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 Rainfall has a huge impact on agriculture because it's one of the key causes of 

crops devastation. Farmers face a slew of issues when unexpected heavy rains 

fall, as their planted crops are washed away or damaged. Pakistan is an 

agricultural country where new methods and techniques are needed to improve 

the traditional farming methods. This research intends to provide aid in the 

protection of crops from severe rains using machine learning to accurately 

anticipate the possibility of rainfall, which is a well-known agricultural problem. 

Various weather factors such as temperature, humidity, and atmospheric 

pressure can be used to predict rainfall patterns. Rainfall prediction can be used 

to identify and furnish future rainfall descriptions for agricultural planning for 

food security, allowing farmers to take precautionary measures to safeguard rice 

fields. Naïve Bayes, LogitBoost, RIPPER, Decision Stump, AdaBoost, Random 

Forest, Artificial Neural network, and K* were evaluated for rainfall prediction 

based on accuracy, precision, recall, F1-measure, Root Mean Squared Error, area 

under receiver operating characteristic curve, elapsed training time and elapsed 

testing time. The results obtained indicate that the best performance is achieved 

by Random forest with maximum accuracy of 83.2%, followed by ANN 

(82.5%), LogitBoost (82.2%), RIPPER (82%), naïve Bayes (80.3%), AdaBoost 

(80.2%), and K*(79.2%) respectively. K* The lazy approach involved a 

minimum of training time and a maximum of test time. Maximum training time 

was consumed by Random Forest and minimum testing time was taken by 

Decision Stump. 

1. Introduction 

Agriculture was the key progress among human 

evolution that provided means for feeding the growing 

population in urban regions. Agricultural techniques 

and methods evolution chronicles back to ancient 

civilizations. It is estimated that the world population 

will grow to 9.2 billion people by the year 2050 [1]. 

This rapid rise in population demands global food 

production to be increased by 70%. Hence, it is 

essential to improve agriculture management 

practices. Modern horticulture techniques 

incorporating computer aided plantation and crop 

monitoring can be helpful in better crop yields. 

Farmers employing advanced agricultural methods 

can prevent crop damage more efficiently than using 

simply traditional methods. The crops production 

heavily depends upon variables like precipitation and 

temperature. 

Direct-seeded fields get influenced by 

overwhelming precipitation like rice crops have 

destitute plant stand. Crops contrast in their resilience 

to waterlogging. Rice areas can tolerate rain to some 
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extent but if the level of precipitation goes past the 

limit, it severely influences the field. Rice is primarily 

grown in bolstered zones that achieve heavy annual 

rainfall of some limit. It demands a temperature of 

around 25°C and rainfall of almost close to 115 cm. 

As well much rain and overcast skies can moderate 

down the process of growth and influence bloom or 

inevitably cause devastation of crops. If 125 mm of 

rain is gotten in two consecutive hours, it is called 

overwhelming precipitation. Rainfall at the stem 

prolongation stages emphatically impacts the rice 

plants, in the long run, increment the rate of plantation, 

increments rice production. But its negative impact is 

observed at heading and blooming stages. Therefore, 

farmers should take precautionary measures to avoid 

the rain that could damage rice crops when 

precipitation exceeds the cap. 

Rainfall foretelling is an extremely vital element of 

serious and irregular rain that will have several 

impacts like the destruction of rice crops, harm to 

property and farms. Thus, improved rain prediction 

models are vital for generation of early warning that 

can minimize the risk of damaging crops and 

conjointly managing the agricultural croft efficiently. 

The prediction mainly helps agronomists and also 

water resources are efficiently utilized. The rain 

prediction may be a strenuous task and therefore the 

results ought to be faultless. Different hardware 

devices have been used for envisioning rainfall by 

utilizing the atmospheric conditions such as 

temperature, wind, sunshine, humidity, and pressure. 

Based on such sensory inputs from the crop fields 

machine learning techniques can be employed to 

accurately predict rainfall. Moreover, a historical 

analysis of rain can also be used to predict the rain for 

a future season. Our work is focused on finding the 

most suitable machine learning approach for rainfall 

prediction. Section 2 discusses related work. 

Methodology is presented in section 3, and results are 

discussed in section 4. Finally, conclusion and future 

work are summarized in section 5. 

1.1 Contribution 

a) This research is focused on developing and 

implementing a machine learning-based rainfall 

prediction system to enhance agricultural 

management. It began by compiling and cleaning a 

comprehensive dataset of key weather variables, 

ensuring data integrity. Relevant features were 

utilized to capture significant patterns, aiding in 

accurate predictions. 

b) Various machine learning models were evaluated, 

including linear regression, decision trees, random 

forests, SVM, neural networks, and ensemble 

methods, selecting the most robust model. These 

models were trained and fine-tuned using cross-

validation and rigorously assessed their 

performance with metrics like MAE, RMSE, and 

R² to ensure accuracy. 

c) A comprehensive literature review was conducted 

for historical analysis of rainfall patterns, guiding 

model development and assessing the impact of 

accurate rainfall prediction on agricultural 

productivity. Future refinements are suggested in 

the future work section, including incorporating 

more data sources, improving feature engineering, 

and scaling the system to predict other critical 

weather variables. 

2. Related Work 

The scope of the research laid out in this paper 

concerns the use of several machine learning (ML) 

algorithms for prediction of the rainfall in the rice crop 

fields so that the farmers can take precautionary 

measures beforehand in order to save the crops from 

the devastation of the rain. Following are some work 

published recently in the field of agricultural practices 

using machine learning approaches. The research in 

[2] used Remote Piloted Aircraft Systems (RPAS) to 

develop predictive models for estimating indirect 

nitrogen levels and grain yield in irrigated rice. The 

models used multispectral images, 11 vegetation 

indices, Spearman's correlation coefficient, and the 

Multi-Layer Perceptron algorithm for performance 

evaluation. The Spearman correlation shows optimal 

rice monitoring window for RPAS occurs during 

reproduction phase. Machine Learning (MLP) 

generates more accurate models for Narea, with good 

MLP at all stages and excellent accuracy. This 

combination is efficient for precision agriculture in 

irrigated rice fields. 

M. Mohammed et al. [3] discussed that the 

unpredictable precipitation causes incredible 

devastation of crops and ranches. To foresee rainfall, 

they apply Regression analysis with dependent and 

independent variables. They proposed its usage for 

testing the relationship between dependent and 

independent variables for rainfall prediction, they 

apply Support Vector Regression, Lasso Regression, 

and Multiple Linear Regression. They concluded that 

Lasso Regression has the most elevated mean absolute 

error than the other two models. They concluded that 

tuned SVR model that provided the best results. 

R. Aguasca-Colomo et al. [4] developed and 

compared several precipitation prediction models 

already established using machine learning techniques 

for the island of Tenerife. They applied several data 

mining algorithms, hybrid global climate model, wind 

gust prediction, and numerical weather prediction 
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models. They concluded that XGBoost (Extreme 

Gradient Boosting) showed the best performance. 

U. Shah et al. [5] applied several ML algorithms 

for the prediction of rainfall and expound strategies 

utilized. They showed that Auto Regressive Integrated 

Moving Average (ARIMA) method had Neural 

Network for minimum temperature, wind speed and 

the minimum Root Mean Squared Error (RSME) for 

maximum temperature. For forecasting relative 

humidity, Support Vector Regression had the lowest 

RSME. Whereas, Random Forest had the most 

noteworthy accuracy of 70.5%.  

M Rokonuzzaman et al. [6] reported results on their 

local regions suitability for crops. They discussed that 

Rangpur region was found to be best favourable for 

rice generation. They collected month wise and yearly 

precipitation data from various divisions spanning 

years 1983-2013. The research was primarily focused 

on precipitation mentioning it as the foremost 

prevailing element for rice production. Precipitation 

and rice production are emphatically interrelated. 

They identified that rice production was maximized 

provided precipitation was in the appropriate range 

i.e.800-2500 mm, but less than typical precipitation 

(<1800 mm) diminished the rice production. Whereas, 

when the precipitation was at the most elevated level 

(i.e. 2500<) the overall entire rice production was 

decreased overall in the cultivated regions due to 

overwhelming precipitation coming about in surges.  

S. Sujariya et al. [7] analysed the rainfall variability 

in Northeast Thailand for the duration of year 2000–

2015. They aimed to find the rainfall patterns and how 

they affected the length of the rice-growing time 

period and crop yield by utilizing a machine learning 

model. No substantial change was discovered for 

yearly, mid and late-season rainfall, but a substantial 

decrease was discovered in the quantity of early 

season rainfall throughout the 16 years in all 

groupings. The research established that the beginning 

and the final stage of the rice growing time period 

were delayed with decreased early rainfall over the 

period of studied 16 years whereas they did not 

observe any significant change in the total duration of 

the rice growing time period. They advised that the 

adjustment to varying rainfall patterns demands for 

pre-planning for yield maximization.  

S. M. K. Hassan [8], reported their results on the 

effect of flooding on rice production. Their 

experimental area was in Bangladesh. They utilized 

two variants of an econometric model, i.e. a total 

production model, and a yield model. The first model 

showed great deal of production. On the other hand, 

the yield model employed the log of yield in terms of 

tons per acre. They also reported results generated by 

the assembly model indicated the vulnerability of the 

boro variant of rice crops incorporating meaningful 

coefficients along with flood damage indicator 

variables. The vulnerability spatial dimensions 

became evident as there were some regions/districts 

which had more detrimental effects on various kinds 

of rice although the national level approximations did 

not reveal the fact. Due to multicollinearity, the yield 

model employed alike pre-normalized variables to the 

production model. The research suggested that 

although, the later had theoretically appealing 

attributes. However, its results were not substantial. 

The apparent reason for that was merely one the 

features/variables produced the expected effects.  

N. Oswal et al. [9] demonstrated various 

experiments that required the usage of several ML 

techniques to generate models for rainfall prediction. 

They covered major cities of Australia obtaining their 

data for the study. This study was split up into three 

categories 1) modelling inputs, 2) modelling methods, 

and 3) pre-processing techniques. They applied 

models such as Logistic Regression (LR), k-Nearest 

Neighbours (k-NN), Rule-based learning, Decision 

Tree (DT) and Ensembles to predict rainfall. They 

presented results demonstrating the comparison of 

these ML techniques and their suitability for rainfall 

prediction. No particular model was ruled out as the 

winner for rainfall prediction because the classifiers’ 

performance varied heavily with changing input 

datasets.  

M. Yen et al. [10] proposed using a deep neural 

network for rainfall prediction. They trained a 

prediction model using different potential 

predictors/features to estimate the rainfall in southern 

Taiwan. They forecasted rainfall by employing the 

Deep Echo State Network (ESN/DeepESN) model. 

The meteorological dataset was taken from the two 

observational stations and the Sea Level Centre. They 

considered temperature, atmospheric pressure, 

precipitation, wind speed, humidity, wind direction, 

and water level, a total of seven features for the 

prediction. They evaluated the impact of each and 

every input feature by taking an input feature off on 

rotation supported by the DeepESN model. Results 

demonstrated that the DeepESN proved to be better 

model to predict rainfall in comparison with the other 

models. 

Rahman et al. [11] described that floods are a 

significant issue in Bangladesh, impacting agricultural 

production and livelihood well-being. Rice, the 

country's most important crop, is affected by flooding. 

They found that a 22% flood threshold is necessary for 

rice area coverage and production. Up to this 

threshold, a one-square-kilometer increase in flooding 
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would increase rice area coverage by 31 hectares, 

while production would increase by 492 tons. 

However, a one-square-kilometer increase above this 

threshold would reduce rice production by 70 tons. 

The study suggests government support, stress coping 

strategies, and the development of stress-tolerant, 

high-yielding rice varieties. 

Y. Chen et al. [12] proposed employing high-

resolution climate model for the summer rainfall 

prediction in the United Kingdom. During summer 

season in UK, twelve-member convection-permitting 

ensemble (CPM) ensemble was employed to evaluate 

the global climate change effect on hourly rain. 

Physical characteristics were obtained to predict future 

trends and then past and future prediction periods were 

compared. The CPM simulation for the duration of 

years ranging from 1980 to 2000 and for future years 

2060–2080 were considered. The model was validated 

using various datasets, which included Radar data and 

hourly rainfall approximations. The authors drew 

comparisons between the past period and the future 

period over three geographical regions across the 

country (North West: NW, North East: NE and South: 

S). Each of these three regions had their own distinct 

climatology. The outcome predicted for drier and 

lesser rainy future summers but with more intense 

rainfalls.  

E. Putri [13] evaluated various ML methods for 

Rainfall forecasting and prediction. Their main focus 

was on climate change detection along with finding 

the pattern of its relationship to rice production. They 

proposed employing Extreme Value Theory (EVT) to 

estimate the behaviour of the rainfall dispersion 

because the rainfall dataset contained extreme values 

and heavy tail data distribution. EVT is extensively 

utilized in various fields, e.g.  finance, climate change, 

risk management, engineering etc. 

M. Bagbohounan [14] devised and compared 

several prediction models for the temperature 

estimations in the lower stream Region of Republic of 

The Gambia. The economy of Republic of The 

Gambia heavily relies on rain-fed agriculture and 

related services. Temperature changes can be 

detrimental for economic stability within the country. 

Temperature and downfall values were analysed for 

the period of 1943 to 1983 which showed a rise of 1°C 

in the annual mean temperature and two hundredth to 

twenty fifth decrease in the annual average rainfall. 

Rice is the main basic food of the country (60-70% 

consumption). Hence drastic decrease in rice 

production can heavily impact the food security 

degree of rural homes and even the urban areas. 

Y. Guo et al. [15] utilized various strategies for rice 

yield prediction in East China by employing Artificial 

Neural Networks and Partial method of least squares 

Regression. Crop growth models used bio-physical 

features that contain genotypes, weather, soil 

conditions, and crop management approaches, are 

employed conjointly to produce strategies for crop 

yield management. Several different information 

sources such as remote sensing information, climate 

information, soil data, and science traits, are used for 

prediction of the rice yield. Moreover, experimental 

data obtained from remote systems and environmental 

information from native climate stations are usually 

incorporated to prediction rainfall.  

L. Wickramasinghe et al. [16] several statistical 

techniques along with machine learning algorithms for 

identification of the relationship among past climate 

variables and crop yield. They utilized regression 

techniques, artificial neural networks (ANNs), support 

vector machines (SVMs) to establish the association 

between climate variables and resulting rice yield. 

Climate parameters such as minimum temperature, 

precipitation, mean temperature, maximum 

temperature, and related crop evapotranspiration along 

with past four-year yield history were utilized with 

ML algorithms in order to predict future crop yields.  

They concluded that a hybrid MLR-ANN model 

provided maximum accuracy in comparison with the 

traditional models such as MLR, random forest (RF), 

ANN, support vector regression (SVR), k-Nearest 

Neighbour (KNN), and SVM.  

J. Jambo [17] conducted a statistical analysis of 

rainfall variability and its impact on wheat production 

in the Agarfa District of Ethiopia. They employed 

regression techniques to assess the relationship 

between rainfall patterns and wheat yield, finding 

significant coping strategies that farmers could adopt 

to mitigate the adverse effects of rainfall variability. 

The study highlighted the importance of pre-planning 

and adaptive measures for maintaining crop 

productivity. 

M. Müller et al. [18] investigated the 

morphological and physiological responses of 

Calobota sericea plants under conditions of water 

limitation and subsequent sprinkling. They applied a 

combination of statistical methods and machine 

learning algorithms to analyse the plant responses. The 

study concluded that specific irrigation strategies 

significantly improved the resilience of these plants to 

drought conditions, suggesting potential applications 

in drought-prone agricultural regions. 

A. Getahun et al. [19] performed trend and change-

point detection analyses of rainfall and temperature 

over the Awash River basin in Ethiopia. They utilized 

advanced time series models to identify significant 

changes in climate variables and their impacts on local 
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agriculture. Their findings underscored the need for 

adaptive agricultural practices in response to changing 

climatic conditions. 

A. Jayachandran [20] studied wage responses to 

productivity shocks in developing countries, focusing 

on labour markets within agricultural settings. They 

applied econometric models to evaluate how 

productivity variations influenced wage adjustments, 

providing insights into labour market dynamics that 

could inform agricultural labour management 

practices. 

D. Makwana et al. [21] analysed rainfall 

characteristics and moisture availability indices for 

crop planning in semi-arid regions of North Gujarat. 

They used machine learning algorithms to predict 

moisture availability and optimize crop planning 

schedules, ultimately enhancing agricultural 

productivity in water-scarce areas. 

K. Ly et al. [22] employed geostatistical 

interpolation techniques to predict daily rainfall at the 

catchment scale in Belgium. By applying various 

variogram models, they achieved high-precision 

rainfall estimates, which are crucial for effective water 

resource management and agricultural planning. 

Z. Jinglin et al. [23] used Support Vector Machine 

(SVM) and Particle Swarm Optimization (PSO) 

algorithms to predict precipitation data. Their research 

demonstrated that the PSO-SVM model provided 

superior accuracy in rainfall prediction compared to 

traditional methods, highlighting its potential 

application in agriculture. 

T. Abebe and M. Endalie [24] developed artificial 

intelligence models for predicting monthly rainfall 

without relying on climatic data for meteorological 

stations in Ethiopia. Their innovative approach 

utilized machine learning algorithms to generate 

reliable rainfall forecasts, aiding in agricultural 

decision-making processes. 

The contribution of accurate rainfall estimation is 

crucial for stakeholders in planning and increasing 

their production. With the world population projected 

to reach 9.2 billion by 2050, a 70% increase in global 

food production is necessary to meet the growing 

demand. Agriculture, being the cornerstone of human 

evolution, plays a vital role in feeding urban 

populations. To enhance agricultural management 

practices, modern techniques such as computer-aided 

plantation and crop monitoring have been introduced. 

These advanced methods, including precision 

agriculture and data-driven decision-making, are 

essential for improving crop yields and mitigating the 

impact of unpredictable factors like rainfall on crop 

production [25]. Rainfall, a critical variable affecting 

crop growth, can have both positive and negative 

impacts on agriculture. While adequate rainfall is 

essential for plant growth, excessive precipitation can 

lead to crop damage, especially in direct-seeded fields 

like rice crops. Farmers need to be vigilant and take 

precautionary measures to protect their crops from the 

adverse effects of overwhelming precipitation. 

Rainfall prediction models, incorporating machine 

learning techniques, have emerged as valuable tools 

for providing early warnings to farmers, enabling them 

to manage their agricultural lands efficiently and 

minimize crop damage [24]. Improved rain prediction 

models not only aid in safeguarding crops but also 

contribute to the optimal utilization of water resources. 

By utilizing sensory inputs from crop fields and 

historical rainfall data, machine learning approaches 

can accurately forecast rainfall patterns. These 

predictions are crucial for agronomists and farmers to 

plan their agricultural activities effectively, ensuring 

sustainable crop production and food security. 

Therefore, the development and implementation of 

reliable rainfall prediction models are essential for 

enhancing agricultural productivity and managing the 

impact of climate change on food security [26]. In 

conclusion, the integration of advanced agricultural 

techniques with precise rainfall prediction models can 

significantly benefit stakeholders in estimating and 

preparing for rainfall variations, ultimately leading to 

increased agricultural production and food security in 

the face of a growing global population. 

The related work is summarized in Table 1. 

Table 1  

Summarized related work 

Citation Publication 

Year 

ML Models Performance measures used Research Main Focus 

[2] 2023 Multilayer Perceptron Spearman's correlation coefficient Rainfall prediction for 

rice crops 

[3] 2022 Support Vector Regression, 

Lasso Regression, and 

Multiple Linear Regression 

mean absolute error Devastation of crops 

and rainfall prediction 

[4] 2019 XGBoost Accuracy, Kappa precipitation prediction 

[5] 2018 ARIMA, Support Vector 

Regression and ANN 

Root Mean Squared Error Rainfall Prediction 
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[6] 2018 Non-ML based approaches Precipitation expectancy in mm Region suitability for 

crops 

[7] 2020 Crop growth model of 

FAO/IIASA 

Difference between their estimation and 

actual rainfall 

Study on Rainfall 

Patterns 

[8] 2019 Statistical Models Difference between total production model 

and yield model 

Effect of flood on rice 

crop 

[9] 2019 Logistic Regression, k-

Nearest Neighbors, 

Decision Tree  

Accuracy, Precision, Recall, F1, AUC Rainfall prediction 

[10] 2019 Deep Neural Network Root mean squared error and normalized 

RMSE 

Rainfall prediction 

[11] 2021 Threshold based regression 

model 

Standard error, rice production in tons Flood impact on rice 

crops 

[12] 2021 twelve-member 

convection-permitting 

ensemble (CPM) ensemble 

Percentage relative change and areal mean 

intensity 

Climate model for 

rainfall prediction in 

summers 

[13] 2020 Extreme Value Theory 

(EVT), SARIMA 

Normality Assumption Test, Significance 

Parameter Tests 

Rainfall prediction 

[14] 2020 VARMA statistical forecast 

method, ordinary Least 

Squares, robust linear 

regression model 

Autocorrelation Function (ACF) and 

Partial 

Autocorrelation Function (PACF) 

Temperature and 

rainfall predictions for 

rice crops 

[15] 2021 Artificial Neural Networks 

and Partial method of least 

squares Regression (PLSR 

and BPNN) 

RMSE Rainfall prediction for 

rice yield in East China 

[16] 2021 ANN and SVM MSE 

R MAPE (%) 

Nash number RSR 

BIAS 

 

Climate variables and 

rice yield 

[17] 2021 Regression analysis ANOVA Rainfall prediction 

[18] 2023 Statistical Models Photosynthetic rate and transpiration rate Plant responses to 

irrigation and 

rewatering 

[19] 2021 Statistical Methods Pettit's, the von Neumann ratio (VNR), 

Buishand's range (BR) and standard 

normal homogeneity (SNH) plus trend 

analysis Mann-Kendall (MK) 

Rainfall prediction in 

Ethiopia 

[20] 2006 Survey and statistical 

analysis 

Relationship between rainshock and crop 

yield, probability density function 

Productivity shocks 

within agricultural 

settings 

[21] 2021 Statistical Model based on 

moisture levels 

Probability density functions, chi-squared, 

rainfall probability  

Rainfall prediction 

[22] 2011 geostatistical interpolation 

techniques 

Frequency percentage and RMSE Rainfall prediction in 

Belgium 

[23] 2017 Support Vector Machine 

(SVM) and Particle Swarm 

Optimization (PSO) 

algorithms 

Accuracy and Run time consumed Precipitation and 

rainfall prediction 

[24] 2023 Adaptive Neuro‑Fuzzy 

inference system ANFIS 

neural networks 

Root Mean Square Error (RMSE), Nash–

Sutcliffe model efficient coefficient (E), 

Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and 

coefficient of determination (R2) 

climatic data for 

meteorological stations 

in Ethiopia and rainfall 

prediction  

[25] 2024 Statistical models, 

NetErosividade  

R-factor, Spatiotemporal distribution of rainfall erosivity 

estimation models and 

space–time distribution 

[26] 2021 Pearson correlation 

technique, XGBoost, 

(Multivariate Linear 

Regression, Random Forest 

Root mean squared error and Mean 

absolute Error methods 

Rainfall Prediction 
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All the various research discussed above either 

implemented only one model or stuck to a limited 

number of prediction features. Our work tries to 

incorporate numerous environmental factors for 

rainfall prediction. Hence it explores suitability of ML 

algorithms for rainfalls prediction with more accuracy 

taking into account various weather features. 

3. System Description 

This section describes the steps carried out for the 

evaluation of the machine learning algorithms. The 

details about used dataset, pre-processing including 

missing treatment, feature selection is described. 

Reported results are based on 5-fold cross validation. 

Different Machine Learning algorithms which are 

frequently used in the relevant research domain were 

applied and comparison was drawn among their 

results. The performance evaluation is determined in 

the form of accuracy, precision, recall and mean 

squared error posing the problem as binary 

classification whether rainfall is expected in the next 

day or not.  

3.1 Dataset Description 

The dataset used for this work contains the weather 

observations from various Australian weather stations. 

The dataset consists of 145460 instances and 24 

attributes of which 11 attributes have been selected for 

rainfall prediction as independent variables/features. 

These selected 11 attributes were used for rainfall 

prediction selected as the independent variables.  

These selected dataset features are listed and described 

in Table 2. The dataset can be accessed and 

downloaded from [27]. Fig 1 sheds light on the dataset 

characteristics including percentage of missing values 

and null values. Fig. 2 summarizes the overall trends 

observed in the selected features pictorially.   

Table 2 

Dataset description according to attributes of interest, the 

dataset contains 12 attributes related to temperature, 

sunshine, evaporation rate, temperature and humidity 

recorded at 9 am, prior rainfall record in mm and the target 

feature RainTomorrow 

Attributes Descripti

on 

Attributes Descriptio

n 

MinTemp minimum 

temperatu

re C  

Temp9am Temperatu

re C at 9 

am 

MaxTemp maximum 

temperatu

re C 

WindSpeed9

am 

Mean 

wind 

speed 

km/hr. per 

10 min 

prior to 9 

am 

Rainfall Recorded 

rainfall in 

day mm 

Humidity9a

m 

percentage 

of 

humidity 

at 9am 

Evaporation Class A 

pan 

evaporati

on mm in 

in a day 

measured 

at 9 am 

Pressure9am atmospher

ic pressure 

hpa 

computed 

to mean 

sea level 

at 9 am 

Sunshine No. of 

hrs. of 

bright 

sunshine 

in day 

Cloud9am clouded 

sky 

fraction at 

9am. 

WindGustSp

eed 

strongest 

wind gust 

speed 

km/h :24 

hours to 

midnight 

RainTomorr

ow 

The 

dependent 

variable 

  

MinTemp Temp9am 

 

 

 

MaxTemp 

  

WindSpeed9am 
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Rainfall Humidity9am 

 

 

Evaporation Pressure9am 

 

 

Sunshine Cloud9am 

 

WindGustSpeed 

Fig. 1. Characteristics of Selected 11 Features [27], In Terms Of Details About Validation of Records, Missing Values, 

Number of Unique Values and The Most Frequent Value Per Attribute/Feature 

 

Fig. 2. Visualization of the Characteristics of Selected Features, Describing the Minimum and Maximum Values Per 

Attribute Along with The Spread and Frequency of Occurrence of a Certain Value 
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3.2 Data Pre-processing  

Data pre-processing is utilized to convert the data into 

a more meaningful and useful format. It can include 

missing value treatment, conversion of values from 

one form to another, scale conversion, and feature 

selection. The following pre-processing steps were 

performed for data used for our work. 

3.2.1 Missing values 

There are several situations where missing values are 

inevitable in the observations of the dataset. Data 

cleaning and gleaning play a crucial role how well a 

model learns from the training data. There are many 

instances in the dataset that contained null values. For 

missing value treatment, we replaced the null values 

with their respective mean values attribute wise.  

3.2.2 Feature selection 

Feature Selection is employed for data dimension 

reduction. It can be performed automatically or 

manually. The purpose of feature selection is two-fold. 

Firstly, it reduces attribute count/dimension reduction. 

Secondly only those features are included that 

contribute the most to the dependent variable avoiding 

too much clutter helping the classifier decide in an 

effective and efficient manner. When there are many 

irrelevant characteristics/attributes in the data, this can 

reduce the precision of the prediction models and 

render the characteristics supported by the model 

irrelevant. Therefore, important /relevant feature 

selection can improve the accuracy as well as reduces 

training time. The dataset contained 24 features in 

which we have selected the most important 11 features 

such as minimum temperature, maximum 

temperature, rainfall, evaporation, sunshine, wind gust 

speed, wind speed at 9 am, humidity at 9 am, pressure 

at 9 am, clouds at 9 am, and temperature at 9 am. This 

feature selection was aided by employing Random 

Forest with 90 trees and 4 random features stopping 

the tree depth at 512 maximum splits. Random forest 

was used to compute predictor importance which 

resulted in selection of most important 11 features 

which can help improve prediction accuracy. 

3.3 System Workflow 

The input to the model is the dataset’s 11 selected 

features and the output of the model is calculated in 

the form of accuracy and errors of prediction of the 

models. The task is treated as binary classification of 

whether there will be rainfall or not. For comparative 

evaluation WEKA API was used. The dataset was 

processed using 5-fold cross validation and with 5 

repetitions of the algorithm. The presented results are 

the average of the performance measures of 5 

repetitions of the algorithm evaluation. The number of 

instances used for training and testing were 113754, 

28439 respectively. The following machine learning 

algorithms were evaluated: Naïve Bayes, LogitBoost, 

RIPPER, Decision Stump, AdaBoost, Random Forest, 

Artificial Neural network (ANN), and K*.  

3.3.1 Evaluation measures 

The evaluation was based on the following 

performance measures: accuracy, precision, recall, F1-

measure, area under receiver operating characteristic 

curve (ROC curve), elapsed training time (average 

training time per sample) and elapsed testing time 

(average testing time per sample). On the basis of 

these performance measures as mentioned above, the 

best algorithm among them is chosen. Performance 

measures formulae are provided in Eq. (1) to (6) in 

terms of true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN). A complete 

workflow diagram (Fig. 3) is given below for a clearer 

understanding of the working. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                           (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
         (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
          (3) 

𝐹1 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
(2∗𝑇𝑃)

(2∗𝑇𝑃+𝐹𝑃+𝐹𝑁)
      (4) 

Elapsed training time =

                                              
(time consumed for training classifier)

total number of samples in training subset
 (5)  

Elapsed training time =
(time consumed for testing classifier)

total number of samples in testing subset
 (6)   

3.4 Applied Models 

Numerous classifiers were evaluated, each belonging 

to a different category such as tree-based, bagging, 

boosting, lazy, rule based and Ensemble learning. The 

top five performing classifiers are briefly described in 

sections 3.4.1 to 3.4.5.  

3.4.1 Random forest   

Random forest or random decision forest is an 

ensemble learning technique for classification and 

regression. It operates by constructing a large number 

of decision trees using bagging. During training a user 

defined number of decision trees, are constructed with 

f random features for tree growth and pruning. The 

third hyper parameter for random forest is the depth of 

the tress controlled by maximum number of splits 

allowed. Due to multiple decision trees with f random 

features for tree split, random forest avoids the 

overfitting issue encountered in decision trees. The 

suitability of a certain classifier is dictated by the 

nature of data observations. However, random forest 

proves to have higher generalization ability and 

accuracy for many different sorts of data observations 

which was also the case in rainfall forecast. 
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Fig. 3. Workflow Diagram, Describing the Overall Functionality and Data Flow of the System by Incorporating Feature 

Selection and Then Best Performing Classifier Cascaded 

3.4.2 Artificial neural networks   

The artificial neural network (ANN) is essentially a 

brain simulation attempt. Neural network theory is 

based on the notion that certain key properties of 

biological neurons can be extracted and applied to 

simulations, creating a simulated and simplified brain. 

ANN employ the following three basic concepts: 1) 

connection force, 2) inhibition/excitation and 3) 

transfer function. Artificial neurons/nodes imitating 

human brain neurons are interconnected and the 

strength of this connection is normally assigned a 

numeric value between -1.0 for maximum inhibition 

and +1.0 for maximum excitation. Neurons are usually 

arranged as an input layer, an output layer, and a layer 

or layers hidden between the input and output layers. 

For rainfall prediction problem, back-propagation was 

utilized as learning method. The number of input 

neurons correspond to the number of 11 features of our 

dataset and two neurons in the output layer for 

prediction of either rainfall is predicted or not. Number 

of hidden layers and the number of neurons per hidden 

layers were varied and the reported results are based 

on the average of the computed results. The advantage 

of ANN is good accuracy, generalization ability, and 

very small prediction time. As once trained, the 

calculations for prediction are simple mathematical 

expressions. However, there are few drawbacks too 

such as many hyper parameters to be tuned, lots of 

time consumed during training, and possibility of 

overfitting. 

3.4.3 LogitBoost   

Simple regression functions are used as a basis for 

adaptation of learners to logistical models. The 

algorithm used behind is LogitBoost. The optimal 

number of iterations is cross-validated, which 

automatically selects the attributes. LogitBoost could 

be an analytics model that, in its fundamental form, 

uses a logistic function to model a binary variable, 

despite the fact that there are more complex 

extensions. LogitBoost (or logit) serves to model the 

probability of a certain class.  or when a nominal 

variable with two values and a measuring variable is 
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available such as success/failure, male/female, 

deceased/living, healthy/ill etc. LogitBoost regression 

is similar to rectilinear regression, except that the 

variable is nominal, rather than a measure. This will 

be utilized to show some categories of events such as 

deciding if an image contains a cat, puppy, lion, etc. 

Each object being recognized inside the picture would 

be assigned a probability between 0 and 1, with a sum 

of 1. Logistic regression is used to shed light on the 

data and clarify the relationship between a dependent 

binary variable and one or more independent factors 

on the nominal, ordinal, range or ratio level.  Rainfall 

related climatic variables such as maximum and 

minimum temperature, evaporation and, morning and 

afternoon humidity etc were fed to the algorithm with 

varying hyper parameters and the averaged-out results 

are presented. The cross-validation analysis also 

shows that the logistic regression not only adequately 

fits the rainfall data which are utilized in the fitting 

procedure, it is often very successful in predicting 

rainfall for the longer-term data. 

3.4.4 RIPPER 

RIPPER (Repeated Incremental Pruning to Produce 

Error Reduction) as the name suggests is propositional 

rule learner. This algorithm in an enhanced and 

optimized version of IREP algorithm. This works 

basically in two stages. First, is the building stage and 

second one is the optimization stage. In the building 

stage, repeatedly rules are greedily grown and pruned 

until the stopping criteria is met. In the optimization 

stage, after generation of the initial rule set, two 

variations of each rule are pruned based on 

randomised data. A variant is generated based on an 

empty rule whereas the other is created by greedily 

including antecedents to the original rule. 

3.4.5 Naive bayes 

Naive Bayes allocates class labels to data instances, in 

which class labels are extracted from a limited set. 

This is a strong and unrealistic assumption when it 

comes to real data.; however, the technique is highly 

efficient for a wide range of complex problem 

domains. Naive Bayes is a method for predicting the 

probability of different classes depending on different 

attributes. No single algorithm is available to prepare 

these classifiers, but an algorithmic family supports a 

typical principle.: all Naïve Bayes classifiers assume 

that the value of a specific feature is independent of 

the value of the other feature, considering the category 

variable. 

4. Simulation and Results 

Naïve Bayes, LogitBoost, RIPPER, Decision Stump, 

AdaBoost, Random Forest, Artificial Neural network, 

and K* were the classifiers used for rainfall prediction 

in this research work. Our intention was to predict the 

rainfall, whether it will be occurring tomorrow or not, 

so that this prediction can help in the protection of rice 

crops from heavy rainfall. Numerous ML classifiers 

were evaluated using 5-fold cross validation according 

to the aforementioned performance measures and the 

ones who showed promising results are presented in 

this paper. Among all these algorithms, Random 

Forest was the best performing classifier that predicted 

with much better accuracy than other models.  

Random Forest was the top performing classifier 

with maximum accuracy of 83.2%, followed by ANN 

(82.5%), LogitBoost (82.2%), RIPPER (82%), naïve 

Bayes (80.3%), AdaBoost (80.2%), and K*(79.2%) 

respectively in descending order. Evaluated 

performance measures are summarized in Table. 3.   

Table 3 

Summarization of performance measures by various ML classifiers in terms of accuracy, precision, recall, F1 score, average 

elapsed training time per sample in milliseconds, and average elapsed testing time per sample in milliseconds 

Classifier Accuracy Precision Recall F1-measure Elapsed training time (ms) Elapsed testing time(ms) 

Naïve Bayes 80.3 84.5 91.5 87.8 0.304 0.186 

LogitBoost 82.2 84.4 94.5 89.2 3.51 0.0402 

RIPPER 82 84.6 93.9 89 518 0.0396 

Decision Stump 77.6 77.6 100 87.4 0.573 0.0144 

AdaBoost 80.2 82.6 94.7 88.3 8.88 0.037 

Random Forest 83.2 85.4 94.5 89.7 61.1 2.54 

ANN 82.5 85 94 89.3 18.2 0.053 

K* 79.2 84.7 89.2 86.9 0.015 8170 

Table 3. highlights the best performing classifier 

according to each performance evaluation parameter 

in boldface. Whereas, the least performing one is 

depicted with red colour. Fig. 4 compares the 

accuracies in percentage obtained by different 

classifiers with Random Forest providing the 

maximum accuracy and decision stump at the bottom 

of this comparison. Fig. 5-8 summarizes comparison 

in precision, recall and F1-measure respectively. 

Again, maximum precision and F1-measure value was 

achieved by Random Forest and minimum by decision 

stump (Fig. 5 and 7 respectively). However, Fig. 6 

shows that maximum recall was provided by Decision 

Stump and minimum by K*. 
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Fig. 8 and 9 shed lights on training and testing time 

consumed in milliseconds. Random Forest training 

consumed the maximum time but providing maximum 

accuracy. K* being a lazy approach consumed 

minimum training time but maximum testing time 

indicating that it is not suitable for real time prediction 

systems. Decision stump provided maximum 100 

percent recall, but the accuracy was the minimum 

among reported classifiers. 

Fig. 4. Accuracy Percentage Obtained by Evaluated 

Classifiers, K*, ANN, Random Forest, AdaBoost, Decision 

Stump, RIPPER, LogitBoost and Naïve Bayes, Random 

Forest Clearly Stands as The Winner Followed by ANN and 

LogitBoost 

 

 

 

 

 

 

 

 

Fig. 5. Precision Percentage Obtained by Evaluated 

Classifiers, K*, ANN, Random Forest, AdaBoost, Decision 

Stump, RIPPER, LogitBoost and Naïve Bayes. Random 

Forest Showed Maximum Precision Followed by ANN and 

Then K* 

 

 

 

 

 

 

 

Fig. 6. Recall Percentage Obtained by Evaluated 

Classifiers, K*, ANN, Random Forest, AdaBoost, Decision 

Stump, RIPPER, LogitBoost and Naïve Bayes. In Terms of 

Recall, Decision Stump Showed Best Performance 

Followed by AdaBoost and Then Random Forest 

 

 

 

 

 

 

 

Fig. 7. F1 Percentage Obtained by Evaluated Classifiers, 

K*, ANN, Random Forest, AdaBoost, Decision Stump, 

RIPPER, LogitBoost and Naïve Bayes. F1 Score 

Performance Competition Was Again Dominated by 

Random Forest 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Average Training Time Per Sample in Milliseconds 

Consumed by Classifiers, K*, ANN, Random Forest, 

AdaBoost, Decision Stump, RIPPER, LogitBoost and 

Naïve Bayes. RIPPER Showed Worst Performance In 

Terms Of Average Training Time Per Sample, K* and 

Naïve Bayes Had the Minimum Training Time Per Testing 

Sample In Millisecond 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Average Testing Time Per Sample in Milliseconds 
Consumed by Classifiers, K*, ANN, Random Forest, 
AdaBoost, Decision Stump, RIPPER, LogitBoost and 
Naïve Bayes. K* Had Minimum Average Training Time but 
Worst Testing Time 
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Fig. 10. Summarization of Classifier Performance, K*, 

ANN, Random Forest, AdaBoost, Decision Stump, 

RIPPER, LogitBoost and Naïve Bayes. When Accuracy, 

Precision, Recall and F1 Score Are Overall Compared, 

Random Forest Showed the Best Performance Followed By 

ANN and hen LogitBoost 

All performance measures other than related to 

training and testing are summarized in Fig. 10. 

It is evident from the results that Random Forest 

renders itself to be most suitable classifier for rainfall 

prediction, with 83.2 accuracy, 85.4 precision, 94.5 

recall, and 89.7 F1 score. However, it consumed on 

average 61.1 ms during training per sample and 2.54 

ms per sample during testing. If rainfall prediction 

system needs to be deployed in real time environment 

with high volume of predictions to make then 2.54 ms 

per prediction is much higher than 0.053 ms consumed 

by ANN and 0.0402 ms by LogitBoost. It must be 

noted that ANN and LogitBoost stand at 2nd and 3rd 

best performers with 82.5 and 82.2 accuracy 

respectively. Hence, in case high volume predictions 

where hard real time responses are needed then ANN 

or LogitBoost based system might be preferable than 

Random Forest based providing a good trade-off 

between swift response and classifier performance. 

5. Conclusion and Future Work 

Our prime objective was to protect the rice fields from 

heavy rainfall and our work was an attempt to predict 

precipitation under the combination of Machine 

Learning (ML) classifiers and predicting techniques. 

In this research, we have explored and successfully 

evaluated various ML classifiers for binary class 

prediction. The Random Forest classifier is thought to 

be a valuable and adaptive strategic solution for 

precipitation forecasting as its highest accuracy among 

all classifiers.  

Also, we intend to install real world sensor 

equipped system in rice crop fields which by 

measuring the 11 features used in this study will be 

able to predict rainfall in real time and can generate 

alerts, alarms and messages for proper and prompt 

action. We also plan to incorporate time series analysis 

of the previous prediction to further improve the 

accuracy of rainfall prediction. 

6. Limitations 

There are few limitations of the proposed approach 

that should be considered for its real time application. 

First, the model's success significantly depends on the 

quality and amount of past meteorological data; any 

mistakes or missing data might lead to incorrect 

forecasts such as temperature and humidity recorded 

precisely at 9 am. Hence, required sensors must be 

deployed where ever the system needs to be deployed. 

Additionally, random forests, while showed best 

performance in rainfall prediction, its computational 

cost must be considered for real time application as the 

results revealed its average testing time per sample is 

much larger as compared to some other evaluated 

models such as ANN and LogitBoost. 
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