software system.

Within this area, the team establishes a shared

understanding of the requirements and implements,

builds, tests deploy and support the software system.

The customer area of concern deals with the concrete

utilization and operation of the software system to be

developed. Within this domain, the team understands the

opportunity to build software, i.e., the value the software

system provides to the other stakeholders. The domain

area of endeavour engages in the concerns of the team

and the management of its work. Within this area, the

team is formed and work is being planned and

organized; the team advances the job in alignment with

the agreed working approach.

1.1.1.1 Alphas: Alphas can be regarded as one of the

most central concepts of the kernel. Alphas symbolize

the essential items to work with while conducting a

software engineering endeavour. As such, alphas form

the base of the usual ground for the illustration of

methods and practices of software engineering. The

kernel defines a collection of seven alphas as shown in

Fig. 1. Each alpha belongs to a specific area of concern.

The customer domain area specifies Opportunity and

Stakeholders' alpha. Within the solution domain area,

the Software System alpha and Requirements are

defined. The domain area of endeavour includes the

Team, the Way of Working and the Work alphas. During

the execution of an endeavour, the team progresses the

alphas from an initial state to a target state. Therefore,

each alpha contains a set of standardized states. For

example, the Opportunity alpha progresses through the

states identified, value established, the solution needed,

addressed, viable and benefited accrued.

Fig. 1. Alphas for software essence kernel [2]

Alpha states allow us to assess the progress and

health of the alphas during the execution of the

endeavour. Furthermore, the states allow to determine

where the team currently stands and how much work is

required to complete the project. The assessment of each

state is supported by a defined checklist associated with

each state. For example, regarding the alpha

Opportunity and its state Value Established, a checklist

consisting of five items summarizes the required criteria

to achieve that state.

1.1.1.2 Activity spaces: Activity spaces represent

placeholders for the essential activities in software

engineering endeavours [3]. Each activity space has a set

of objectives and is related to certain kernel alphas

which are required to achieve. Activity Spaces describes

the challenges a team may face while development and

maintenance of software systems. Moreover, activity

© Mehran University of Engineering and Technology 2022 137

spaces define the things that will required to complete

them. Further, they balance the alphas and present an

activity-based vision on software engineering. Activity

spaces against area of concerns are shown in Fig. 2.

Fig. 2. Activity Spaces against area of concerns [2]

1.1.1.3 Competencies: The kernel competencies

complement the kernel alphas and activity spaces with

the significant competencies required to conduct

software engineering endeavours. The defined kernel

competencies consist of communication, engineering

and management capabilities. The following image

depicts the specified competencies across the three areas

of concern.

Each competency can be assessed by five levels of

achievement that build upon each other. Team members

with competencies at level 1 (‘Assists’) demonstrate an

essential understanding of required perceptions and can

track instructions. At level 2 (‘Applies’), the concepts

are applied in simple contexts based on first experiences.

Level 3 (‘Masters’) defines the competency to apply the

concepts in most circumstances. Team members

possessing this competency are considered to have

enough knowledge skills to perform tasks with no

supervision. Competencies at level 4 (‘Adapts’) allow

judging how and when to apply the concepts in

additional multifaceted contexts. Competencies at Level

5 (‘Innovates’) represent recognized experts who extend

concepts, apply them to new contexts, and inspire

others. Table 1 shows the essence area of concerns along

with their respective alpha, activity spaces, and

competencies.

1.2 Ontology

Ontology is “a collection of concepts and categories in a

domain area. It represents inter-relations and the

properties of concepts and categories.” Many authors

define the number of approaches to create an ontology

for different purposes. Most common approaches are

top-down, bottom-up and combination development. In

2009 Yajing Zhao and latterly Hans-Jörg Happel and

Stefan Seedorf discussed these approaches and stated

that it is difficult for software engineers to access the

required information manually if the information is in a

large amount. Furthermore, they state that semantic web

techniques e.g. ontology can help to maintain a large

amount of data [4].

Table 1

Essence Kernel [2]

Area of

Concern

Alphas Activity

Spaces

Competencies

Customer - Opportunity

- Stakeholders

- Explore

possibilities

- Understand

stakeholders

needs

- Ensure

stakeholder

satisfaction

- Use the

system

Stakeholder

Representation

Solution - Requirements

- Software

system

- Understand

the

requirements

- Shape the

system

- Implement

the system

- Test the

system

- Deploy the

system

- Operate the

system

- Analysis

- Development

- Testing

Endeavour - Work

- Team

- Way of

working

- Prepare to

do the work

- Coordinate

activity

- Support the

team

- Track

progress

- Stop the

work

- Leadership

- Management

1.3 Research Question

The research question of this study is ‘how to automate

Software Essence Kernel to measure the health of

© Mehran University of Engineering and Technology 2022 138

software projects?’. To answer this question, we have

divided the work into following two objectives.

1. To query the current status of the software project

in an automatic manner.

2. Through reasoning, quantify the progress of

software development.

The rest of the paper is organized as follows. In

section 2, we have discussed related work. In section 3,

the research methodology and research process are

presented. In section 4, results and analysis are

discussed. Section 5 is about the conclusion and future

work of this study.

1.4 Research gap analysis

Literature shows that using ontology one can easily

maintain a large amount of data. Naveen Malviya [13]

and P. K. C. M. Wijewickrema [14] build ontologies to

maintain data of different projects and proves that one

can easily do reasoning and measure using it. Iaakov

Exman [24] proposed an ontology of software kernel

essence (SEMAT) but the ontology build by him is on

the abstract level. He claimed that one can check the

completeness of the project using the same if it extends

it by adding sub-alphas.

No one yet has created ontology on low-level details

to verify laakov Exman’s claim. Ontology at a low level

still requires attention.

2. Related Work

In 2009, Yajing Zhao [4] discussed different

methodologies for Ontology-based software

engineering. He stated that it is difficult for software

engineers to access the required information manually if

the information is in a large amount. Furthermore,

Yajing Zhao stated that, by using Semantic web

techniques, one could formalize a large informational

data. By doing this, probability of availability,

accessibility and reusability of informational data can be

improved.

Hans-Jörg Happel and Stefan Seedorf [9] also

provided a brief explanation of diverse ontology-based

approaches in Software Engineering. They discussed the

benefits of ontologies in software engineering and then

a skeleton for categorizing the application of ontologies

in Software Engineering is proposed. Some advantages

discussed in this paper are; (1) Ontologies provide great

flexibility as it is well compatible to merge information

from different sources, (2) Ontologies offer a way to

catch knowledge concerning some specific problem

domain. iii) Ontologies provide background knowledge

of the project that helps novels to query the system.

Research Studies discussed above, shows that it is

difficult for software engineers to maintain huge data.

To maintain large amount of data, ontologies are helpful.

It supports that ontologies can be used to maintain a

large amount of data.

P. K. C. M. Wijewickrema and R. C. G. Gamage [14]

created an ontology for automatic document Dewey

decimal classification system which splits information

into subjects with a numeric identifier. They reduced the

rapid growth of text-form information by converting the

text in an organized form i.e. ontology. They classify

their text manually and automatically, then they

compare the results of both techniques. By comparing

results, they said that both human and machine users

would extract required information quickly and in the

right way using the same ontology.

In 2011, Naveen Malviya, Nishchol Mishra, and

Santosh Sahu [12] developed a university ontology.

They stated that with the help ontology, one can view

key concepts and their relationship with information.

They focused on how ontology creates. Furthermore,

they stated that one of the uses of ontologies is to

properly specify the conceptualization and interrelations

between instances and properties of Concepts. The main

components used to develop ontology are classes,

objects, relations and attributes. Classes are the elements

that conceptualize components of a domain. Classes are

usually organized in taxonomies that are associated to

each other through relations, which can be taxonomic

(thus defining the type of inheritance among

superclasses or subclasses) or non-taxonomic (which

can define any other type of relationship, such as part-

of, cause-effect, etc.). Objects are the specific entities of

a domain and are represented as instances of classes;

they may have specific properties that are represented by

the attributes of these classes. They proposed essential

steps concerning screenshots display with mainly

advance tools for ontology creation and editing i.e.

protégé tool.

This paper proposed a procedure to develop ontology

using protégé tool and advocates that one can use

protégé tool to develop ontologies. Iaakov Exman [24]

automates an ontology for software essence kernel

(SEMAT). He performed an experiment to analyse that

“In which logic and up to what degree does the kernel

and its alphas, truly represents the essence of software

engineering?” He stated that the kernel alphas can be

© Mehran University of Engineering and Technology 2022 139

sighted as top-most ontology, certainly the Essence of

Software Engineering. Further, he developed a top-level

alpha ontology and claimed that one can ensure the

completeness of software using the same. By extending

the approach using sub-alphas and other Kernel entities

one can check completeness of system and measure the

health of the project.

3. Research Methodology

In this section, we have discussed hypotheses of study,

research process, and data acquisition process.

3.1 Hypothesis

If the software essence kernel is automated, then one can

quickly measure the progress and health of the ontology.

3.2 Research Process

First of all, we have collected data from Essence Kernel

Alpha states and activity spaces (Fig. 3). Then ontology

of software essence kernel was developed using the

standard methodology of ontology construction and

protégé tool [16]. After building the ontology, the results

were validated by using Apache Jena Fuseki server

through SPARQL queries. These queries were executed

using rule-based inference [22].

Fig. 3. Research Process for automation of software essence

3.3 Data Acquisition

We have collected all data for Essence Kernel Alpha

states and Checklists the Alpha’s states and Checklists

from Semat book [23]. Table 2 shows the Kernel Alpha

states, and Table 3 shows the completion criteria for

activity spaces. Moreover, a completed ontological

graph is shown in Fig. 2.

Table 2 shows the Alpha classes, their cross-ponding

subclasses and the description. It shows that every class

is a significant task or an activity which is subdivided

into subclasses, tasks or activities. Every subclass has a

description. One can see that Stakeholder is a class

having subclasses or tasks like recognized, represented,

involved and satisfied in use. Table 3 shows the

completion criteria against each activity space. We have

divided the evolution of the system among area of

concerns. The division was done on the basis of activity

spaces. There are 4, 4 activity spaces for customers and

endeavour so 30 percent is given to each of them. The

solution has six activity spaces so 40% was given to it.

They are subdivided according to completion criteria.

4. Results and Validation

We have created an ontology-based on kernel alpha

states. First of all, to create ontology, we have created

classes, then subclasses of classes and individuals for

classes and lastly, object property of individuals.

Protégé tool was used to create an ontology. Fig. 2

shows a complete ontology graph. The Protégé is also

an editor used for ontology having two languages; (1)

OWL, (2) RDFS.

Fig. 4. Complete Ontology graph for software essence

Fig. 4 shows a complete ontology graph against table

2. It shows activities and sub-activities in a graphical

view. Furthermore, it shows that Stakeholders of a

project required to be recognized and have

representation, must be involved in project

development, must-have in the agreement of project and

at last must be satisfied to end product. Similarly, every

class has its subclasses or sub-activities. To link an

individual with an object property, we used Boolean

data type properties. In our proposed Ontology,

Individuals of a stakeholder’s subclass i.e. Involved are

development team, investor, maintenance team and

support team, their data properties were declared as

Boolean, means their value will be true or false. True in

case, when an individual is involved otherwise the value

of object property remains false. Furthermore, we have

applied different Sparql quires and have achieved one

activity space “Explore_Possibilities” as the completion

criteria for Explore_Possibility in Table 3 is to recognize

all stakeholders and value established for the

opportunity. We have run 8 queries to validate our

results as shown in Table 4.

© Mehran University of Engineering and Technology 2022 140

Table 2

Kernel alpha states of software essence

Stakeholders

Opportunity

Requirements Software system Team

Work Way of

working

Recognized: The

stakeholders are

recognized.

Identified: Social,

business opportunity or

commercial, is

discovered and it can

be completing by a

software solution

Conceived:

Requirements for

software solution

has been approved.

Architecture

selected: A design

is chosen that will

help to address the

key risks relevant

to organizational

constraints.

Seeded: Mission

of solution team is

clear, and they

know how

necessary to

expand the team is

in place.

Initiated: The work

has been demanded.

Principles

established:

Principles and

constraints

form the way-

of-working are

recognized.

Represented: The

processes for

including the

stakeholders in

software project

should be approved

and the stakeholder

representatives

should have been

selected.

Software solution

required: Need of a

software solution is

verified

Bounded: The aim

scope, and extent

of the new software

solution are clear.

Demonstrable:

Working software

is accessible

which shows that

the selected

architecture is

suitable for

purpose and

testing

Formed: Team has

been inhabited

with adequate

dedicated people

to begin the

mission.

Prepared: The

preconditions for

beginning the work

has been encountered

Foundation

established:

Tools and

practices to

form the

foundation of

the method of

working are

chosen and

prepared for

use

Involved: The

recognized

stakeholders are

energetically

participating

responsibly in

project work.

Value established:

Most suitable and

successful solution has

been identified.

Coherent:

Requirements offer

a reliable

explanation of the

vital features of the

new solution.

Usable: The

system is useful

and validates all

the quality

characteristics of a

software system.

Collaborating:

Team members

are doing work

collectively like a

group.

Started: The work is

progressing

In use: Some

members are

using and

adapting, the

way‐of‐

working.

In-agreement:

Stakeholders

representatives are

agreeing.

Viable: A solution

which can be generated

cheaply, quickly and

enough successfully

tackle the opportunity

has been approved

Acceptable:

Requirements that

address a system

which is

appropriate to

stakeholders

Ready: Whole

solution is

recognized for

deployment.

Performing: Team

members are

working

efficiently and

effectively

Under control: work is

going well, risks

under control,

productivity levels are

enough to get an

acceptable outcome

In Place: The

team is

utilizing the

way of

working to

achieve their

work.

Deployment

Satisfaction:

Nominal hopes of

the stakeholder

should have been

achieved.

Addressed: The

approved solution

apparently completes

the identified

opportunity.

Addressed:

Stakeholders

requirements have

been achieved

Operational: In an

operational

environment, the

system is in use.

Adjourned: The

team is adjourned

and not

responsible for

taking out its

mission.

Concluded: The work

to generate the results

has been achieved.

Working well:

The method of

working is

doing well for

the team.

User satisfaction:

The system has

successfully met

nominal stakeholder

requirements.

Benefit accrued:

Effective usage and

trade of the addressed

solution is generating

Fulfilled:

Addressed

requirements

satisfy the

requirements of

software solution

Retired: No

support for the

system

Closed: All remaining

maintenance tasks

have been completely,

and work has been

formally ended.

Retired: The

way of

working is no

longer in use

by the team

© Mehran University of Engineering and Technology 2022 141

Table 3

Completion Criteria for Activity Spaces

Area of concern

with health

percentage

Activity Spaces Completion Criteria Health Percentage

progress while

activity space

achieved

Costumer, 30 %

Explore possibilities Stakeholders::Recognized, 3.75

Opportunity::Value established 3.75

7.5

Understand stakeholder

needs

Stakeholders::In agreement, 3.75

Opportunity::Viable 3.75

7.5

Ensure stakeholder

satisfaction

Stakeholders::Satisfied for

deployment, 3.75

Opportunity::Addressed 3.75

7.5

Use the system Stakeholders::Satisfied in use 3.75,

Opportunity::Benefit accrued 3.75

7.5

Solution, 40%

Understand the

requirements

Requirements::Coherent 2.23 6.67

Shape the System Requirements::Acceptable 2.23,

Software System::Architecture

Selected 2.23

6.67

Implement the System Software System::Ready 6.67 6.67

Test the System Requirements::Fulfilled 2.23,

Software System::Ready 2.23

6.67

Deploy the System Software System::Operational 6.67 6.67

Operate the System Software System::Retired 6.67 6.67

Prepare to do the Work Team::Seeded 2.23, Way of

Working::Foundation Established

2.23 , Work::Prepared 2.23

6.67

Endeavour, 30 %

Coordinate Activity Team::Formed 3.75, Work::Under

Control 3.75

7.5

Support the Team Team::Collaborating 3.75, Way of

Working::In Place 3.75

7.5

Track Progress Team::Performing 2.5, Way of

Working::Working Well 2.5,

Work::Concluded 2.5

7.5

Stop the Work Team::Adjourned 2.5, Way of

Working::Retired 2.5, Work::Closed

2.5

7.5

5. Results

After developing the ontology graph, we have

validated the results using Apache Jena Fuseki server.

Google chrome were used as an interface and SPARQL

queries were applied to extract the output of ontology.

These queries were executed using rule-based inference

[22]. We have run 8 queries as shown in Table 4. In this

table, queries, description of queries and results from

defined ontology are presented. Queries for one activity

state are presented i.e. Explore possibilities. Stakeholder

and opportunity classes are discussed in the table as the

same is the completion criteria for explore possibilities.

Furthermore, it shows how one can use different queries

to measure the current health of the project and also to

update the health of the project.

© Mehran University of Engineering and Technology 2022 142

Table 4

Queries to check and update software health

Description Query

To search what are the instance of recognized class which

is a subclass of stakeholder?

SELECT ?Stakeholders

WHERE {?Stakeholders rdf:type essence:Recognized ; }

Results

To search which instances of recognized class are

identified / recognized?

False value against each instance shows that no instance is

identified.

SELECT ?Stakeholders ?Data_type ?value

WHERE { ?Stakeholders rdf:type essence:Recognized

;?Data_type ?value .

FILTER (?Data_type = essence:boolean && ?value !=

essence:Recognized) }

Results

If any instance identified then instance check list is

updated.

Delete and insert was used as there is no update keyword

options in protégé tool.

Delete{ essence:Maintance_team_is_recognized essence:boolean

essence:Recognized , "false"^^xsd:boolean }

INSERT {

essence:Maintance_team_is_recognized essence:boolean

essence:Recognized , "true"^^xsd:boolean

}

WHERE

{ ?asdf rdf:type essence:Recognized; ?Data_type ?value .

FILTER (?value = "false"^^xsd:boolean) }

Results

To search which instances are updated by query 3?

Results shows that only one value that Maintenance team

was only recognized by query 3.

SELECT ?Stakeholders ?Data_type ?value

WHERE { ?Stakeholders rdf:type essence:Recognized

;?Data_type ?value .

FILTER (?Data_type = essence:boolean && ?value !=

essence:Recognized) }

© Mehran University of Engineering and Technology 2022 143

Results

To search all instances of Recognized are updated?

After updating all the instances of recognized by using

query 3, the value of all instances is ‘true’. It means all

stakeholders are recognized.

SELECT ?Stakeholders ?Data_type ?value

WHERE { ?Stakeholders rdf:type essence:Recognized

;?Data_type ?value .

FILTER (?Data_type = essence:boolean && ?value !=

essence:Recognized) }

Results

To search value of instance Value-Establish (2nd

completion criteria for explore possibilities).

SELECT ?Oppertunity ?Data_type ?value

WHERE { ?Oppertunity rdf:type essence:Value_Established

;?Data_type ?value .

FILTER (?Data_type = essence:boolean && ?value

!=essence:Value_Established) }

Results

When stakeholders are recognized and opportunity is

created, all the instance of recognized and value

established are identified then it means that explore

possibilities activity space is completed.

SELECT distinct ?Stakeholders ?value ?Value_Established ?valu

?result

WHERE{ ?Stakeholders rdf:type essence:Recognized

;?Data_type ?value .

FILTER (?Data_type = essence:boolean && ?value !=

essence:Recognized) ?Value_Established rdf:type

essence:Value_Established ;?Dta_type ?valu .

FILTER (?Dta_type = essence:boolean && ?valu

!=essence:Value_Established) bind(IF(?value =

"true"^^xsd:boolean && ?value="true"^^xsd:boolean,

"Completed" , "Not Yet Completed") AS ?result) }

Results

To search the achieved activity spaces.

Results shows that only explore possibility is achieved.

SELECT ?Activity ?Data_type ?value

WHERE { ?Activity rdf:type essence:Explore_Possibilities

;?Data_type ?value .

FILTER (?Data_type = essence:boolean) }

Results

© Mehran University of Engineering and Technology 2022 144

After completion of Explore possibilities, a graph is

generated to check the progress in graphical form which

is shown in Fig 5.

Fig. 5. Software Health after Explore Possibilities achieved

Fig. 5 shows that only one activity space that is

Explore possibilities having 7.5% of totals software

health is achieved. Furthermore, it shows that 92.5% of

work is remaining to complete the project. Similarly,

Fig. 6 shows the results when all activity spaces were

achieved present in the customer area of concern and

Fig. 7 shows the graph of the completed project.

Fig. 6. Software Health after the Customer area of concern

completed

Fig. 7. Software Health after completion of the project

Results show that one can measure the health of

software projects using ontology automatically. The

results are compiled in seconds using ontology while

literature shows that manually it is time-consuming to

deal with a huge amount of data. Hence our hypothesis

is proved.

6. Conclusions

Software development processes are huge in numbers,

and it is difficult to check out the progress of software

project manually. Therefore, we have investigated and

find the need to automate software essence to measure

the health of a software project. We have created an

ontology at a low level using protégé tool and measure

health using the SPARQL query. Results show that if

software essences are automated, then one can

successfully measure the health and progress of a

software project quickly. In the future, the front-end

should be more interactive for end user to improve the

quality of software project.

7. References

[1] W. Dahhane, J. Berrich, T. Bouchentouf, and M.

Rahmoun, “SEMAT Essence’s Kernel applied to

O-MaSE”, in 2016 5th International Conference

on Multimedia Computing and Systems

(ICMCS), 2016, pp. 799–804.

[2] J. Pieper, O. Lueth, M. Goedicke, and P. Forbrig,

“A case study of software engineering methods

education supported by digital game-based

learning: Applying the SEMAT Essence kernel

in games and course projects”, in IEEE Global

Engineering Education Conference (EDUCON),

2017, pp. 1689–1699.

[3] H. Oktaba, “Use of the essence and Kuali-Beh to

structure software engineering courses”, in 2016

4th International Conference in Software

Engineering Research and Innovation

(CONISOFT), 2016, pp. 47–52.

[4] Y. Zhao, J. Dong, and T. Peng, “Ontology

classification for semantic-web-based software

engineering”, IEEE Trans. Serv. Comput., vol. 2,

no. 4, pp. 303–317, 2009.

[5] R. Bouzidi, A. De Nicola, F. Nader, and R.

Chalal, “OntoGamif: A modular ontology for

integrated gamification”, Procedia Computer

Science, Preprint, pp. 1–35, year?.

[6] B. Chandrasekaran, J. R. Josephson, and V. R.

Benjamins, “What are ontologies, and why do we

need them?,” IEEE Intell. Syst., vol. 14, no. 1,

pp. 20–26, 1999.

[7] J. Brank, M. Grobelnik, and D. Mladenic, “A

survey of ontology evaluation techniques”, in

Proceedings of the conference on data mining &

data warehouses (SiKDD), 2005, pp. 166–170.

© Mehran University of Engineering and Technology 2022 145

[8] A. Gangemi, C. Catenacci, M. Ciaramita, and J.

Lehmann, “A theoretical framework for

ontology evaluation and validation”,

Proceedings of the 2nd Italian Semantic Web

Workshop, University of Trento, Trento, Italy,

2005, vol. 166, p. 16.

[9] H.-J. Happel and S. Seedorf, “Applications of

ontologies in software engineering”, in Proc. of

Workshop on Sematic Web Enabled Software

Engineering (SWESE) on the ISWC, 2006, pp.

5–9.

[10] J. E. Rogers, “Quality assurance of medical

ontologies”, Methods Inf. Med., vol. 45, no. 03,

pp. 267–274, 2006.

[11] L. Zeng, T. Zhu, and X. Ding, “Study on

construction of university course ontology:

content, method and process”, in International

Conference on Computational Intelligence and

Software Engineering, 2009, pp. 1–4.

[12] Y. Sure, S. Staab, and R. Studer, “Ontology

engineering methodology”, in Handbook on

Ontologies, Springer, 2009, pp. 135–152.

[13] N. Malviya, N. Mishra, and S. Sahu,

“Developing university ontology using protégé

owl tool: Process and reasoning”, Int. J. Sci. Eng.

Res., vol. 2, no. 9, pp. 1–8, 2011.

[14] P. Wijewickrema and R. Gamage, “Automatic

document classification using a domain

ontology”, in National Conference on Library

and Information Science (NACLIS), Colombo,

Sri Lanka, 2012.

[15] G. Bilgin, I. Dikmen, and M. T. Birgonul,

“Ontology evaluation: An example of delay

analysis”, Procedia Eng., vol. 85, pp. 61–68,

2014.

[16] A. P. Vargas and R. Bloomfield, “Using

Ontologies to Support Model-based Exploration

of the Dependencies between Causes and

Consequences of Hazards.”, in KEOD, 2015, pp.

316–327.

[17] M. Rani, R. Nayak, and O. P. Vyas, “An

ontology-based adaptive personalized e-learning

system, assisted by software agents on cloud

storage”, Knowledge-Based Syst., vol. 90,

pp. 33–48, 2015.

[18] B. B. Duarte, A. L. de Castro Leal, R. de Almeida

Falbo, G. Guizzardi, R. S. S. Guizzardi, and V.

E. S. Souza, “Ontological foundations for

software requirements with a focus on

requirements at runtime”, Appl. Ontol., vol. 13,

no. 2, pp. 73–105, 2018.

[19] A. Smirnov, A. Ponomarev, N. Shilov, A.

Kashevnik, and N. Teslya, “Ontology-based

human-computer cloud for decision support:

architecture and applications in tourism”, Int. J.

Embed. Real-Time Commun. Syst., vol. 9, no. 1,

pp. 1–19, 2018.

[20] A. Alobaid, D. Garijo, M. Poveda-Villalón, I.

Santana-Perez, A. Fernández-Izquierdo, and O.

Corcho, “Automating ontology engineering

support activities with OnToology”, J. Web

Semant., vol. 57, p. 100472, 2019.

[21] A. A. Alsanad, A. Chikh, and A. Mirza, “A

domain ontology for software requirements

change management in global software

development environment”, IEEE Access, vol. 7,

pp. 49352–49361, 2019.

[22] V. JAIN and S. PRASAD, “Evaluation and

Validation of ontology using Protégé Tool,” Int.

J. Res. Eng. Technol., vol. 4, no. 4, pp. 2321–

8843, 2016.

[23] I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence

and S. Lidman, “The Essence of Software

Engineering: Applying the SEMAT Kernel”,

Addison-Wesley Professional, 2013.

[24] I. Exman, "A Bootstrap Theory: the SEMAT

Kernel Itself as Runnable Software," Bootstrap

Theory, 2014, pp. 1-8.

