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ABSTRACT 

Field of robotics has been under the limelight because of recent advances in Artificial Intelligence (AI). Due to 

increased diversity in multi-agent systems, new models are being developed to handle complexity of such 

systems. However, most of these models do not address problems such as; uncertainty handling, efficient 

learning, agent coordination and fault detection. This paper presents a novel approach of implementing 

Reinforcement Learning (RL) on hierarchical robotic search teams. The proposed algorithm handles 

uncertainties in the system by implementing Q-learning and depicts enhanced efficiency as well as better time 

consumption compared to prior models. The reason for that is each agent can take action on its own thus there 

is less dependency on leader agent for RL policy. The performance of this algorithm is measured by introducing 

agents in an unknown environment with both Markov Decision Process (MDP) and RL policies at their 

disposal. Simulation-based comparison of the agent motion is presented using the results from of MDP and RL 

policies. Furthermore, qualitative comparison of the proposed model with prior models is also presented.  
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1.  INTRODUCTION 
 

rtificial intelligence (AI) based robotics is 

gaining significant importance because of 

popularity in the field of Unmanned Search 

and Rescue (USR) operations. USR is of utmost 

importance when it comes to deal with both natural 

and human created disasters. During these disasters 

using a robot instead of humans and rescue dogs seems 

both reasonable and logical. After an unfortunate 

disaster of World Trade Center (WTC) in 2001, the 

feasibility and performance of robotic search teams 

have been studied [1]. In 2011, robots performed 

surveillance and rescue during earthquake in Japan. 

According to a report generated by US army 

corporation small unmanned aerial and ground 

vehicles along with underwater Remotely Operated 
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Vehicles (ROVs) have played important role in 2010 

Haiti disaster [2]. The impact of search and rescue 

missions on workers has been analyzed ten years later 

and shown multiple health problems due to weeks 

spent at WTC in 2001. This study included 27,449 

rescue workers from WTC and extensive comorbidity 

has been reported in these workers regarding both 

physical and mental health problems and are under 

treatment [3]. Another report included 919 pulmonary 

tests with extensive chest scans and methacholine tests 

to see if extensive lung diseases have been captured by 

13,000 WTC rescue workers. Reports included high 

percentage of obstructive airway diseases that 

decreased the lung functions of rescue workers [4]. 

Different reactive airway diseases with increased rate 

of asthma, pneumonias caused by exposure to 

dangerous environment is elaborated in [5]. Thus 

A
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robotic usage must be increased to decrease the human 

life risk. A number of search topologies have been 

utilized for Urban Search and Rescue (USAR) 

process. Most of USAR robots used in real world are 

tele operated. However, researchers are working 

continuously to provide autonomy to the robots by 

developing better exploration and mapping methods 

so that they can help in victim manipulation. 

Although, for now this is being prohibited due to fear 

of harming victims [6]. 

 

Number of methods can be used for the control of 

multi-agent systems. Formation control is one of the 

methods which depends on interaction topologies and 

sensing capabilities of multi-agent systems. Sensing 

capabilities developed with the help of sensed 

variables and interaction topologies depend merely on 

control variables. Depending on these variables 

formation control can be divided into position-based 

control, distance-based control and displacement-

based control. Agents achieve their desired formation 

with Position-based control by actively changing their 

position according to global coordinate system. 

Meanwhile, Displacement-based control takes agent 

to desired formation by relative positions of neighbor 

agents according to global coordinate system. Local 

coordinate systems are used to analyze inter agent 

distances for distance-based control [7]. Other 

methods like estimation based control, containment 

control, angle based control, flocking and pure 

distance based control can also be utilized to achieve 

formation control. However, due to changing of inter 

agent distances and absence of global coordinate 

system local distribution estimators are used [8]. 

Additionally, local controllers are designed according 

to local distribution estimators for system having both 

centralized and distributed control. Consensus 

problems are also solved by designing a control 

strategy with the help of local information for linear 

multi-agent systems. The protocol solves problems for 

directed agent networks with simple linear dynamics 

and synchronous feedback information [9]. 

Meanwhile, the rate of convergence of consensus 

protocols is also mandatory. Convergence rate for 

network agent with time delays and switching 

topology is analyzed. Performance of consensus 

protocol enhances as time delay robustness decreases. 

Moreover,   communication   cost   also increases with 

better consensus performance [10].  

 

2.   RELATED WORKS AND  

      MOTIVATION 
 

Planning for deployment of agents in complex indoor 

area must include information processing, visual 

sensing and collaboration between them. Sharing can 

be accomplished by adding a communication layer 

into existing POMDPs, to add information gathered by 

the robot with the information gathered by neighbor 

robots for a specific action [11]. However, this 

research focused only on robot deployment but task 

allocation is also an important factor in Multi-Robot 

search teams. For a limited task length, dependent 

tasks are allocated through a distributed algorithm 

assuming maximum consensus for communication 

among robots. This also excludes the need of shared 

memory in the system [12]. Furthermore, the size of 

tasks allocated can be increased by using reduction 

techniques on POMDPs. The size of input POMDP is 

decreased leading to an enhanced runtime for POMDP 

solver. Output policy of the solver is re-evaluated to 

make sure it works for every input problem [13]. 

Forming coalitions between robots is necessary after 

task length becomes satisfactory. For tightly coupled 

multi-robot tasks, robots must be able to share 

information during execution assuming all robots are 

in the field of view of each other. IQ-ASyMTRe 

architecture resolves the problem of forming 

executable coalitions and also identifying situation 

during which feasibility of coalitions change 

dynamically [14]. However, in case of any problem 

during these coalition forming transferring all the 

available data when connection is re-established is not 

feasible. Hence, data fusion techniques and 

coordination topology are used which includes sharing 

belief states eliminating the cost and computation 

required to communicate all previous information. 

Data fusion can also be utilized for moving targets 

[15].  

 

In many industrial applications optimal solution to 

control problems is a critical issue. Whenever, an 

original problem is reformulated new optimal solution 

is concluded according to the shifted dynamics. This 

can be accomplished with help of an accelerated 

policy iteration algorithm producing an approximate 

value function in limited time for Hamilton-Jacobi-
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Bellman equations [16]. However, if the input 

constraints are unknown adaptive control is used due 

to uncertainty of the systems. Neural networks identify 

the dynamics of unknown system and a cost function 

is utilized to optimize the unknown input constraints 

[17]. Robust control is also used for continuous time 

non-linear systems in addition to adaptive control. For 

that purpose, robust control problem is converted to 

optimal control problem using cost function and a new 

critic network is developed. Adaptive dynamic 

programming method is used to solve the optimal 

problem with facilitation of neural networks [18]. 

Discrete time non-linear systems can also be solved 

with the help of policy iteration (PI). It is demonstrated 

by converging iterative performance index to optimal 

solution through policy iteration. Neural Network 

weight convergence is also changed according to the 

need of discrete time systems [19]. Non-linear discrete 

systems can also be analyzed with the help of value 

iteration. Traditional value iteration algorithms (VI) 

start from zero condition and have to be implemented 

infinite times to reach optimal control policy. But 

starting with arbitrary positive semi-definite function 

optimal conditions can also be achieved and also new 

termination criterion is developed to guarantee the 

effect of optimal control law [20]. Applications of PI 

and VI are numerous in the field of robotics including 

motion planning with probabilistic satisfaction 

applying POMDP for simpler tasks and probabilistic 

models for complex tasks [21]. Partial satisfaction can 

also be implemented by the help of PI having hard 

constraints for full satisfaction and soft constraints for 

partial satisfaction [22]. Probabilistic search strategies 

can be utilized to analyze the effectiveness of search 

decision making and also decrease the expected time 

until this decision is finalized [23]. 

 

A vast majority of learning algorithm are based on 

function learning from a typical training set. However, 

for real world problems one object may have different 

meanings. For that reason, each object is assigned a set 

of labels to express its properties. Thus, they are 

known as multi-label learning algorithms[24]. 

Learning can be accomplished through evolutionary 

computation, game theory, complex systems, agent 

modeling, reinforcement learning and robotics using 

team learning or concurrent learning. All the 

aforementioned areas are used for cooperative 

learning where agents work simultaneously to 

complete collective goals. Other approach is to 

decompose the problem, distribute to agents and 

construct a solution for specific problem. Both of these 

approaches are a part of distributed artificial 

intelligence [25].  Before learning starts the data set 

can be converted from continuous to discrete values 

hence moving to qualitative data from quantitative one 

[26]. Extreme learning machines (ELMs) are also used 

for topologies without dataset i.e unsupervised (US-

ELM) and semi-supervised learning (SS-ELM). Both 

US-ELMs and SS-ELMs have the same efficiency and 

learning rate as those supervised ELMs. They can 

handle unknown data at test time directly and these 

algorithms are also suitable for multi-clustering [27]. 

MASs can learn on the basis of coordinated behavior 

between them. Independence of agent can be exploited 

for efficient coordinated learning (CL) without the 

information about location of coordination or whole 

knowledge about the environment. There exists a 

tradeoff between single agent learning process and 

coordinated learning process [28]. CL can also be 

depicted with the help of reinforcement learning. 

There also exists a tradeoff between exploitation and 

exploration for MARL technique. The approach 

adopted is similar to single agent model.. It is also kept 

in mind other than the value of information which 

helps in making an exploration policy [29]. 

Cooperative RL can also implemented on hierarchical 

(HRL) framework for which learning is decentralized. 

Algorithm focuses on performing individual subtasks 

also defines the order of those subtasks alongside 

coordination between these agents. Cooperative 

subtasks are defined with coordination among agents 

to improve the performance of overall task[30]. 

 

Deep reinforcement learning has been used 

extensively in the recent era to solve a wide range of 

complex decision making problems which is depicted 

recently in the fields such as health care, robotics, 

smart grid and other practical application [31].  Deep 

reinforcement learning is thus revolutionizing the way 

research is seen in the field of artificial intelligence by 

developing a unique understanding of autonomous 

systems and the visual world. As an example take a 

robot whose policy is learned with the help of camera 

attached to it in the real world environment. Another 

example of learning based real environment is learning 
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to play video games by looking at pixels [32]. Most of 

the learning is done with data which is available 

beforehand thus there is need of methodologies which 

help decreasing the errors which are introduced in the 

extrapolation. For that off-policy learning method the 

agent has to be restricted with the help of batch 

constraint methodology thus decreasing the action 

space which makes the system behave more like an on-

policy learning system [33]. Another problem that 

comes with it is the over fitting problem which can be 

taken into account. Agent normally over fit to large 

training sets which can be solved by using deep 

convolutional architectures to improve generalization. 

Methods such as regularization, augmentation and 

normalization are also used [34]. 

 

All of the aforementioned techniques are related to 

multi-agent systems but some do not present a viable 

method for agents to learn during exploration [1-17], 

also agents which do learning themselves cannot 

detect errors on their own and hence those systems are 

not fault tolerant [18-24]. For exploration, agents must 

also be equipped with making decisions in less time, 

so there should be limited computation time for each 

agent. All of these problems including the consensus 

between agents are important for agent movement in 

an unknown environment. This paper addresses these 

problems in the best way possible.   

 

In this paper, we have extended the use of HRL on 

MAS by using Q-learning on robotic search teams. 

The proposed algorithm initializes by defining an 

MDP model for leader-follower approach. 

Furthermore, a Q-learning algorithm is proposed on 

MDP model to construct a Q-look-up table. Number 

of agents and search areas are flexible and can be 

altered according to need. Results for Q-learning 

depicts a better computational efficiency as well as the 

time to perform each task. This scheme makes local 

agents independent in taking actions towards the goals 

assigned by leader agent. Moreover, these assigned 

goals are completed by each local agent which is the 

main criteria for understanding how each agent is 

performing. Hence, this approach like other learning 

techniques makes sure that agent takes its own 

decisions depending on the algorithm and exhibits a 

number of advantages including fault tolerance, error 

detection, goal completion, standby agents and 

coordination between local agents and the leader 

agent. The explanation of all these factors is given as: 

 

Goal completion: 

Goal completion from the perspective of robotics AI 

means completion of a specific task, assigned to an 

agent, in minimal amount of time. It is the most 

important factor in this research work as its purpose is 

to directly depict the agent’s success in an uncertain 

environment, which is the key objective of this work 

as aforementioned.   

 

Fault tolerance:  

Fault tolerance includes the impact of fault on any 

system as it is the amount of acceptable error. It is an 

essential factor in this research work because if the 

local agent does not responds according to the leader 

agent, it is considered faulty and is excluded from the 

system temporarily until a connection has been made 

or fault has been extracted. So in this work its main 

advantage is to create foundation for the error 

detection. 

 

Error Detection: 

This factor directly correlates with fault detection as in 

this system it ensures that all the local agents are 

working properly. If for some reason agents stop 

responding then it is considered as faulty and the 

specific error is detected subsequently. It can be due to 

multiple reasons including  

• Fuel leakage or low fuel due to exploration 

• Agent is in hazardous environment and is 

destroyed 

• The connectivity between local and leader agent 

is lost. 

 

Standby Agent: 

The agents that become faulty due to the reasons 

explained above are considered as standby agents. In 

this work if leader is unable to confirm the location 

and update its lookup table because of faulty entries 

from the local agents, they are considered in standby. 

This factor helps leader agent to keep the policy 

updated without the probability of having any faulty 

entries. 

 

Agent Coordination: leader and local agents. The 

main purpose of leader 
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This is a hierarchical model for coordination between 

agent in this work is to assign specific goals to the 

local agents. Until the goal completion, the local agent 

updates the policy as well as takes decisions on the 

basis of real world environment. Therefore, the 

coordination between these agents is of utmost 

importance as based on the local agents continuous 

feedback the leader agent updates its state table for 

each agent. If the agent is in hazardous place and is 

destroyed than the leader agent will not be able to 

coordinate with that local agent. During this scenario, 

the agent is considered to be on standby. Thus fault 

tolerance and error detection also depend on the 

coordination between the agents so agent coordination 

is a continuous process and is very important for 

communication between the leader and local agents in 

all above mentioned processes. 

 

This research develops a methodology in which 

decision making policy is developed with the help of 

data coming from the environment. The camera 

mounted on the agent will bring data values to the 

agents in the hierarchical system and the policy will be 

updated according to the incoming data. Another 

advantage of this research is that agents which are 

present in the field can update the local policy on their 

own and later send the updated results to the main 

leader agent or control room. The main contribution of 

this work are explained above and are summarized as 

follows: 

• Development of optimal policy for each local 

agent. This is achieved through cameras 

canvasing of the real environment  

• Development of overall policy of the system 

through the data collection from all the local 

agents. 

• Making the system fault tolerant by introducing 

factors such as standby agent, fuel level and agent 

coordination. 

The rest of this paper is divided as follows. Section 3 

of this paper depicts system constraints and 

methodology. Section 4 of this paper includes results 

and comparisons Section 5 presents the conclusion. 

 

3.  SYSTEM CONSTRAINTS AND  

     METHODOLOGY 

 
This research treats the problem of p-agents having to 

search through an area with m-partitions. Total area of 

these partitions is known, alongside with number of 

agents and number of partitions. But the status 

(hazardous/friendly) of partitions is not known and 

recognized with search. Basic purpose of this research 

is to facilitate agent’s movement. Some important 

constraints which affect the movement are 

 

• Agents interaction 

• Partition status 

• fuel status. 

 

If an agent A is in partition 1 and wants to move to any 

partition 2 but another agent is already present in that 

partition 2, the agent A will restrict its movement and 

not move to partition 2. Hence agent movement is 

dependent on position. Another factor this system is 

dependent on is partition status. If an agent A wants to 

move to partition 2 but that partition is already 

declared hazardous by the agent which visited it 

before. In that scenario the agent will not move to 

partition 2. Third constraint under consideration is fuel 

status. Agent A will stop its movement to any partition 

if it identifies its fuel level as empty or close to empty.  

 

In practice, such situations may occur when there is 

fire in a building. The rooms and halls can be 

considered as partitions and rooms where fire has 

spread may be considered hazardous whereas rooms 

where fire has not spread may be regarded as friendly. 

Also this topology can be used by Mars rovers in 

which case the partitions would be imaginary i.e. 

without physical walls or separations. Sample area for 

this research is depicted in Fig. 1. 

 

`

Agent
Hazardous

Friendly Unknown

Sample Area

Partitions

(3*3=9)

 
Fig. 1: Sample Area 
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3.1 MDP Model 
 

Leader Agent MDP Model: Leader MDP model 

consists of four elements including states, actions, 

reward function and transition probability. Major tasks 

of the leader agent involve assigning the agent to 

different search area partitions and managing the 

operating modes of the agents. It has been assumed 

that the member agents are able to communicate the 

status of their power/fuel levels and fault(s) to the 

leader agent. 

 

States: There are five variables which construct the 

MDP model for leader agent: 

 

• Agent state. 

• Goal status. 

• Partition assigned. 

• Partition status. 

• Standby agent. 

 

S = �s�, s�, ⋯ , s	
                                                      (1) 

s� = �A, B, C, G, Sb
, iϵ�1,2, ⋯ , n
  

A = �a�, a�, ⋯ , a��, a�ϵ�0,1
, jϵ�1,2, ⋯ , p
  

B = �b�, b�, ⋯ , b�
, b�ϵ�0,1,2
, jϵ�1,2, ⋯ , r
  

C = �c�, c�, ⋯ , c��, c� ϵ�1,2, ⋯ , r
, jϵ�1,2, ⋯ , p
  

G = �g�, g�, ⋯ , g#�, g�ϵ�0,1
, jϵ�1,2, ⋯ , q
  

Sb = �sb�, sb�, ⋯ , sb��, sb�ϵ�0,1
, jϵ�1,2, ⋯ , p
  

 

Equation (1) depicts the state space starting from 1st 

state to nth state where each state is calculated based 

on five types of variables. Policies for this system can 

be computed offline so the computation limit is 

dependent on the processor.  

 

First type of variable in the state is the status of an 

agent (A). Each agent can either be in a working state 

(ai = 1) or a failed state (ai = 0) and there are total p 

agents. In second variable bi represents the ith partition 

of the area being unknown (bi = 0), friendly (bi = 1), 

or hostile (bi = 2). Third variable is agent assignment 

variable, represented by C, for the assignment of the ith 

agent. An agent can be assigned to any of the partitions 

of the search area. Value of ci identifies the partition 

to which ith agent is currently assigned. Next variable 

is the goal variable (G) represented where gi is the ith 

goal. This variable represents whether the goal has 

been achieved (gi = 1) or not (gi = 0). The goal status 

is the most important variable which undertakes the 

concept that if a certain problem given to the agent is 

solved as an example if the agent is a robot on a rescue 

mission and it sees a person in danger and gives 

feedback to the control room that a person has been 

found and this will be considered as goal completed. 

In real life problem, goal could be to find a survivor or 

an object of interest. Fifth variable (Sb) is related to 

standby agent which shows if the agent is standby (sbi 

= 0) or not (sbi = 1). Therefore, if an agent is not 

responding to the leader agent it is considered as 

standby agent. The reasons for not responding can be 

multiple like its battery can drain out, its connection 

can be cut, the agent can also be destroyed in a 

hazardous environment due to dangerous conditions. 

Thus all of these problems can accumulatively 

generate an error in the system which makes the agent 

with that corresponding error standby. This property 

makes the system fault tolerant as it considers the fact 

that any of the agents can be on fault and the leader 

agent will keep on trying to connect with local agent 

and after a fixed amount of time will send another 

agent for better understanding of the problem. 

 

Actions: In this paper, we have considered p agents 

and r partitions of the search area. Hence, in total there 

are p×r agent assignment actions. Here the assumption 

is that the agent assignment is done sequentially (one 

by one) but it is not a limitation. For example, if two 

agents can be assigned at a time then actions will be 

(total  agent   pairs*areas    to be   assigned   including 

current partition as twice). Therefore, the 

computational complexity depends on hardware and 

varies linearly with change in actions. There are 

actions to put the agent on stand-by mode in case of 

fault of lack of electrical power/fuel. There is also an 

action NOOP (no-operation) for cases where no 

change in current assignment or mode of the agents is 

required. Actions are shown in (2). 

 

M = �μ�,�, μ�,�, ⋯ , μ�,�, μ'(�, μ'(� , ⋯ , μ'(�, NOOP �       (2)                                   

 

Reward Function: Our reward function has the 

following priority order: 

• Goal achievement. 

• Considering the standby agents. 

• Avoiding more than two agents in a single 

partition. 
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• Avoiding hostile areas. 

 

Defining the reward function is the basic problem 

during MDP model design. State and actions can be 

changed according to the situation and transition 

probabilities are defined according to the statistical 

data. However, reward function must be aligned to the 

objectives of the problem and with the outside 

environment otherwise, it will be of no practical use. 

 

Proposed reward function is presented in (3). It 

consists of six terms each scaled by a positive 

coefficient (λ).   

 

R-s. = λ�e∑ 23345:7 + λ�e∑ 93345:: −
λ<e∑ '(3×93345::  ⋯ + λ>e∑ ?@@45:A − λBe∑ ∑ C3,@@45:A345:: −
λDe∑ -(3EF.345:A   

α� = H1 ab�, jϵ�1,2, ⋯ , r

0 otherwise                                      (3) 

cb� = ∑ -c� = j.,�
�E�  jϵ�1,2, ⋯ , r
  

β�,� =
H1 α� > 1, and b� = 2
0 otherwise , iϵ�1, ⋯ , p
 , jϵ�1, ⋯ . r
  

 

First expression in (3) depends on the goal status. 

More the goals completed more shall be the reward 

having maximum value when all goals have been 

achieved. Consequently, if the values for these goals 

are zero then reward function will be diminished. 

Second term of equation includes the status of agents 

in a specific area. Higher reward for more agents in 

working condition. This term supports the assignment 

of agents to friendly areas so that their failure 

probability is minimized. Third term penalizes the 

standby agents so that no agents are put on standby 

unless the agents have failed. Fourth term encourages 

efficient utilization of search agents by penalizing 

more than two agents in one search partition. If the 

number of agents cbi in the ith area are two or less then 

the reward parameter αi will decrease. Fifth term in the 

reward function penalizes assignment of agents to the 

hazardous areas. Note that if one agent is present in 

this type of area, it will not change reward value (this 

is to support the achievement of goals since some 

goals are likely to be achieved in the hazardous 

partition). Sixth term penalizes the unexplored 

partitions.  

 

Transition Probability: Transition   probability    from  

one state(s) to another state(s’) is given by T(s,µ,s’). It 

is combination of all possible probabilities 

corresponding to all of the states for movement of 

agents in search area. These probabilities depend on a 

number of factors continuing to assignment or 

reassignment of these agents. Reassignment is a 

problem because agents must change their location 

according to some specific reason. However, there is 

no modeling defined for transition between states. So, 

for transition to happen an external algorithm is used 

to determine whether the agent position should be 

altered or not.  Probability distributions of all these 

events can be calculated using the conditional 

independence relations among the variables involved 

in the problem. Such relations can be represented with 

the help of a Bayesian network. Bayesian network for 

leader agent is shown in (Fig. 2). Note that the standby 

variable (Sb) is not part of Bayesian network because 

it is deterministic and it does not affect any other 

random variable. On the other hand, agent assignment 

variable (C) is part of the Bayesian network despite 

being deterministic because it affects other random 

variables. Remaining variables i.e. agent status (A), 

search area partition status (B), and goal status (G) are 

random variables. Agent status depends upon existing 

agent status and assignment of agents. If an agent is 

assigned to a hazardous partition, then its probability 

of failure is expected to be higher compared to the one 

assigned to friendly partition. Partition status depends 

upon  existing  partition  status  and agent assignment 

because the probability of a partition being friendly or 

hostile depends upon whether it is unknown and 

whether a search agent is assigned to it. An unknown 

partition shall remain unknown if no agent is assigned 

to it. Finally, achievement of goals depends upon 

current status of goal achievement and assignment of 

agents. Goal achievement probability may be higher 

for agents assigned to certain “important” partitions. 

 
Fig. 2. Bayesian Network for Leader Agent 
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Practically, the conditional probabilities involved in 

the problem can either be learnt online (starting from 

initial offline guess), or may be available from 

statistical data. This paper does not discuss the 

methods of obtaining the probabilities rather it shows 

how to use them in an MDP model.  

 

3.2  Member Agent MDP Model 

 

States: States of the member agent depicts the 

variables involved in the problem. 

  

S = �s�, s�, ⋯ , sQ
                                                   (4) 

S� = �ps, cp, G, energy, cs, block, Bc, f
  

G = �g�, g�, ⋯ , g#�, g�ϵV0,1W, jϵ�1,2, ⋯ , q
,  
Bc = �bc�, bc�, ⋯ , bcX
, bc�ϵ�0,1,2
, jϵ�1,2, ⋯ , x
  

energyϵ�0,1, ⋯ , y
, csϵ�0,1, ⋯ , z
, psϵ�0,1
  

cpϵ�1,2
, blockϵ�1,2, ⋯ , x
, fϵ�0,1
  
x, y, zϵ�0,1,2, ⋯ 
  

There are eight variables in (4). First variable in this 

equation is partition status ps. Partitions are 

subdivided into blocks. Partition status is ‘0’ if the 

partition is unexplored and is ‘1’ if the partition is 

explored with no re-visits required. Next variable in 

this list is cp this variable refers to current partition. It 

shows whichever partition the agent is present in. Next 

variable is G which tells us about the status of the 

goals. If one of those goals is completed its state value 

will be changed to ‘1’. Next variable is energy which 

tells about the level or fuel present. Total fuel/energy 

capacity has been divided into y+1 discrete levels. 

Fifth variable included is the companion status cs, it 

tells about the status of companion agents present in 

partition 1 represented as ‘1’ or in partition 2 

represented as ‘2’ or not in any partition represented 

as ‘0’ (in general there could be z partitions). A sample 

structure of search area with two partitions (z = 2) and 

seven blocks (x = 7) is shown in Fig. 3. Other variable 

is block tells us the exact location where this agent is 

available. Seventh variable present is Bc which 

includes status of each individual block where 

unknown represented by ‘0’, friendly represented by 

‘1’ and hazardous represented by ‘2’. Last state 

variable is fault variable shown as f, it will be ‘0’ if 

there is no fault present and ‘1’ for physical or logical 

faults. 

 

Actions: Actions means the number of steps agent can 

take to move from one state to another. In most cases 

there are five basic types of actions given as 

 

(i) Left 

(ii) Right 

(iii) Straight 

(iv) Back 

(v) Stay 

 

All these actions are given in the equation below. Each 

action taken takes the agent to another block (except 

for stay action).  

 
M = �MovLeft,   MovRight,   MovStraight,   MovBack,   Stay 
   (5) 

 

Any agent can move within its partition on a specific 

action until there assignment is changed. Some types 

of actions are given below (Fig. 3.) 

 

(i) Taking left from block 2 takes agent to block 1. 

(ii) Taking left from block 1 in partition 1 will not 

make agent move to any other block. 

(iii) Right action from block 3 takes the agent to block 

4. 

(iv) Taking front from block 4 takes agent to block 2. 

(v) Back action from block 5, 6 takes agent to block 

7. 

 

PARTITION 1 PARTITION 2

1 2

3 4

5 6

7

1
2

3 4

5 6

7

Fig. 3: Area Distribution 

 
Reward Function: Reward function must be designed 

with caution.  It is based on the MDP model created, 

but it can be changed according to the need of the 

search teams. For member agent reward function is 

based on these basic parameters. 
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(i) Agent should cover maximum area. 

(ii) To make sure that not more than two agents 

resides in same partition. 

(iii) Agent should be able to find if it is faulted and 

communicate it back to the leader agent. 

(iv) Agent should be familiar with hazardous blocks 

in the partition. 

(v) Agent should maximize the battery usage. 

 

R-s. = ∑ α�r�, α� ∈ V0, ∞.B�E�                                      (6) 

_� = ∑ -`ab > 1.cbE� + d�ef, d�g-0, ∞.  

r� = -cp ⊕ cs.  

r< = energy  

r> = ∑ -block == i.X�E� × -bc� ≠ 2.  

rB = f  
 

The first expression of r1 in equation (6) motivates the 

agent to explore the search area (by exploring the 

partition in which it is currently present). As the block 

exploration is increased the reward function also 

increases with it. For this scenario value of j�is taken 

to be a large positive number so that exploration can 

be increased. Other priority is to make sure that agent 

avoids the blocks in which another agent is already 

present. For that r2 is introduced. The value of this 

variable is also very important and increases the 

reward as a whole. Therefore, the value of its constant 

is also taken to be large positive number (e.g. 100). 

Third expression represents the level of fuel/battery 

present. Its value will alter according to fuel/battery 

being low, medium or full. For the missions where 

level of fuel/battery is most important, j< is taken to 

be about ten times larger than that of j� on the other 

hand if exploration is more important, then lower 

value of j< may be used. Full value of energy will take 

reward function to maximum value. Fourth expression 

is for avoidance of hazardous blocks; these blocks can 

have temperature value high or terrain may be 

unsustainable. Hence, there can be a number of 

reasons to avoid these blocks which leads to failure of 

agent. It is also a priority of leader agent to not assign 

agents in these blocks. Last expression is for the faults 

present in an agent. It will be maximized if there is no 

fault in the agent so its constant is taken to be a large 

positive value (e.g. 1000) which may lead to reduction 

in risk taken by the agent while performing search. 

 

Transition Probability:    Transition         probability 

explains about the change from one state to another. 

Bayesian network for transition probabilities of 

member agent state is shown in (Fig. 4). 

 

 
Fig. 4: Bayesian Network For Member Agent 

 

Two most important probabilities in (Fig. 4) are that 

of goal achievement and occurrence of fault. Goal 

achievement depends upon the current location of the 

member agent (current partition and block), status of 

the partition in which the agent is located, and the 

existing status of the goal achievement. This 

probability guides the agent about which blocks have 

more potential of rendering the goals achieved. Fault 

occurrence probability depends upon the location of 

agent and status of the blocks (high fault probability in 

hazardous blocks). Other variables in the state space 

transition based on their current value or the action 

taken by the agent. Note that the actions are not 

included in the Bayesian network of (Fig. 4). 

However, consumption of energy does depend on 

action taken (but this dependence is often 

deterministic rather than stochastic).  

 

3.3  RL Learning Model 
 

There are different types of reinforcement learning 

which are differentiated on the basis of their learning 

method. Supervised learning has models and training 

sets upon which agent acts. However, unsupervised 

learning is quite opposite with no training set. But 

there is another type which has a feedback system in 

order to make decisions, it is known as reinforcement 

learning where positive or negative reinforcements are 

used for more effective and efficient decision making. 

 

These   are    two    types    of   such learning systems 
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(i) Utility Learning. 

(ii) Q-Learning. 

 

In utility-based learning agent learns about the utility 

function and selects actions that maximizes the 

expected utility. However, it must understand about 

the environment better or have the knowledge before 

even starting to evaluate actions and making decisions. 

In this paper, agent learns action-value function which 

is utility of taking action in a given state. So, there is 

no model required but the knowledge of environment 

becomes very limited.  

 

Q-Learning: In Q-learning we Define action-value 

function. In addition, we assign expected utility by 

taking actions in states known as Q-values. It also 

allows decision making without use of any model.  

 

It can also be used for iterative learning but need to 

learn model thus known as TD Q-learning. In the 

equation given below maximum value is computed 

with respect to Q values with all actions. With reward 

function given for next state and multiplying it with 

alpha which is learning rate we will get the new value 

of Q-function. This is represented in equation (7). 

 

Qlm�-sl, al. = Ql-sl, al. + A                                    (7) 

A = αl-sl , al. nR-t + 1. + γ max9 Ql-slm�, a. − Ql-sl, al.q  
 

Proposed Model: This proposed model is different 

from simple TD Q-learning equation. Instead of taking 

the maximum value out of all possible values, value 

function is defined which is multiplied with the 

discount factor. 

 

Value Function: Value function Vt+1 tells about the 

expected overall value of states under given policy. No 

type of reward is required to compute this value. But 

in turns it helps in making the reward functions. In the 

equation given below Q value of next state is 

computed on the basis of current value and next state 

value function.  

 

Qlm�-sl, al. = Ql-sl, al. + B                                     (8) 

B = αl-sl, al.VR-t + 1. + γV-t + 1. − Ql-sl, al.W  
In our proposed model There are three local agents and 

a single leader agent. A local agent starts learning and 

changes state based on the environment. So this is the 

state transition method in which agent is in state s1 and 

switches to state s2 based on the environment. 

 

On the other hand, local agent also communicates its 

known state to leader agent so that it can help avoid 

other local agents from hazardous places. Thus leader 

agent learns on the basis of local agent changing and 

assigns other local agents on this basis. 

 

4.   RESULTS AND COMPARISONS 

 
4.1  Qualitative Comparison 
 

Upon the basis of certain techniques, a comparison is 

given for different properties in (Table 1).  All the 

techniques mentioned in (Table 1) are used for the 

control of an agent in any area. The main qualities that 

this paper addresses are Uncertainty Handling, Agent 

Coordination, Area Classification and Learning 

Capability. The proposed model is this paper can 

handle all of these problems but other approaches lack 

in providing a solution for some of these problems. 

 

A comparison between Reinforcement learning 

technique and previous MDP technique mentioned in 

[35] demonstrates an addition of learning topology and 

fault detection based on states in which  agent is 

present. Proposed model also has enhanced efficiency  

 

Table 1: Qualitative comparison between techniques 
 Uncertainty Handling Agent Coordination Area Classification Learning Capability 

Formation Control x X X x 

Data Fusion Control x √ X X 

Adaptive Control √ X X X 

MDP √ X √ X 

Extreme Learning 
Machines 

√ X X √ 

HRL(Q-Learning) √ √ √ √ 
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due to less dependency on the leader agent for decision 

making. Out of these models MDP modeling is 

conventional method and cannot be compared with 

any other method but this paper depicts an improved 

MDP version with addition of Q-learning. 

 

4.2  Simulation Based Comparison 
 

Let’s assume that rescue robots are trying to explore 

through a building under fire with a goal to search for 

humans. Unknown constraints are if any room of the 

building has fire or smoke it is declared as hazardous. 

If room does not contain fire or smoke it is considered 

as friendly and if room is not explored yet it is 

considered as unknown. Building is divided into 

different search areas which are further divided into 

partitions. This is also demonstrated in (Fig. 5). 

 

Building is divided into two areas with each area 

having two partitions. Out of these partitions Partition 

1 of Area 1 and Partition 2 of Area 2 are not under fire 

or smoke thus they will be considered friendly. On the 

other hand, Partition 1 of Area 2 is under fire and is 

labeled as hazardous. Partition 2 of Area 1 is still 

unknown as it is not explored yet. 

 

Area 1 Area 2

Partition 1

Partition 2Partition 2

Partition 1

Building

Agent 1

No Fire

Not 

Explored

 
Fig. 5: Building Sample 

 

All the policies are calculated on MATLAB 2013a 

installed on a system with windows 10 and with 

processor Intel(R) Core(TM) i5-2400 CPU @ 

3.10GHz  3.10 GHz. 

 

Leader Agent: There are two types of simulations for 

agent policies. First simulation is for leader agent 

assigning other agents without the use of learning. 

This policy is taken from policy evaluation and all of  

the states are taken randomly. The  resultant  of  these 

states are shown both by MDP policy making and Q-

learning policy making. 

 

Initial Conditions: Initial conditions for the 

simulations are given in Table 2.   

 

State Diagram: As shown in (Table 3) for case ‘A’, 

all of the goals are unachieved and agent1 is assigned 

to partition 1, agent 1 and 2 are assigned to partition1 

where as agent3 is assigned to partition 2. For case ‘B’, 

second goal is achieved with agent assignment same 

as case ‘A’, partitions for both these cases are 

unknown.  In case ‘C’ goal status is changed to 

achieved with agent 1 and 3 assigned to partition 1 and 

agent 2 assigned to partition 2. 

 

For next three cases ‘D’, ‘E’ and ‘F’ partition status is 

hazardous for first partition but unknown for second 

one. For each case 2 agents are assigned in partition 

number one. Goal status is also different for each state. 

As first being in unachieved state, for second goal 

number 2 is achieved and for third case both goals are 

achieved. 

 

Last three cases have first partition in hazardous state 

and second partition is unknown. For all cases two 

agents are given to partition no 1, so result is 

determined. Goal status is also altered same as above. 

 

MDP Policy: Each of the states given gave the results 

as shown in Table 4. 

 

Learning Policy: For policy with learning, we have 

only taken references from the MDP policy but it is 

not necessary. These values can also be taken upon 

intuition or by choosing randomly. In the same states 

the result for learning policy are  

 

• Case ‘A’ of (Table 5), Action 2 has been taken 

which takes agent 1 to partition 2 to fulfill the 

goals alternatively. 

• Case ‘B’ recommends to take action no. 7 which 

takes agent 1 to a standby state because only one 

goal is remaining. 

• Case ‘C’ recommends action 7 which means 

agent 1 is taken to standby state because both of 

the goals are achieved. 
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Table 3:  States Status of Leader Agent for Initial Conditions 

 Agent State Goal Status 
Partition to which 

agent is assigned 
Partition Status Standby Agent 

A 111 00 112 00 111 

B 111 01 112 00 111 

C 111 11 121 00 111 

D 111 00 112 01 111 

E 111 01 211 01 111 

F 111 11 121 01 111 

G 111 00 121 20 111 

H 111 01 211 20 111 

I 111 11 112 20 111 

    

• Case ‘D’ recommends action 2 and take agent 1 

to partition 2 because partition 2 has a status of 

friendly. 

• Case ‘E’ recommends action 7 to take agent 1 to 

standby because one goal is achieved. 

• Case ‘F’ takes action 7 to take agent 1 to standby 

because both goals are achieved. At this point all 

agents could go to standby. Action is just taken 

randomly here. 

• Case ‘G’ refers to action 2 which takes agent 1 to 

partition 2 because partition 1 is hazardous. 

• Case ‘H’ takes action 7 to take agent 1 to standby 

mode because one of the goals is fulfilled. 

• Case ‘I’ takes action 7 to take agent 1 to standby 

mode because partition 1 is hazardous and goals 

are completed. 

 
Comparison: Both MDP and Q-learning models are 

implemented for leader agent with MDP being a more 

conventional and common approach. Comparison of 

MDP and Q-learning technique is demonstrated with 

practical results to ensure its reliability. 

 

For the first case represented in Fig. 6, the agents are 

moved from one area to other taking agent 2 to area 2 

and agent 3 to area 1 with the help of MDP process. 

Table 2: Initial Conditions of Leader Agent 

 Status of Area 1 Status of Area 2 Status of Goal 1 Status of Goal 2 

A UNKNOWN UNKNOWN UNACHIEVED UNACHIEVED 

B UNKNOWN UNKNOWN UNACHIEVED ACHIEVED 

C UNKNOWN UNKNOWN ACHIEVED ACHIEVED 

D UNKNOWN FRIENDLY UNACHIEVED UNACHIEVED 

E UNKNOWN FRIENDLY UNACHIEVED ACHIEVED 

F UNKNOWN FRIENDLY ACHIEVED ACHIEVED 

G HAZARDOUS UNKNOWN UNACHIEVED UNACHIEVED 

H HAZARDOUS UNKNOWN UNACHIEVED ACHIEVED 

I HAZARDOUS UNKNOWN ACHIEVED ACHIEVED 

Table 4: States status of Leader Agent after implementing MDP Policy 

 Agent State Goal Status Partition to which agent is assigned Partition Status Standby Agent 

A 111 00 121 10 111 

B 111 00 112 01 111 

C 111 10 112 01 111 

D 111 00 121 10 111 

E 111 00 122 10 111 

F 111 10 112 01 111 

G 111 00 121 11 111 

H 111 00 121 11 111 

I 111 10 112 01 111 
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But with the help of Q-learning one agent remains in 

area 1 and two agent moves to area 2 because of the 

goal achievements. 

 

For case C represented in Fig. 7, both of the goals are 

accomplished. However, one of the agents should 

move to standby in area 1. Through MDP modeling 

places of agents are swapped but neither of them 

moves to standby state. That is accomplished with the 

help of Q-learning which can also be seen in Table 5. 

Case E is similar to Case C with slight difference that  

 one of the goals is achieved not both of them as 

represented in Fig. 8. Still, being a more optimized 

method Q-learning moves the agent in area 1 to 

standby rather than swapping positions like in MDP 

model. 

 
The scenario shown in Fig. 9 is also similar in which 

agents are taken to standby with Q-learning but not 

with MDP process. Hence, the performance of Q-

learning can be seen from the given cases in which 

agent does not moves from one place to another but 

goes to standby. 

 

 
Fig. 6. Case A of Agents Movement 

 

 
Fig. 7: Case C of Agents Movement 

Table 5: States Status of Leader Agent after implementing Q-Learning 

 Agent State Goal Status 
Partition to which 

agent is assigned 
Partition Status Standby Agent 

A 111 00 212 00 111 

B 111 01 112 00 011 

C 111 11 121 00 011 

D 111 00 212 01 111 

E 111 01 211 01 011 

F 111 11 121 01 011 

G 111 00 221 20 111 

H 111 01 211 20 011 

I 111 11 112 20 011 
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Fig. 8: Case E of Agents Movement 

 

 
Fig. 9:  Case F of Agents Movement 

 

4.3  Member Agent 

 

Initial status for local agent taken by intuition are 

shown in Table 6 and states status for local agent are 

shown in Table 7.    

 

MDP Result: For case ‘A’ represented in Table. 8, 

member agent the block number in which agent is 

present is changed from 1 to 7 with a difference that 

companion is present in the same partition. 

 

For case ‘B’ represented in Table. 8, block number is 

again changed from 3 to 7, as can be seen from the 

table that both of these cases have a fault which is 

either physical or sensor. Hence, it does not matter to 

which block agent moves to. 

 

For case ‘C’ represented in Table. 8, the agent moves 

from block number 4 to block number 7, with no fault 

present the result is changed block because companion 

is present in the same block. 

 

For case ‘D’ represented in Table 8, there is again a 

fault present in the agent in the initial state, so moving 

to other blocks does not matter. 

For case ‘E’ represented in Table. 8, the agent moves 

from block 1 to block 7 because block number 7 is 

friendly and number 1 is not. 

 

For case ‘F’ represented in Table 8, agent moves to 

block 6 because it is the only block which is not 

hazardous. 

 

Learning Result: The results computed at the end of 

learning policy gives the result shown in Table 9. 

 
 Takes action move right, hence moves the agent 

to block 2 of partition 1.  

 Takes action move right, hence moves the agent 

to block 4 of partition 1 because block 3 is 
hazardous. 

 Takes no action because block is friendly and one 

of the goals is completed. 
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 Takes action no. 2 and moves to partition number 

2 because block 7 of current partition is 

hazardous. 

 Takes action no. 2 and moves to second block just 

for the sake of goals. 

 Takes action no. 3 to take agent to block number 

6 of same partition. 

 

Table 6: Initial Status for Local Agent 

Case ID 
Partition Status 

(PS) 

Current 

Partition  

(CP) 

Companion 

Status 

(CS) 

Status of Goal 1 Status of Goal 2 

A Unexplored P1 Not Present Unachieved Unachieved 

B Unexplored P1 Not Present Unachieved Unachieved 

C Unexplored P1 Present Achieved Unachieved 

D Unexplored P1 Present Unachieved Achieved 

E Unexplored P1 Not Present Unachieved Unachieved 

F Explored P2 Not Present Achieved Achieved 

 

Table 8: States Status of Leader Agent after MDP Policy 

Case 

ID 

Partition 

Status 

Current 

Partition 

Goal 

Status 
Energy 

Companion 

Status 
Block bci F 

A 0 1 00 2 2 7 1111211 1 

B 0 1 00 2 2 7 1121211 1 

C 0 1 00 2 2 7 2111221 0 

D 0 1 00 2 2 6 2221212 1 

E 0 1 00 2 2 7 1121220 0 

F 1 1 10 2 1 6 2222212 0 

 

Table 9:  States Status of Leader Agent after Q-Learning 

Case 

ID 

Partition 

Status 

Current 

Partition 

Goal 

Status 
Energy 

Companion 

Status 
Block Bci F 

A 0 1 00 0 0 2 1111211 1 

B 0 1 00 0 0 4 1121211 1 

C 0 1 10 0 1 4 2111221 0 

D 0 2 01 1 1 7 0000001 1 

E 0 1 00 0 0 2 1121220 0 

F 1 2 11 2 0 6 2222212 0 

 

Comparison: According to states of member agents, 

the MDP model is implemented and learning policy is 

also determined. This section presents a comparison 

between agent movement with Q-learning and agent 

movement with MDP model. 

 

The corresponding Case in Fig. 10 takes block number 

3 and 5 as hazardous. With the help of MDP this agent 

moves to block number 7 moving from block 4 and 6. 

By this route block 5 is also avoided completely. For 

Q-learning, agent moves from block 3 to block 4 

taking the agent to safety by a single movement. 

Table 7: States Status of Local Agent for Initial Conditions 

Case 

ID 

Partition 

Status 

Current 

Partition 
Goal Status Energy 

Companion 

Status 
Block bci F 

A 0 1 00 0 0 1 1111211 1 

B 0 1 00 0 0 3 1121211 1 

C 0 1 10 0 1 4 2111221 0 

D 0 1 01 1 1 7 2221212 1 

E 0 1 00 0 0 1 1121220 0 

F 1 2 11 2 0 7 2222212 0 
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For the first case in Fig. 11, the only hazardous block  

is 5, the local agent is present in block number 1 in this 

scenario. With simple MDP model this agent is taken 

to block number 7, only taking into consideration 

some of the problems. But with Q-learning the agent 

moves to block number 2 after taking one right. This 

way agent does not travel long for non-hazardous 

block. 

For Case F in Fig. 12, all of the blocks present in a 

block are hazardous leaving block number 6 or 4. 

MDP result shows the movement from this block to 

block number 6 of the same partition. The result from 

Q look up table shows that agent moves to partition no. 

2 because already companions are present in the same 

partition. 

 

 

 

 

 

Fig. 10:  Case D for Local Agent Movement 

 

 
Fig. 11:  Case A for Local Agent Movement 

 

 
Fig. 11: Case F  for Local Agent Movement 

 

  
Fig. 12:  Case B Local Agent Movement 
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The last scenario illustrated in Fig. 13, all of the blocks 

to be hazardous with companions present. So in MDP 

model, it takes agent to safety by moving to partition 

no. 1 but it takes another step to move agent to block 

no. 6. But on the other hand Q-learning only moves it 

to block number 7 of partition no 1. 

 

5.  CONCLUSION 
 

In this paper, an effective hierarchical reinforcement 

learning algorithm is developed to find optimal Q-

learning policy for robotic search teams. The proposed 

framework works with general dynamics in an 

unknown environment. The main advantage of using 

this methodology is the decision making on behalf of 

agents from the data which is coming from the outside 

sensors i.e. camera in case of our research. Therefore, 

all the policies that are being developed majorly 

depends on the camera output. Agent can take decision 

on basis of that output directly without informing the 

control room thus making a decentralized approach. 

The paper also presents a comparison between MDP 

policy and Q learning which depicts better 

computational time and efficiency of this architecture. 

Although, both MDP and Q-learning are correlated 

results depict a better performance of Q-learning 

algorithm. The main advantage of this approach is 

member agent can take action on its own by detecting 

present faults, communicating with other member 

agents, choosing between active and non-active 

position and moving between search areas. The 

number of goals, search areas and agents can be 

changed according to the demand. States, actions, 

reward function and transition probabilities are 

constructed or altered according to demand. 

 

REFERENCES 
 

1. Casper J.,  Murphy R. R., "Human-robot 

interactions during the robot-assisted urban 

search and rescue response at the world trade 

center", IEEE Transactions on Systems, Man, and 

Cybernetics, Part B (Cybernetics), Vol. 33, pp. 

367-385, 2003. 

2. Guizzo E., "Japan earthquake: more robots to the 

rescue," IEEE Spectrum, March 2011. 

3. Wisnivesky J. P., Teitelbaum S. L., Todd A. C., 

Boffetta P., Crane M., Crowley L., et al., 

"Persistence of multiple illnesses in World Trade 

Center rescue and recovery workers: a cohort 

study", The Lancet, Vol. 378, pp. 888-897, 2011. 

4. Weiden M. D., Ferrier N., Nolan A., Rom W. N., 

Comfort A., Gustave J., et al., "Obstructive 

airways disease with air trapping among 

firefighters exposed to World Trade Center dust", 
Chest, Vol. 137, pp. 566-574, 2010. 

5. Udasin I., Schechter C., Crowley L., Sotolongo 

A., Gochfeld M., Luft B., et al., "Respiratory 

symptoms were associated with lower spirometry 

results during the first examination of WTC 

responders", Journal of Occupational and 

Environmental Medicine, Vol. 53, pp. 49-54, 

2011. 

6. Liu Y., Nejat G., "Robotic urban search and 

rescue: A survey from the control perspective", 

Journal of Intelligent & Robotic Systems, Vol. 72, 

pp. 147-165, 2013. 
7. Oh K.-K., Park M.-C., Ahn H.-S., "A survey of 

multi-agent formation control", Automatica, Vol. 

53, pp. 424-440, 2015. 

8. Cao Y., Yu W., Ren W., Chen G., "An overview 

of recent progress in the study of distributed 

multi-agent coordination," IEEE Transactions on 

Industrial Informatics, Vol. 9, pp. 427-438, 2013. 

9. Olfati-Saber R., Murray R. M., "Consensus 

problems in networks of agents with switching 

topology and time-delays", IEEE Transactions on 

Automatic Control, Vol. 49, pp. 1520-1533, 2004. 
10. Wen G., Duan Z., Ren W., Chen G., "Distributed 

consensus of multi‐agent systems with general 

linear node dynamics and intermittent 

communications", International Journal of 

Robust and Nonlinear Control, Vol. 24, pp. 2438-

2457, 2014. 

11. Zhang S., Sridharan M., Washington C., "Active 

visual planning for mobile robot teams using 

hierarchical pomdps", IEEE Transactions on 

Robotics, Vol. 29, pp. 975-985, 2013. 

12. Luo L., Chakraborty N., Sycara K., "Provably-

good distributed algorithm for constrained multi-
robot task assignment for grouped tasks", IEEE 

Transactions on Robotics, Vol. 31, pp. 19-30, 

2015. 

13. Grady D. K., Moll M., Kavraki L. E., "Extending 

the applicability of POMDP solutions to robotic 

tasks", IEEE Transactions on Robotics, Vol. 31, 

pp. 948-961, 2015. 

14. Zhang Y., Parker L. E., "IQ-ASyMTRe: Forming 

executable coalitions for tightly coupled 

multirobot tasks", IEEE Transactions on 

Robotics, Vol. 29, pp. 400-416, 2013. 



Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment 

 

Mehran University Research Journal of Engineering  and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219] 

 

662 

 

15. Hollinger G. A., Yerramalli S., Singh S., Mitra U., 

Sukhatme G. S., "Distributed data fusion for 

multirobot search", IEEE Transactions on 

Robotics, Vol. 31, pp. 55-66, 2015. 

16. Alla A., Falcone M., Kalise D., "An efficient 

policy iteration algorithm for dynamic 
programming equations", SIAM Journal of 

Scientific Computing, Vol. 37, pp. A181-A200, 

2015. 

17. Modares H., Lewis F. L., Naghibi-Sistani M.-B., 

"Adaptive optimal control of unknown 

constrained-input systems using policy iteration 

and neural networks", IEEE Transactions on 

Neural Networks and Learning Systems, Vol. 24, 

pp. 1513-1525, 2013. 

18. Wang D., Liu D., Li H., "Policy iteration 

algorithm for online design of robust control for a 

class of continuous-time nonlinear systems", 
IEEE Transactions on Automation Science and 

Engineering, Vol. 11, pp. 627-632, 2014. 

19. Liu D., Wei Q., "Policy iteration adaptive 

dynamic programming algorithm for discrete-

time nonlinear systems", IEEE Transactions on 

Neural Networks and Learning Systems, Vol. 25, 

pp. 621-634, 2014. 

20. Wei Q., Liu D., Lin H., "Value iteration adaptive 

dynamic programming for optimal control of 

discrete-time nonlinear systems", IEEE 

Transactions on Cybernetics, Vol. 46, pp. 840-
853, 2016. 

21. Lahijanian M., Andersson S. B., Belta C., 

"Temporal logic motion planning and control 

with probabilistic satisfaction guarantees", IEEE 

Transactions on Robotics, Vol. 28, pp. 396-409, 

2012. 

22. Lahijanian M., Maly M.R., Fried D., Kavraki L. 

E., Kress-Gazit H., Vardi M. Y., "Iterative 

temporal planning in uncertain environments with 

partial satisfaction guarantees", IEEE 

Transactions on Robotics, Vol. 32, pp. 583-599, 

2016. 
23. Chung T. H., Burdick J. W., "Analysis of search 

decision making using probabilistic search 

strategies", IEEE Transactions on Robotics, Vol. 

28, pp. 132-144, 2012. 

24. Zhang M.-L., Zhou Z.-H., "A review on multi-

label learning algorithms", IEEE Transactions on 

Knowledge and Data Engineering, Vol. 26, pp. 

1819-1837, 2014. 

25. Panait L., Luke S., "Cooperative multi-agent 

learning: The state of the art", Autonomous Agents 

and Multi-Agent Systems, Vol. 11, pp. 387-434, 
2005. 

26. Garcia S., Luengo J., Sáez J. A., Lopez V., 

Herrera F., "A survey of discretization 

techniques: Taxonomy and empirical analysis in 

supervised learning", IEEE Transactions on 

Knowledge and Data Engineering, Vol. 25, pp. 

734-750, 2013. 

27. Huang G., Song S., Gupta J. N., Wu C., "Semi-

supervised and unsupervised extreme learning 
machines", IEEE Transactions on Cybernetics, 

Vol. 44, pp. 2405-2417, 2014. 

28. Yu C., Zhang M., Ren F., Tan G., "Multiagent 

learning of coordination in loosely coupled 

multiagent systems", IEEE Transactions on 

Cybernetics, Vol. 45, pp. 2853-2867, 2015. 

29. Chalkiadakis G., Boutilier C., "Coordination in 

multiagent reinforcement learning: a Bayesian 

approach", Proceedings of the Second 

International Joint Conference on Autonomous 

Agents and Multiagent Systems, pp. 709-716, 

2003. 

30. Ghavamzadeh M., Mahadevan S., Makar R., 

"Hierarchical multi-agent reinforcement 

learning", Autonomous Agents and Multi-Agent 

Systems, Vol. 13, pp. 197-229, 2006. 

31. François-Lavet V., Henderson P., Islam R., "An 

introduction to deep reinforcement 

learning",  Trends in Machine Learning, Vol. 11, 

No. 3-4, 2018. 
32. Arulkumaran K.,  Deisenroth M.P., Brundage M., 

Bharath A.A., "Deep reinforcement learning: A 

brief survey", IEEE Signal Processing Magazine, 

Vol. 34, Vol. 6,  pp. 26-38, 2017. 

33. Fujimoto S., Meger D., Precup D., "Off-policy 

deep reinforcement learning without exploration", 

Proceedings of the 36th International Conference 

on Machine Learning, pp. 2052-2062, Long 

Beach, California, PMLR 97, 2019. 

34. Cobbe K., Klimov O., Hesse C., Kim T., 

Schulman J., "Quantifying generalization in 

reinforcement learning", Proceedings of the 36th 

International Conference on Machine Learning, 

PMLR 97, 2019. 

35. Nasir A., Salam Y., Saleem Y., "Multi-Level 

Decision MakinJ.,g in Hierarchical Multi-agent 

Robotic Search Teams", The Journal of 

Engineering, Vol. 1, No.1, 2016. 

 

  


