
Mehran University Research Journal of Engineering and Technology
Vol. 40, No. 03, 645-662, July 2021
p-ISSN: 0254-7821, e-ISSN: 2413-7219
DOI: https://doi.org/10.22581/muet1982.2103.17

This is an open access article published by Mehran University of Engineering and Technology, Jamshoro under CC BY 4.0
International License.

645

Reinforcement Learning Based Hierarchical Multi-Agent

Robotic Search Team in Uncertain Environment

Shahzaib Hamid1, Ali Nasir2, Yasir Saleem3

RECEIVED ON 04.07.2019, ACCEPTED ON 16.12.2020

ABSTRACT

Field of robotics has been under the limelight because of recent advances in Artificial Intelligence (AI). Due to

increased diversity in multi-agent systems, new models are being developed to handle complexity of such

systems. However, most of these models do not address problems such as; uncertainty handling, efficient

learning, agent coordination and fault detection. This paper presents a novel approach of implementing

Reinforcement Learning (RL) on hierarchical robotic search teams. The proposed algorithm handles

uncertainties in the system by implementing Q-learning and depicts enhanced efficiency as well as better time

consumption compared to prior models. The reason for that is each agent can take action on its own thus there

is less dependency on leader agent for RL policy. The performance of this algorithm is measured by introducing

agents in an unknown environment with both Markov Decision Process (MDP) and RL policies at their

disposal. Simulation-based comparison of the agent motion is presented using the results from of MDP and RL

policies. Furthermore, qualitative comparison of the proposed model with prior models is also presented.

Keywords: Artificial Intelligence, Computational complexity, Intelligent Systems, Robotics.

1. INTRODUCTION

rtificial intelligence (AI) based robotics is

gaining significant importance because of

popularity in the field of Unmanned Search

and Rescue (USR) operations. USR is of utmost

importance when it comes to deal with both natural

and human created disasters. During these disasters

using a robot instead of humans and rescue dogs seems

both reasonable and logical. After an unfortunate

disaster of World Trade Center (WTC) in 2001, the

feasibility and performance of robotic search teams

have been studied [1]. In 2011, robots performed

surveillance and rescue during earthquake in Japan.

According to a report generated by US army

corporation small unmanned aerial and ground

vehicles along with underwater Remotely Operated

1 Department of Electrical Engineering, Superior University, Lahore, Punjab, Pakistan.

 Email: shahzaib.hamid@superior.edu.pk (Corresponding Author)
2 Department of Electrical Engineering, University of Central Punjab, Lahore, Pakistan. Email: a.nasir@ucp.edu.pk
3 Department of Computer Engineering, University of Engineering and Technology, Lahore, Pakistan.

 Email: yasir@uet.edu.pk

Vehicles (ROVs) have played important role in 2010

Haiti disaster [2]. The impact of search and rescue

missions on workers has been analyzed ten years later

and shown multiple health problems due to weeks

spent at WTC in 2001. This study included 27,449

rescue workers from WTC and extensive comorbidity

has been reported in these workers regarding both

physical and mental health problems and are under

treatment [3]. Another report included 919 pulmonary

tests with extensive chest scans and methacholine tests

to see if extensive lung diseases have been captured by

13,000 WTC rescue workers. Reports included high

percentage of obstructive airway diseases that

decreased the lung functions of rescue workers [4].

Different reactive airway diseases with increased rate

of asthma, pneumonias caused by exposure to

dangerous environment is elaborated in [5]. Thus

A

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

646

robotic usage must be increased to decrease the human

life risk. A number of search topologies have been

utilized for Urban Search and Rescue (USAR)

process. Most of USAR robots used in real world are

tele operated. However, researchers are working

continuously to provide autonomy to the robots by

developing better exploration and mapping methods

so that they can help in victim manipulation.

Although, for now this is being prohibited due to fear

of harming victims [6].

Number of methods can be used for the control of

multi-agent systems. Formation control is one of the

methods which depends on interaction topologies and

sensing capabilities of multi-agent systems. Sensing

capabilities developed with the help of sensed

variables and interaction topologies depend merely on

control variables. Depending on these variables

formation control can be divided into position-based

control, distance-based control and displacement-

based control. Agents achieve their desired formation

with Position-based control by actively changing their

position according to global coordinate system.

Meanwhile, Displacement-based control takes agent

to desired formation by relative positions of neighbor

agents according to global coordinate system. Local

coordinate systems are used to analyze inter agent

distances for distance-based control [7]. Other

methods like estimation based control, containment

control, angle based control, flocking and pure

distance based control can also be utilized to achieve

formation control. However, due to changing of inter

agent distances and absence of global coordinate

system local distribution estimators are used [8].

Additionally, local controllers are designed according

to local distribution estimators for system having both

centralized and distributed control. Consensus

problems are also solved by designing a control

strategy with the help of local information for linear

multi-agent systems. The protocol solves problems for

directed agent networks with simple linear dynamics

and synchronous feedback information [9].

Meanwhile, the rate of convergence of consensus

protocols is also mandatory. Convergence rate for

network agent with time delays and switching

topology is analyzed. Performance of consensus

protocol enhances as time delay robustness decreases.

Moreover, communication cost also increases with

better consensus performance [10].

2. RELATED WORKS AND

 MOTIVATION

Planning for deployment of agents in complex indoor

area must include information processing, visual

sensing and collaboration between them. Sharing can

be accomplished by adding a communication layer

into existing POMDPs, to add information gathered by

the robot with the information gathered by neighbor

robots for a specific action [11]. However, this

research focused only on robot deployment but task

allocation is also an important factor in Multi-Robot

search teams. For a limited task length, dependent

tasks are allocated through a distributed algorithm

assuming maximum consensus for communication

among robots. This also excludes the need of shared

memory in the system [12]. Furthermore, the size of

tasks allocated can be increased by using reduction

techniques on POMDPs. The size of input POMDP is

decreased leading to an enhanced runtime for POMDP

solver. Output policy of the solver is re-evaluated to

make sure it works for every input problem [13].

Forming coalitions between robots is necessary after

task length becomes satisfactory. For tightly coupled

multi-robot tasks, robots must be able to share

information during execution assuming all robots are

in the field of view of each other. IQ-ASyMTRe

architecture resolves the problem of forming

executable coalitions and also identifying situation

during which feasibility of coalitions change

dynamically [14]. However, in case of any problem

during these coalition forming transferring all the

available data when connection is re-established is not

feasible. Hence, data fusion techniques and

coordination topology are used which includes sharing

belief states eliminating the cost and computation

required to communicate all previous information.

Data fusion can also be utilized for moving targets

[15].

In many industrial applications optimal solution to

control problems is a critical issue. Whenever, an

original problem is reformulated new optimal solution

is concluded according to the shifted dynamics. This

can be accomplished with help of an accelerated

policy iteration algorithm producing an approximate

value function in limited time for Hamilton-Jacobi-

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

647

Bellman equations [16]. However, if the input

constraints are unknown adaptive control is used due

to uncertainty of the systems. Neural networks identify

the dynamics of unknown system and a cost function

is utilized to optimize the unknown input constraints

[17]. Robust control is also used for continuous time

non-linear systems in addition to adaptive control. For

that purpose, robust control problem is converted to

optimal control problem using cost function and a new

critic network is developed. Adaptive dynamic

programming method is used to solve the optimal

problem with facilitation of neural networks [18].

Discrete time non-linear systems can also be solved

with the help of policy iteration (PI). It is demonstrated

by converging iterative performance index to optimal

solution through policy iteration. Neural Network

weight convergence is also changed according to the

need of discrete time systems [19]. Non-linear discrete

systems can also be analyzed with the help of value

iteration. Traditional value iteration algorithms (VI)

start from zero condition and have to be implemented

infinite times to reach optimal control policy. But

starting with arbitrary positive semi-definite function

optimal conditions can also be achieved and also new

termination criterion is developed to guarantee the

effect of optimal control law [20]. Applications of PI

and VI are numerous in the field of robotics including

motion planning with probabilistic satisfaction

applying POMDP for simpler tasks and probabilistic

models for complex tasks [21]. Partial satisfaction can

also be implemented by the help of PI having hard

constraints for full satisfaction and soft constraints for

partial satisfaction [22]. Probabilistic search strategies

can be utilized to analyze the effectiveness of search

decision making and also decrease the expected time

until this decision is finalized [23].

A vast majority of learning algorithm are based on

function learning from a typical training set. However,

for real world problems one object may have different

meanings. For that reason, each object is assigned a set

of labels to express its properties. Thus, they are

known as multi-label learning algorithms[24].

Learning can be accomplished through evolutionary

computation, game theory, complex systems, agent

modeling, reinforcement learning and robotics using

team learning or concurrent learning. All the

aforementioned areas are used for cooperative

learning where agents work simultaneously to

complete collective goals. Other approach is to

decompose the problem, distribute to agents and

construct a solution for specific problem. Both of these

approaches are a part of distributed artificial

intelligence [25]. Before learning starts the data set

can be converted from continuous to discrete values

hence moving to qualitative data from quantitative one

[26]. Extreme learning machines (ELMs) are also used

for topologies without dataset i.e unsupervised (US-

ELM) and semi-supervised learning (SS-ELM). Both

US-ELMs and SS-ELMs have the same efficiency and

learning rate as those supervised ELMs. They can

handle unknown data at test time directly and these

algorithms are also suitable for multi-clustering [27].

MASs can learn on the basis of coordinated behavior

between them. Independence of agent can be exploited

for efficient coordinated learning (CL) without the

information about location of coordination or whole

knowledge about the environment. There exists a

tradeoff between single agent learning process and

coordinated learning process [28]. CL can also be

depicted with the help of reinforcement learning.

There also exists a tradeoff between exploitation and

exploration for MARL technique. The approach

adopted is similar to single agent model.. It is also kept

in mind other than the value of information which

helps in making an exploration policy [29].

Cooperative RL can also implemented on hierarchical

(HRL) framework for which learning is decentralized.

Algorithm focuses on performing individual subtasks

also defines the order of those subtasks alongside

coordination between these agents. Cooperative

subtasks are defined with coordination among agents

to improve the performance of overall task[30].

Deep reinforcement learning has been used

extensively in the recent era to solve a wide range of

complex decision making problems which is depicted

recently in the fields such as health care, robotics,

smart grid and other practical application [31]. Deep

reinforcement learning is thus revolutionizing the way

research is seen in the field of artificial intelligence by

developing a unique understanding of autonomous

systems and the visual world. As an example take a

robot whose policy is learned with the help of camera

attached to it in the real world environment. Another

example of learning based real environment is learning

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

648

to play video games by looking at pixels [32]. Most of

the learning is done with data which is available

beforehand thus there is need of methodologies which

help decreasing the errors which are introduced in the

extrapolation. For that off-policy learning method the

agent has to be restricted with the help of batch

constraint methodology thus decreasing the action

space which makes the system behave more like an on-

policy learning system [33]. Another problem that

comes with it is the over fitting problem which can be

taken into account. Agent normally over fit to large

training sets which can be solved by using deep

convolutional architectures to improve generalization.

Methods such as regularization, augmentation and

normalization are also used [34].

All of the aforementioned techniques are related to

multi-agent systems but some do not present a viable

method for agents to learn during exploration [1-17],

also agents which do learning themselves cannot

detect errors on their own and hence those systems are

not fault tolerant [18-24]. For exploration, agents must

also be equipped with making decisions in less time,

so there should be limited computation time for each

agent. All of these problems including the consensus

between agents are important for agent movement in

an unknown environment. This paper addresses these

problems in the best way possible.

In this paper, we have extended the use of HRL on

MAS by using Q-learning on robotic search teams.

The proposed algorithm initializes by defining an

MDP model for leader-follower approach.

Furthermore, a Q-learning algorithm is proposed on

MDP model to construct a Q-look-up table. Number

of agents and search areas are flexible and can be

altered according to need. Results for Q-learning

depicts a better computational efficiency as well as the

time to perform each task. This scheme makes local

agents independent in taking actions towards the goals

assigned by leader agent. Moreover, these assigned

goals are completed by each local agent which is the

main criteria for understanding how each agent is

performing. Hence, this approach like other learning

techniques makes sure that agent takes its own

decisions depending on the algorithm and exhibits a

number of advantages including fault tolerance, error

detection, goal completion, standby agents and

coordination between local agents and the leader

agent. The explanation of all these factors is given as:

Goal completion:

Goal completion from the perspective of robotics AI

means completion of a specific task, assigned to an

agent, in minimal amount of time. It is the most

important factor in this research work as its purpose is

to directly depict the agent’s success in an uncertain

environment, which is the key objective of this work

as aforementioned.

Fault tolerance:

Fault tolerance includes the impact of fault on any

system as it is the amount of acceptable error. It is an

essential factor in this research work because if the

local agent does not responds according to the leader

agent, it is considered faulty and is excluded from the

system temporarily until a connection has been made

or fault has been extracted. So in this work its main

advantage is to create foundation for the error

detection.

Error Detection:

This factor directly correlates with fault detection as in

this system it ensures that all the local agents are

working properly. If for some reason agents stop

responding then it is considered as faulty and the

specific error is detected subsequently. It can be due to

multiple reasons including

• Fuel leakage or low fuel due to exploration

• Agent is in hazardous environment and is

destroyed

• The connectivity between local and leader agent

is lost.

Standby Agent:

The agents that become faulty due to the reasons

explained above are considered as standby agents. In

this work if leader is unable to confirm the location

and update its lookup table because of faulty entries

from the local agents, they are considered in standby.

This factor helps leader agent to keep the policy

updated without the probability of having any faulty

entries.

Agent Coordination: leader and local agents. The

main purpose of leader

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

649

This is a hierarchical model for coordination between

agent in this work is to assign specific goals to the

local agents. Until the goal completion, the local agent

updates the policy as well as takes decisions on the

basis of real world environment. Therefore, the

coordination between these agents is of utmost

importance as based on the local agents continuous

feedback the leader agent updates its state table for

each agent. If the agent is in hazardous place and is

destroyed than the leader agent will not be able to

coordinate with that local agent. During this scenario,

the agent is considered to be on standby. Thus fault

tolerance and error detection also depend on the

coordination between the agents so agent coordination

is a continuous process and is very important for

communication between the leader and local agents in

all above mentioned processes.

This research develops a methodology in which

decision making policy is developed with the help of

data coming from the environment. The camera

mounted on the agent will bring data values to the

agents in the hierarchical system and the policy will be

updated according to the incoming data. Another

advantage of this research is that agents which are

present in the field can update the local policy on their

own and later send the updated results to the main

leader agent or control room. The main contribution of

this work are explained above and are summarized as

follows:

• Development of optimal policy for each local

agent. This is achieved through cameras

canvasing of the real environment

• Development of overall policy of the system

through the data collection from all the local

agents.

• Making the system fault tolerant by introducing

factors such as standby agent, fuel level and agent

coordination.

The rest of this paper is divided as follows. Section 3

of this paper depicts system constraints and

methodology. Section 4 of this paper includes results

and comparisons Section 5 presents the conclusion.

3. SYSTEM CONSTRAINTS AND

 METHODOLOGY

This research treats the problem of p-agents having to

search through an area with m-partitions. Total area of

these partitions is known, alongside with number of

agents and number of partitions. But the status

(hazardous/friendly) of partitions is not known and

recognized with search. Basic purpose of this research

is to facilitate agent’s movement. Some important

constraints which affect the movement are

• Agents interaction

• Partition status

• fuel status.

If an agent A is in partition 1 and wants to move to any

partition 2 but another agent is already present in that

partition 2, the agent A will restrict its movement and

not move to partition 2. Hence agent movement is

dependent on position. Another factor this system is

dependent on is partition status. If an agent A wants to

move to partition 2 but that partition is already

declared hazardous by the agent which visited it

before. In that scenario the agent will not move to

partition 2. Third constraint under consideration is fuel

status. Agent A will stop its movement to any partition

if it identifies its fuel level as empty or close to empty.

In practice, such situations may occur when there is

fire in a building. The rooms and halls can be

considered as partitions and rooms where fire has

spread may be considered hazardous whereas rooms

where fire has not spread may be regarded as friendly.

Also this topology can be used by Mars rovers in

which case the partitions would be imaginary i.e.

without physical walls or separations. Sample area for

this research is depicted in Fig. 1.

`

Agent
Hazardous

Friendly Unknown

Sample Area

Partitions

(3*3=9)

Fig. 1: Sample Area

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

650

3.1 MDP Model

Leader Agent MDP Model: Leader MDP model

consists of four elements including states, actions,

reward function and transition probability. Major tasks

of the leader agent involve assigning the agent to

different search area partitions and managing the

operating modes of the agents. It has been assumed

that the member agents are able to communicate the

status of their power/fuel levels and fault(s) to the

leader agent.

States: There are five variables which construct the

MDP model for leader agent:

• Agent state.

• Goal status.

• Partition assigned.

• Partition status.

• Standby agent.

S = �s�, s�, ⋯ , s	
 (1)

s� = �A, B, C, G, Sb
, iϵ�1,2, ⋯ , n

A = �a�, a�, ⋯ , a��, a�ϵ�0,1
, jϵ�1,2, ⋯ , p

B = �b�, b�, ⋯ , b�
, b�ϵ�0,1,2
, jϵ�1,2, ⋯ , r

C = �c�, c�, ⋯ , c��, c� ϵ�1,2, ⋯ , r
, jϵ�1,2, ⋯ , p

G = �g�, g�, ⋯ , g#�, g�ϵ�0,1
, jϵ�1,2, ⋯ , q

Sb = �sb�, sb�, ⋯ , sb��, sb�ϵ�0,1
, jϵ�1,2, ⋯ , p

Equation (1) depicts the state space starting from 1st

state to nth state where each state is calculated based

on five types of variables. Policies for this system can

be computed offline so the computation limit is

dependent on the processor.

First type of variable in the state is the status of an

agent (A). Each agent can either be in a working state

(ai = 1) or a failed state (ai = 0) and there are total p

agents. In second variable bi represents the ith partition

of the area being unknown (bi = 0), friendly (bi = 1),

or hostile (bi = 2). Third variable is agent assignment

variable, represented by C, for the assignment of the ith

agent. An agent can be assigned to any of the partitions

of the search area. Value of ci identifies the partition

to which ith agent is currently assigned. Next variable

is the goal variable (G) represented where gi is the ith

goal. This variable represents whether the goal has

been achieved (gi = 1) or not (gi = 0). The goal status

is the most important variable which undertakes the

concept that if a certain problem given to the agent is

solved as an example if the agent is a robot on a rescue

mission and it sees a person in danger and gives

feedback to the control room that a person has been

found and this will be considered as goal completed.

In real life problem, goal could be to find a survivor or

an object of interest. Fifth variable (Sb) is related to

standby agent which shows if the agent is standby (sbi

= 0) or not (sbi = 1). Therefore, if an agent is not

responding to the leader agent it is considered as

standby agent. The reasons for not responding can be

multiple like its battery can drain out, its connection

can be cut, the agent can also be destroyed in a

hazardous environment due to dangerous conditions.

Thus all of these problems can accumulatively

generate an error in the system which makes the agent

with that corresponding error standby. This property

makes the system fault tolerant as it considers the fact

that any of the agents can be on fault and the leader

agent will keep on trying to connect with local agent

and after a fixed amount of time will send another

agent for better understanding of the problem.

Actions: In this paper, we have considered p agents

and r partitions of the search area. Hence, in total there

are p×r agent assignment actions. Here the assumption

is that the agent assignment is done sequentially (one

by one) but it is not a limitation. For example, if two

agents can be assigned at a time then actions will be

(total agent pairs*areas to be assigned including

current partition as twice). Therefore, the

computational complexity depends on hardware and

varies linearly with change in actions. There are

actions to put the agent on stand-by mode in case of

fault of lack of electrical power/fuel. There is also an

action NOOP (no-operation) for cases where no

change in current assignment or mode of the agents is

required. Actions are shown in (2).

M = �μ�,�, μ�,�, ⋯ , μ�,�, μ'(�, μ'(� , ⋯ , μ'(�, NOOP � (2)

Reward Function: Our reward function has the

following priority order:

• Goal achievement.

• Considering the standby agents.

• Avoiding more than two agents in a single

partition.

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

651

• Avoiding hostile areas.

Defining the reward function is the basic problem

during MDP model design. State and actions can be

changed according to the situation and transition

probabilities are defined according to the statistical

data. However, reward function must be aligned to the

objectives of the problem and with the outside

environment otherwise, it will be of no practical use.

Proposed reward function is presented in (3). It

consists of six terms each scaled by a positive

coefficient (λ).

R-s. = λ�e∑ 23345:7 + λ�e∑ 93345:: −
λ<e∑ '(3×93345:: ⋯ + λ>e∑ ?@@45:A − λBe∑ ∑ C3,@@45:A345:: −
λDe∑ -(3EF.345:A

α� = H1 ab�, jϵ�1,2, ⋯ , r

0 otherwise (3)

cb� = ∑ -c� = j.,�
�E� jϵ�1,2, ⋯ , r

β�,� =
H1 α� > 1, and b� = 2
0 otherwise , iϵ�1, ⋯ , p
 , jϵ�1, ⋯ . r

First expression in (3) depends on the goal status.

More the goals completed more shall be the reward

having maximum value when all goals have been

achieved. Consequently, if the values for these goals

are zero then reward function will be diminished.

Second term of equation includes the status of agents

in a specific area. Higher reward for more agents in

working condition. This term supports the assignment

of agents to friendly areas so that their failure

probability is minimized. Third term penalizes the

standby agents so that no agents are put on standby

unless the agents have failed. Fourth term encourages

efficient utilization of search agents by penalizing

more than two agents in one search partition. If the

number of agents cbi in the ith area are two or less then

the reward parameter αi will decrease. Fifth term in the

reward function penalizes assignment of agents to the

hazardous areas. Note that if one agent is present in

this type of area, it will not change reward value (this

is to support the achievement of goals since some

goals are likely to be achieved in the hazardous

partition). Sixth term penalizes the unexplored

partitions.

Transition Probability: Transition probability from

one state(s) to another state(s’) is given by T(s,µ,s’). It

is combination of all possible probabilities

corresponding to all of the states for movement of

agents in search area. These probabilities depend on a

number of factors continuing to assignment or

reassignment of these agents. Reassignment is a

problem because agents must change their location

according to some specific reason. However, there is

no modeling defined for transition between states. So,

for transition to happen an external algorithm is used

to determine whether the agent position should be

altered or not. Probability distributions of all these

events can be calculated using the conditional

independence relations among the variables involved

in the problem. Such relations can be represented with

the help of a Bayesian network. Bayesian network for

leader agent is shown in (Fig. 2). Note that the standby

variable (Sb) is not part of Bayesian network because

it is deterministic and it does not affect any other

random variable. On the other hand, agent assignment

variable (C) is part of the Bayesian network despite

being deterministic because it affects other random

variables. Remaining variables i.e. agent status (A),

search area partition status (B), and goal status (G) are

random variables. Agent status depends upon existing

agent status and assignment of agents. If an agent is

assigned to a hazardous partition, then its probability

of failure is expected to be higher compared to the one

assigned to friendly partition. Partition status depends

upon existing partition status and agent assignment

because the probability of a partition being friendly or

hostile depends upon whether it is unknown and

whether a search agent is assigned to it. An unknown

partition shall remain unknown if no agent is assigned

to it. Finally, achievement of goals depends upon

current status of goal achievement and assignment of

agents. Goal achievement probability may be higher

for agents assigned to certain “important” partitions.

Fig. 2. Bayesian Network for Leader Agent

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

652

Practically, the conditional probabilities involved in

the problem can either be learnt online (starting from

initial offline guess), or may be available from

statistical data. This paper does not discuss the

methods of obtaining the probabilities rather it shows

how to use them in an MDP model.

3.2 Member Agent MDP Model

States: States of the member agent depicts the

variables involved in the problem.

S = �s�, s�, ⋯ , sQ
 (4)

S� = �ps, cp, G, energy, cs, block, Bc, f

G = �g�, g�, ⋯ , g#�, g�ϵV0,1W, jϵ�1,2, ⋯ , q
,
Bc = �bc�, bc�, ⋯ , bcX
, bc�ϵ�0,1,2
, jϵ�1,2, ⋯ , x

energyϵ�0,1, ⋯ , y
, csϵ�0,1, ⋯ , z
, psϵ�0,1

cpϵ�1,2
, blockϵ�1,2, ⋯ , x
, fϵ�0,1

x, y, zϵ�0,1,2, ⋯

There are eight variables in (4). First variable in this

equation is partition status ps. Partitions are

subdivided into blocks. Partition status is ‘0’ if the

partition is unexplored and is ‘1’ if the partition is

explored with no re-visits required. Next variable in

this list is cp this variable refers to current partition. It

shows whichever partition the agent is present in. Next

variable is G which tells us about the status of the

goals. If one of those goals is completed its state value

will be changed to ‘1’. Next variable is energy which

tells about the level or fuel present. Total fuel/energy

capacity has been divided into y+1 discrete levels.

Fifth variable included is the companion status cs, it

tells about the status of companion agents present in

partition 1 represented as ‘1’ or in partition 2

represented as ‘2’ or not in any partition represented

as ‘0’ (in general there could be z partitions). A sample

structure of search area with two partitions (z = 2) and

seven blocks (x = 7) is shown in Fig. 3. Other variable

is block tells us the exact location where this agent is

available. Seventh variable present is Bc which

includes status of each individual block where

unknown represented by ‘0’, friendly represented by

‘1’ and hazardous represented by ‘2’. Last state

variable is fault variable shown as f, it will be ‘0’ if

there is no fault present and ‘1’ for physical or logical

faults.

Actions: Actions means the number of steps agent can

take to move from one state to another. In most cases

there are five basic types of actions given as

(i) Left

(ii) Right

(iii) Straight

(iv) Back

(v) Stay

All these actions are given in the equation below. Each

action taken takes the agent to another block (except

for stay action).

M = �MovLeft, MovRight, MovStraight, MovBack, Stay
 (5)

Any agent can move within its partition on a specific

action until there assignment is changed. Some types

of actions are given below (Fig. 3.)

(i) Taking left from block 2 takes agent to block 1.

(ii) Taking left from block 1 in partition 1 will not

make agent move to any other block.

(iii) Right action from block 3 takes the agent to block

4.

(iv) Taking front from block 4 takes agent to block 2.

(v) Back action from block 5, 6 takes agent to block

7.

PARTITION 1 PARTITION 2

1 2

3 4

5 6

7

1
2

3 4

5 6

7

Fig. 3: Area Distribution

Reward Function: Reward function must be designed

with caution. It is based on the MDP model created,

but it can be changed according to the need of the

search teams. For member agent reward function is

based on these basic parameters.

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

653

(i) Agent should cover maximum area.

(ii) To make sure that not more than two agents

resides in same partition.

(iii) Agent should be able to find if it is faulted and

communicate it back to the leader agent.

(iv) Agent should be familiar with hazardous blocks

in the partition.

(v) Agent should maximize the battery usage.

R-s. = ∑ α�r�, α� ∈ V0, ∞.B�E� (6)

_� = ∑ -`ab > 1.cbE� + d�ef, d�g-0, ∞.

r� = -cp ⊕ cs.

r< = energy

r> = ∑ -block == i.X�E� × -bc� ≠ 2.

rB = f

The first expression of r1 in equation (6) motivates the

agent to explore the search area (by exploring the

partition in which it is currently present). As the block

exploration is increased the reward function also

increases with it. For this scenario value of j�is taken

to be a large positive number so that exploration can

be increased. Other priority is to make sure that agent

avoids the blocks in which another agent is already

present. For that r2 is introduced. The value of this

variable is also very important and increases the

reward as a whole. Therefore, the value of its constant

is also taken to be large positive number (e.g. 100).

Third expression represents the level of fuel/battery

present. Its value will alter according to fuel/battery

being low, medium or full. For the missions where

level of fuel/battery is most important, j< is taken to

be about ten times larger than that of j� on the other

hand if exploration is more important, then lower

value of j< may be used. Full value of energy will take

reward function to maximum value. Fourth expression

is for avoidance of hazardous blocks; these blocks can

have temperature value high or terrain may be

unsustainable. Hence, there can be a number of

reasons to avoid these blocks which leads to failure of

agent. It is also a priority of leader agent to not assign

agents in these blocks. Last expression is for the faults

present in an agent. It will be maximized if there is no

fault in the agent so its constant is taken to be a large

positive value (e.g. 1000) which may lead to reduction

in risk taken by the agent while performing search.

Transition Probability: Transition probability

explains about the change from one state to another.

Bayesian network for transition probabilities of

member agent state is shown in (Fig. 4).

Fig. 4: Bayesian Network For Member Agent

Two most important probabilities in (Fig. 4) are that

of goal achievement and occurrence of fault. Goal

achievement depends upon the current location of the

member agent (current partition and block), status of

the partition in which the agent is located, and the

existing status of the goal achievement. This

probability guides the agent about which blocks have

more potential of rendering the goals achieved. Fault

occurrence probability depends upon the location of

agent and status of the blocks (high fault probability in

hazardous blocks). Other variables in the state space

transition based on their current value or the action

taken by the agent. Note that the actions are not

included in the Bayesian network of (Fig. 4).

However, consumption of energy does depend on

action taken (but this dependence is often

deterministic rather than stochastic).

3.3 RL Learning Model

There are different types of reinforcement learning

which are differentiated on the basis of their learning

method. Supervised learning has models and training

sets upon which agent acts. However, unsupervised

learning is quite opposite with no training set. But

there is another type which has a feedback system in

order to make decisions, it is known as reinforcement

learning where positive or negative reinforcements are

used for more effective and efficient decision making.

These are two types of such learning systems

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

654

(i) Utility Learning.

(ii) Q-Learning.

In utility-based learning agent learns about the utility

function and selects actions that maximizes the

expected utility. However, it must understand about

the environment better or have the knowledge before

even starting to evaluate actions and making decisions.

In this paper, agent learns action-value function which

is utility of taking action in a given state. So, there is

no model required but the knowledge of environment

becomes very limited.

Q-Learning: In Q-learning we Define action-value

function. In addition, we assign expected utility by

taking actions in states known as Q-values. It also

allows decision making without use of any model.

It can also be used for iterative learning but need to

learn model thus known as TD Q-learning. In the

equation given below maximum value is computed

with respect to Q values with all actions. With reward

function given for next state and multiplying it with

alpha which is learning rate we will get the new value

of Q-function. This is represented in equation (7).

Qlm�-sl, al. = Ql-sl, al. + A (7)

A = αl-sl , al. nR-t + 1. + γ max9 Ql-slm�, a. − Ql-sl, al.q

Proposed Model: This proposed model is different

from simple TD Q-learning equation. Instead of taking

the maximum value out of all possible values, value

function is defined which is multiplied with the

discount factor.

Value Function: Value function Vt+1 tells about the

expected overall value of states under given policy. No

type of reward is required to compute this value. But

in turns it helps in making the reward functions. In the

equation given below Q value of next state is

computed on the basis of current value and next state

value function.

Qlm�-sl, al. = Ql-sl, al. + B (8)

B = αl-sl, al.VR-t + 1. + γV-t + 1. − Ql-sl, al.W
In our proposed model There are three local agents and

a single leader agent. A local agent starts learning and

changes state based on the environment. So this is the

state transition method in which agent is in state s1 and

switches to state s2 based on the environment.

On the other hand, local agent also communicates its

known state to leader agent so that it can help avoid

other local agents from hazardous places. Thus leader

agent learns on the basis of local agent changing and

assigns other local agents on this basis.

4. RESULTS AND COMPARISONS

4.1 Qualitative Comparison

Upon the basis of certain techniques, a comparison is

given for different properties in (Table 1). All the

techniques mentioned in (Table 1) are used for the

control of an agent in any area. The main qualities that

this paper addresses are Uncertainty Handling, Agent

Coordination, Area Classification and Learning

Capability. The proposed model is this paper can

handle all of these problems but other approaches lack

in providing a solution for some of these problems.

A comparison between Reinforcement learning

technique and previous MDP technique mentioned in

[35] demonstrates an addition of learning topology and

fault detection based on states in which agent is

present. Proposed model also has enhanced efficiency

Table 1: Qualitative comparison between techniques
 Uncertainty Handling Agent Coordination Area Classification Learning Capability

Formation Control x X X x

Data Fusion Control x √ X X

Adaptive Control √ X X X

MDP √ X √ X

Extreme Learning
Machines

√ X X √

HRL(Q-Learning) √ √ √ √

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

655

due to less dependency on the leader agent for decision

making. Out of these models MDP modeling is

conventional method and cannot be compared with

any other method but this paper depicts an improved

MDP version with addition of Q-learning.

4.2 Simulation Based Comparison

Let’s assume that rescue robots are trying to explore

through a building under fire with a goal to search for

humans. Unknown constraints are if any room of the

building has fire or smoke it is declared as hazardous.

If room does not contain fire or smoke it is considered

as friendly and if room is not explored yet it is

considered as unknown. Building is divided into

different search areas which are further divided into

partitions. This is also demonstrated in (Fig. 5).

Building is divided into two areas with each area

having two partitions. Out of these partitions Partition

1 of Area 1 and Partition 2 of Area 2 are not under fire

or smoke thus they will be considered friendly. On the

other hand, Partition 1 of Area 2 is under fire and is

labeled as hazardous. Partition 2 of Area 1 is still

unknown as it is not explored yet.

Area 1 Area 2

Partition 1

Partition 2Partition 2

Partition 1

Building

Agent 1

No Fire

Not

Explored

Fig. 5: Building Sample

All the policies are calculated on MATLAB 2013a

installed on a system with windows 10 and with

processor Intel(R) Core(TM) i5-2400 CPU @

3.10GHz 3.10 GHz.

Leader Agent: There are two types of simulations for

agent policies. First simulation is for leader agent

assigning other agents without the use of learning.

This policy is taken from policy evaluation and all of

the states are taken randomly. The resultant of these

states are shown both by MDP policy making and Q-

learning policy making.

Initial Conditions: Initial conditions for the

simulations are given in Table 2.

State Diagram: As shown in (Table 3) for case ‘A’,

all of the goals are unachieved and agent1 is assigned

to partition 1, agent 1 and 2 are assigned to partition1

where as agent3 is assigned to partition 2. For case ‘B’,

second goal is achieved with agent assignment same

as case ‘A’, partitions for both these cases are

unknown. In case ‘C’ goal status is changed to

achieved with agent 1 and 3 assigned to partition 1 and

agent 2 assigned to partition 2.

For next three cases ‘D’, ‘E’ and ‘F’ partition status is

hazardous for first partition but unknown for second

one. For each case 2 agents are assigned in partition

number one. Goal status is also different for each state.

As first being in unachieved state, for second goal

number 2 is achieved and for third case both goals are

achieved.

Last three cases have first partition in hazardous state

and second partition is unknown. For all cases two

agents are given to partition no 1, so result is

determined. Goal status is also altered same as above.

MDP Policy: Each of the states given gave the results

as shown in Table 4.

Learning Policy: For policy with learning, we have

only taken references from the MDP policy but it is

not necessary. These values can also be taken upon

intuition or by choosing randomly. In the same states

the result for learning policy are

• Case ‘A’ of (Table 5), Action 2 has been taken

which takes agent 1 to partition 2 to fulfill the

goals alternatively.

• Case ‘B’ recommends to take action no. 7 which

takes agent 1 to a standby state because only one

goal is remaining.

• Case ‘C’ recommends action 7 which means

agent 1 is taken to standby state because both of

the goals are achieved.

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

656

Table 3: States Status of Leader Agent for Initial Conditions

 Agent State Goal Status
Partition to which

agent is assigned
Partition Status Standby Agent

A 111 00 112 00 111

B 111 01 112 00 111

C 111 11 121 00 111

D 111 00 112 01 111

E 111 01 211 01 111

F 111 11 121 01 111

G 111 00 121 20 111

H 111 01 211 20 111

I 111 11 112 20 111

• Case ‘D’ recommends action 2 and take agent 1

to partition 2 because partition 2 has a status of

friendly.

• Case ‘E’ recommends action 7 to take agent 1 to

standby because one goal is achieved.

• Case ‘F’ takes action 7 to take agent 1 to standby

because both goals are achieved. At this point all

agents could go to standby. Action is just taken

randomly here.

• Case ‘G’ refers to action 2 which takes agent 1 to

partition 2 because partition 1 is hazardous.

• Case ‘H’ takes action 7 to take agent 1 to standby

mode because one of the goals is fulfilled.

• Case ‘I’ takes action 7 to take agent 1 to standby

mode because partition 1 is hazardous and goals

are completed.

Comparison: Both MDP and Q-learning models are

implemented for leader agent with MDP being a more

conventional and common approach. Comparison of

MDP and Q-learning technique is demonstrated with

practical results to ensure its reliability.

For the first case represented in Fig. 6, the agents are

moved from one area to other taking agent 2 to area 2

and agent 3 to area 1 with the help of MDP process.

Table 2: Initial Conditions of Leader Agent

 Status of Area 1 Status of Area 2 Status of Goal 1 Status of Goal 2

A UNKNOWN UNKNOWN UNACHIEVED UNACHIEVED

B UNKNOWN UNKNOWN UNACHIEVED ACHIEVED

C UNKNOWN UNKNOWN ACHIEVED ACHIEVED

D UNKNOWN FRIENDLY UNACHIEVED UNACHIEVED

E UNKNOWN FRIENDLY UNACHIEVED ACHIEVED

F UNKNOWN FRIENDLY ACHIEVED ACHIEVED

G HAZARDOUS UNKNOWN UNACHIEVED UNACHIEVED

H HAZARDOUS UNKNOWN UNACHIEVED ACHIEVED

I HAZARDOUS UNKNOWN ACHIEVED ACHIEVED

Table 4: States status of Leader Agent after implementing MDP Policy

 Agent State Goal Status Partition to which agent is assigned Partition Status Standby Agent

A 111 00 121 10 111

B 111 00 112 01 111

C 111 10 112 01 111

D 111 00 121 10 111

E 111 00 122 10 111

F 111 10 112 01 111

G 111 00 121 11 111

H 111 00 121 11 111

I 111 10 112 01 111

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

657

But with the help of Q-learning one agent remains in

area 1 and two agent moves to area 2 because of the

goal achievements.

For case C represented in Fig. 7, both of the goals are

accomplished. However, one of the agents should

move to standby in area 1. Through MDP modeling

places of agents are swapped but neither of them

moves to standby state. That is accomplished with the

help of Q-learning which can also be seen in Table 5.

Case E is similar to Case C with slight difference that

 one of the goals is achieved not both of them as

represented in Fig. 8. Still, being a more optimized

method Q-learning moves the agent in area 1 to

standby rather than swapping positions like in MDP

model.

The scenario shown in Fig. 9 is also similar in which

agents are taken to standby with Q-learning but not

with MDP process. Hence, the performance of Q-

learning can be seen from the given cases in which

agent does not moves from one place to another but

goes to standby.

Fig. 6. Case A of Agents Movement

Fig. 7: Case C of Agents Movement

Table 5: States Status of Leader Agent after implementing Q-Learning

 Agent State Goal Status
Partition to which

agent is assigned
Partition Status Standby Agent

A 111 00 212 00 111

B 111 01 112 00 011

C 111 11 121 00 011

D 111 00 212 01 111

E 111 01 211 01 011

F 111 11 121 01 011

G 111 00 221 20 111

H 111 01 211 20 011

I 111 11 112 20 011

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

658

Fig. 8: Case E of Agents Movement

Fig. 9: Case F of Agents Movement

4.3 Member Agent

Initial status for local agent taken by intuition are

shown in Table 6 and states status for local agent are

shown in Table 7.

MDP Result: For case ‘A’ represented in Table. 8,

member agent the block number in which agent is

present is changed from 1 to 7 with a difference that

companion is present in the same partition.

For case ‘B’ represented in Table. 8, block number is

again changed from 3 to 7, as can be seen from the

table that both of these cases have a fault which is

either physical or sensor. Hence, it does not matter to

which block agent moves to.

For case ‘C’ represented in Table. 8, the agent moves

from block number 4 to block number 7, with no fault

present the result is changed block because companion

is present in the same block.

For case ‘D’ represented in Table 8, there is again a

fault present in the agent in the initial state, so moving

to other blocks does not matter.

For case ‘E’ represented in Table. 8, the agent moves

from block 1 to block 7 because block number 7 is

friendly and number 1 is not.

For case ‘F’ represented in Table 8, agent moves to

block 6 because it is the only block which is not

hazardous.

Learning Result: The results computed at the end of

learning policy gives the result shown in Table 9.

 Takes action move right, hence moves the agent

to block 2 of partition 1.

 Takes action move right, hence moves the agent

to block 4 of partition 1 because block 3 is
hazardous.

 Takes no action because block is friendly and one

of the goals is completed.

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

659

 Takes action no. 2 and moves to partition number

2 because block 7 of current partition is

hazardous.

 Takes action no. 2 and moves to second block just

for the sake of goals.

 Takes action no. 3 to take agent to block number

6 of same partition.

Table 6: Initial Status for Local Agent

Case ID
Partition Status

(PS)

Current

Partition

(CP)

Companion

Status

(CS)

Status of Goal 1 Status of Goal 2

A Unexplored P1 Not Present Unachieved Unachieved

B Unexplored P1 Not Present Unachieved Unachieved

C Unexplored P1 Present Achieved Unachieved

D Unexplored P1 Present Unachieved Achieved

E Unexplored P1 Not Present Unachieved Unachieved

F Explored P2 Not Present Achieved Achieved

Table 8: States Status of Leader Agent after MDP Policy

Case

ID

Partition

Status

Current

Partition

Goal

Status
Energy

Companion

Status
Block bci F

A 0 1 00 2 2 7 1111211 1

B 0 1 00 2 2 7 1121211 1

C 0 1 00 2 2 7 2111221 0

D 0 1 00 2 2 6 2221212 1

E 0 1 00 2 2 7 1121220 0

F 1 1 10 2 1 6 2222212 0

Table 9: States Status of Leader Agent after Q-Learning

Case

ID

Partition

Status

Current

Partition

Goal

Status
Energy

Companion

Status
Block Bci F

A 0 1 00 0 0 2 1111211 1

B 0 1 00 0 0 4 1121211 1

C 0 1 10 0 1 4 2111221 0

D 0 2 01 1 1 7 0000001 1

E 0 1 00 0 0 2 1121220 0

F 1 2 11 2 0 6 2222212 0

Comparison: According to states of member agents,

the MDP model is implemented and learning policy is

also determined. This section presents a comparison

between agent movement with Q-learning and agent

movement with MDP model.

The corresponding Case in Fig. 10 takes block number

3 and 5 as hazardous. With the help of MDP this agent

moves to block number 7 moving from block 4 and 6.

By this route block 5 is also avoided completely. For

Q-learning, agent moves from block 3 to block 4

taking the agent to safety by a single movement.

Table 7: States Status of Local Agent for Initial Conditions

Case

ID

Partition

Status

Current

Partition
Goal Status Energy

Companion

Status
Block bci F

A 0 1 00 0 0 1 1111211 1

B 0 1 00 0 0 3 1121211 1

C 0 1 10 0 1 4 2111221 0

D 0 1 01 1 1 7 2221212 1

E 0 1 00 0 0 1 1121220 0

F 1 2 11 2 0 7 2222212 0

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

660

For the first case in Fig. 11, the only hazardous block

is 5, the local agent is present in block number 1 in this

scenario. With simple MDP model this agent is taken

to block number 7, only taking into consideration

some of the problems. But with Q-learning the agent

moves to block number 2 after taking one right. This

way agent does not travel long for non-hazardous

block.

For Case F in Fig. 12, all of the blocks present in a

block are hazardous leaving block number 6 or 4.

MDP result shows the movement from this block to

block number 6 of the same partition. The result from

Q look up table shows that agent moves to partition no.

2 because already companions are present in the same

partition.

Fig. 10: Case D for Local Agent Movement

Fig. 11: Case A for Local Agent Movement

Fig. 11: Case F for Local Agent Movement

Fig. 12: Case B Local Agent Movement

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

661

The last scenario illustrated in Fig. 13, all of the blocks

to be hazardous with companions present. So in MDP

model, it takes agent to safety by moving to partition

no. 1 but it takes another step to move agent to block

no. 6. But on the other hand Q-learning only moves it

to block number 7 of partition no 1.

5. CONCLUSION

In this paper, an effective hierarchical reinforcement

learning algorithm is developed to find optimal Q-

learning policy for robotic search teams. The proposed

framework works with general dynamics in an

unknown environment. The main advantage of using

this methodology is the decision making on behalf of

agents from the data which is coming from the outside

sensors i.e. camera in case of our research. Therefore,

all the policies that are being developed majorly

depends on the camera output. Agent can take decision

on basis of that output directly without informing the

control room thus making a decentralized approach.

The paper also presents a comparison between MDP

policy and Q learning which depicts better

computational time and efficiency of this architecture.

Although, both MDP and Q-learning are correlated

results depict a better performance of Q-learning

algorithm. The main advantage of this approach is

member agent can take action on its own by detecting

present faults, communicating with other member

agents, choosing between active and non-active

position and moving between search areas. The

number of goals, search areas and agents can be

changed according to the demand. States, actions,

reward function and transition probabilities are

constructed or altered according to demand.

REFERENCES

1. Casper J., Murphy R. R., "Human-robot

interactions during the robot-assisted urban

search and rescue response at the world trade

center", IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), Vol. 33, pp.

367-385, 2003.

2. Guizzo E., "Japan earthquake: more robots to the

rescue," IEEE Spectrum, March 2011.

3. Wisnivesky J. P., Teitelbaum S. L., Todd A. C.,

Boffetta P., Crane M., Crowley L., et al.,

"Persistence of multiple illnesses in World Trade

Center rescue and recovery workers: a cohort

study", The Lancet, Vol. 378, pp. 888-897, 2011.

4. Weiden M. D., Ferrier N., Nolan A., Rom W. N.,

Comfort A., Gustave J., et al., "Obstructive

airways disease with air trapping among

firefighters exposed to World Trade Center dust",
Chest, Vol. 137, pp. 566-574, 2010.

5. Udasin I., Schechter C., Crowley L., Sotolongo

A., Gochfeld M., Luft B., et al., "Respiratory

symptoms were associated with lower spirometry

results during the first examination of WTC

responders", Journal of Occupational and

Environmental Medicine, Vol. 53, pp. 49-54,

2011.

6. Liu Y., Nejat G., "Robotic urban search and

rescue: A survey from the control perspective",

Journal of Intelligent & Robotic Systems, Vol. 72,

pp. 147-165, 2013.
7. Oh K.-K., Park M.-C., Ahn H.-S., "A survey of

multi-agent formation control", Automatica, Vol.

53, pp. 424-440, 2015.

8. Cao Y., Yu W., Ren W., Chen G., "An overview

of recent progress in the study of distributed

multi-agent coordination," IEEE Transactions on

Industrial Informatics, Vol. 9, pp. 427-438, 2013.

9. Olfati-Saber R., Murray R. M., "Consensus

problems in networks of agents with switching

topology and time-delays", IEEE Transactions on

Automatic Control, Vol. 49, pp. 1520-1533, 2004.
10. Wen G., Duan Z., Ren W., Chen G., "Distributed

consensus of multi‐agent systems with general

linear node dynamics and intermittent

communications", International Journal of

Robust and Nonlinear Control, Vol. 24, pp. 2438-

2457, 2014.

11. Zhang S., Sridharan M., Washington C., "Active

visual planning for mobile robot teams using

hierarchical pomdps", IEEE Transactions on

Robotics, Vol. 29, pp. 975-985, 2013.

12. Luo L., Chakraborty N., Sycara K., "Provably-

good distributed algorithm for constrained multi-
robot task assignment for grouped tasks", IEEE

Transactions on Robotics, Vol. 31, pp. 19-30,

2015.

13. Grady D. K., Moll M., Kavraki L. E., "Extending

the applicability of POMDP solutions to robotic

tasks", IEEE Transactions on Robotics, Vol. 31,

pp. 948-961, 2015.

14. Zhang Y., Parker L. E., "IQ-ASyMTRe: Forming

executable coalitions for tightly coupled

multirobot tasks", IEEE Transactions on

Robotics, Vol. 29, pp. 400-416, 2013.

Reinforcement Learning Based Hierarchical Multi-Agent Robotic Search Team in Uncertain Environment

Mehran University Research Journal of Engineering and Technology, Vol. 40, No. 3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

662

15. Hollinger G. A., Yerramalli S., Singh S., Mitra U.,

Sukhatme G. S., "Distributed data fusion for

multirobot search", IEEE Transactions on

Robotics, Vol. 31, pp. 55-66, 2015.

16. Alla A., Falcone M., Kalise D., "An efficient

policy iteration algorithm for dynamic
programming equations", SIAM Journal of

Scientific Computing, Vol. 37, pp. A181-A200,

2015.

17. Modares H., Lewis F. L., Naghibi-Sistani M.-B.,

"Adaptive optimal control of unknown

constrained-input systems using policy iteration

and neural networks", IEEE Transactions on

Neural Networks and Learning Systems, Vol. 24,

pp. 1513-1525, 2013.

18. Wang D., Liu D., Li H., "Policy iteration

algorithm for online design of robust control for a

class of continuous-time nonlinear systems",
IEEE Transactions on Automation Science and

Engineering, Vol. 11, pp. 627-632, 2014.

19. Liu D., Wei Q., "Policy iteration adaptive

dynamic programming algorithm for discrete-

time nonlinear systems", IEEE Transactions on

Neural Networks and Learning Systems, Vol. 25,

pp. 621-634, 2014.

20. Wei Q., Liu D., Lin H., "Value iteration adaptive

dynamic programming for optimal control of

discrete-time nonlinear systems", IEEE

Transactions on Cybernetics, Vol. 46, pp. 840-
853, 2016.

21. Lahijanian M., Andersson S. B., Belta C.,

"Temporal logic motion planning and control

with probabilistic satisfaction guarantees", IEEE

Transactions on Robotics, Vol. 28, pp. 396-409,

2012.

22. Lahijanian M., Maly M.R., Fried D., Kavraki L.

E., Kress-Gazit H., Vardi M. Y., "Iterative

temporal planning in uncertain environments with

partial satisfaction guarantees", IEEE

Transactions on Robotics, Vol. 32, pp. 583-599,

2016.
23. Chung T. H., Burdick J. W., "Analysis of search

decision making using probabilistic search

strategies", IEEE Transactions on Robotics, Vol.

28, pp. 132-144, 2012.

24. Zhang M.-L., Zhou Z.-H., "A review on multi-

label learning algorithms", IEEE Transactions on

Knowledge and Data Engineering, Vol. 26, pp.

1819-1837, 2014.

25. Panait L., Luke S., "Cooperative multi-agent

learning: The state of the art", Autonomous Agents

and Multi-Agent Systems, Vol. 11, pp. 387-434,
2005.

26. Garcia S., Luengo J., Sáez J. A., Lopez V.,

Herrera F., "A survey of discretization

techniques: Taxonomy and empirical analysis in

supervised learning", IEEE Transactions on

Knowledge and Data Engineering, Vol. 25, pp.

734-750, 2013.

27. Huang G., Song S., Gupta J. N., Wu C., "Semi-

supervised and unsupervised extreme learning
machines", IEEE Transactions on Cybernetics,

Vol. 44, pp. 2405-2417, 2014.

28. Yu C., Zhang M., Ren F., Tan G., "Multiagent

learning of coordination in loosely coupled

multiagent systems", IEEE Transactions on

Cybernetics, Vol. 45, pp. 2853-2867, 2015.

29. Chalkiadakis G., Boutilier C., "Coordination in

multiagent reinforcement learning: a Bayesian

approach", Proceedings of the Second

International Joint Conference on Autonomous

Agents and Multiagent Systems, pp. 709-716,

2003.

30. Ghavamzadeh M., Mahadevan S., Makar R.,

"Hierarchical multi-agent reinforcement

learning", Autonomous Agents and Multi-Agent

Systems, Vol. 13, pp. 197-229, 2006.

31. François-Lavet V., Henderson P., Islam R., "An

introduction to deep reinforcement

learning", Trends in Machine Learning, Vol. 11,

No. 3-4, 2018.
32. Arulkumaran K., Deisenroth M.P., Brundage M.,

Bharath A.A., "Deep reinforcement learning: A

brief survey", IEEE Signal Processing Magazine,

Vol. 34, Vol. 6, pp. 26-38, 2017.

33. Fujimoto S., Meger D., Precup D., "Off-policy

deep reinforcement learning without exploration",

Proceedings of the 36th International Conference

on Machine Learning, pp. 2052-2062, Long

Beach, California, PMLR 97, 2019.

34. Cobbe K., Klimov O., Hesse C., Kim T.,

Schulman J., "Quantifying generalization in

reinforcement learning", Proceedings of the 36th

International Conference on Machine Learning,

PMLR 97, 2019.

35. Nasir A., Salam Y., Saleem Y., "Multi-Level

Decision MakinJ.,g in Hierarchical Multi-agent

Robotic Search Teams", The Journal of

Engineering, Vol. 1, No.1, 2016.

