
Mehran University Research Journal of Engineering and Technology
Vol.40, No. 3, 617- 629, July 2021
p-ISSN: 0254-7821, e-ISSN: 2413-7219
DOI: https://doi.org/10.22581/muet1982.2103.15

This is an open access article published by Mehran University of Engineering and Technology, Jamshoro under CC BY 4.0
International License.

617

A Regression Analysis Based Model for Defect Learning and

Prediction in Software Development

Mashooque Ahmed Memon1, Mujeeb-ur-Rehman Maree Baloch2, Muniba Memon3,

Syed Hyder Abbas Musavi4

RECEIVED ON 19.03.2019, ACCEPTED ON 07.10.2019

ABSTRACT

The development of software undergoes multiple regression phases to deliver quality software. Therefore, to

minimize the development effort, time and cost it is very important to understand the probable defects

associated with the designed modules. It is possible that occurrence of a range of defects may impact the

designed modules which need to be predicted in advance to have a close inter-association with the depended

modules. Most of the existing defect prediction classifier mechanisms are derived from the past project data

learning, but it is not sufficient for new project defect predicting as the new design may have a different kind

of parameters and constraints. This paper recommends Regression Analysis (RA) based defect learning and

prediction Defect Prediction (RA-DP) mechanism to support the defective or non-defective prediction for

quality software development. The RA-DP approach provides two methods to perform this prediction analysis.

It initially presents an association learning through RA to construct the regression rules from the learned

knowledge required for the defect prediction. The constructed regression rules are used for defect prediction

and analysis. To measure the performance of the RA-DP a regression experimental evaluation is performed

over the defect-prone PROMISE dataset from NASA project. The outcome of the results is analyzed through

measuring the prediction Accuracy, Sensitivity and Specificity to demonstrate the improvisation and

effectiveness of the proposal in comparison to a few existing classifiers.

Keywords: Software Defect Prediction, Association Learning, Regression Analysis

1. INTRODUCTION

oftware is a complicated object composed of

several modules with different degrees of

defect incidence. Software defects represent

errors or defects in software artifacts or software

processes and are primarily focused on predicting

defects that affect the project or product performance.

Software failure prediction helps detect, track, and

resolve software anomalies, particularly critical

security systems that may affect the user’s safekeeping

1 Department of Computer Science, Benazir Bhutto Shaheed University, Layari, Karachi, Sindh, Pakistan.

 Email: pashamorai786@gmail.com
2 Institute of Mathematics and Computer Science, University of Sindh, Jamshoro, Sindh, Pakistan.

 Email: mujeeb@usindh.edu.pk
3 Department of Information Technology, Quaid-e-Awam University of Engineering, Science and Technology,

 Nawabshah, Sindh, Pakistan. Email: muniba@quest.edu.pk
4 Department of Electronic Engineering, Mehran University of Engineering and Technology, Shaheed Zulfiqar Ali

 Bhutto Campus, Khairpur Mir’s, Sindh, Pakistan. Email: drhyderabbas@muetkhp.edu.pk (Corresponding Author)

and lifespan.

Defect Detection (DD) techniques work out hand in

hand to limit deficit attempts [5] and enhance the

probability of meeting the investigation team with its

defined investigation targets and goals. The

occurrence of defect avoidance schemes does not

merely imitate a high stage of investigation-discipline

development, but it as well characterizes the

significant cost-effective overhead related to the on the

S

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

618

whole testing effort. There are numerous mechanisms,

tools, techniques, and practices for defect prevention,

but the entire seems to be inadequate. Much work

remains to be done to avoid defects in the techniques

to agree, the tools to use, and the guidelines to be

drafted for the prevention.

Classifications and predictions [6-7] able to be utilized

to extract models that describe critical defect data

classes or to predict possible defect tendencies. The

classification predicts definite or distinct labels and

labels without order, while the predictive model

predicts functions of continuous value. This analysis

helps us to better understand software defect data. In

case of defects are detected in the "development

lifecycle" or "requirements specifications" is able to

prevent defects from being migrated from design and

code development. Defect prevention is extremely

important for improving the eminence of the

institutions [8].

The foremost goal of high-quality costs is not to

reduce costs, however, to invest costs in the right

investments. Instead, it has to be considered to save

time, costs and resources. It provides a lot of

reprocessing, which is essential while the defects

occur in the concluding stage or after the delivery.

Defects have to be implemented at each phase of the

software lifecycle to obstruct defects as quickly as

possible, take corrective action to eliminate it and

prevent it from being repeated. Even existing metrics

and defect prediction models may not guarantee good

overall predictive performance.

Software Defect Prediction (DP) framework [3] refers

to a system that specifies that the specific software

modules are defective or not. In general, this model is

trained to utilize software metrics and defect data,

collected by beforehand developed software releases

or alike projects. DP model [9] are functional to

program modules with unidentified defective data.

The characteristics or features of the set of prediction

data for software defects influence the efficiency and

effectiveness of the DP model.

The existing DP methods [4] are not always able to fix

all defects from accessing applications under testing

since the application is extremely difficult and it is

impractical to grab the entire defects. DP reduces

software costs and improves customer satisfaction [1].

However, there is no software DP technology that able

to solve all defect problems. Therefore, with

efficiently and appropriately predicting the occurrence

of software flaws, software project supervisors able to

utilize in the improved manner of the costs and time to

gain enhanced quality assurance [2-3]. Most of the

experiments associated with DP are executed in the

Machine Learning (ML) tool, such as "WEKA" [10].

In ML approaches the construction of a predictable

model and classified software modules related to

defect, one of the significant characteristics of the

software, and also analyses the defects. Different data

mining approaches such as, DT (Decision Tree),

Bayesian Belief Network (BBN), Artificial Neural

Network (ANN), Support Vector Machine (SVM) and

Clustering are various techniques which are usually

utilized to predict defects in software [11-12]. But

these approaches and prediction mechanism are

mostly based on past project defects learned, which is

insufficient to handle the new project development

conditions and designs. So, its required a regressive

analysis of the defect in a continuous manner to learn

from the past and current defect to suggest an effective

DP mechanism to cater the today's agile software

development needs.

This paper presents a regression-based defect-

association prediction (RA-DP) mechanism for

proficient DP in software applications. The main

principle of RA-DP is to build an efficient rule model

for precisely classifying software defects utilizing

"NASA" repository datasets [20] for experimental

evaluation. As each institution attempt to maintain

their data private, it cannot publish data sets that able

to utilize in testing. The most frequently existing

datasets are "MDP" and "PROMISE" repositories

presented by NASA.

The RA-DP implements an RA method for fault-

related learning of data sets to generate defect

knowledge to be used to develop RA-based fault

prediction classifiers to improve DP strategies. It will

be supporting the classification of a defective or non-

defective software project in an efficient manner for

the deployment. The RA-DP mechanism extends the

methodology of multiple regression-based

classifications to construct an effective regression

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

619

analyzer that accurately classifies software defects.

This method improves software DP, allowing software

testers to utilize additional time for testing defective

modules. The subsequent paper is organized as the 2nd

Section discuss the background study, the 3rd Section

discuss the recommended based defect prediction, the

4th Section discussed the experiment assessment

implementing the datasets and finally in the 5th

section it summarizes the conclusion of the paper.

2. BACKGROUND STUDY

Suggestions for preventing software defects are

usually based on tools, technologies, methods, and

standards [16, 17]. In the field of software engineering,

it is one of the active research focus [18]. Since DP

models include a group of "defect-prone software

artifacts" [18], "quality assurance teams" which

resourcefully allocated to the inadequate resources to

analysis and examine software products [20, 21].

Several DP studies [23-25] have been carried out and

all are based on ML approach or a statistical approach.

ML algorithms are employed in software failure

prediction models for classification and regression

[26]. Several learning methods have recently used ML

techniques to improve the predictability of defects.

Pre-processing techniques are also important in

software DP. In order to progress the performance of

the ML technique before constructing the DP model,

the following techniques such as "feature selection"

and "data normalization and noise reduction" able to

applied [27, 28]. A quite number of "feature selection

techniques" are utilized to mine essential functions for

the DP model. However, several studies [29] have

shown that predictive performance able to improved

through processing techniques and several studies

have not been applied because they have considered

that traffic techniques may be optional and able to

ignore.

2.1 Regression Support for Prediction

Regression techniques being utilized to advance

software eminence by utilizing software metrics to

predict defect counts in software modules [7, 13, 14].

It can assist developers in distributing adequate

resources to modules that contain further defects. The

regressive analysis is a method associated with the

outcome of the variable and the interaction of one or

extra threat features or mystifying variables. The

results variable is also identified as reacting or reliant

variables and threat features and confounders are

identified "predictors", or "explanatory" or "self-

sufficient variables". In RA, the relented variable is

indicated as "y" and the self-sufficient variables are

indicated as "x".

RA [13, 14] is a statistical technique commonly used

for studying the linear relationship between variables.

This analysis technique is useful when defects are

distributed over a wide range of classes. Multiple RA

is an extension of linear RA that includes one or more

predictor variables [15]. It allocates a related variable

to be modeled as a linear function of, say, n predictor

variables or features, "A1, A2, . . . ,An", describing a

defect, D, that is, "D= (x1, x2, . . . , xn)". The training

data set, T, includes data in the form "(D1, C1), (D2,

C2), ⋯, (D|T|, C|D|)", where the Di are the "n-

dimensional training data" with related to the defect

class labels, Ci.

2.2 Correlation Analysis

The process of correlation or association analysis

approximates the Correlation Coefficient (CC) for a

sample data denoted as R. It association value "R

ranges between -1 and +1", which enumerate the

direction and potency of the linear relationship among

the two variables.

Correlation among two variables is "positive" if the

variable is associated with higher or higher if the

variable is correlated with the shorter level of the

erstwhile level. The value of the CC indicates the

direction of the Association. The CC indicates the

potential of the association. For instance, the

"correlation of R = 0.9" recommends that there is a

well-built positive connection among the two

variables, and the "correlation of R = -0.2" suggests a

weak or negative relation. Correlation of "zero"

proximity does not allow the existence of a linear

connection among two consistent variables. It is

significant to the reminder that there perhaps two

continuous variables of nonlinear communication, but

it will not be revealed when calculating the CC.

Therefore, it is constantly significant to assist to assess

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

620

the data cautiously prior to the CC.

2.3 Multiple Regression Analysis:

The regressive analysis is widely utilized in techniques

that are constructive for estimating "multiple self-

sufficient variables" [15]. Therefore, it is especially

valuable for assessment and adjustment. It can as well-

utilized to measure the existence of amendment. In

many applications, there is more than one factor that

affects the reaction. Therefore, many regression

models describe how one response variable is Ῥ

depending on a number of predictive variables.

Multiple Linear RA is a derivation of the simple linear

RA, which is utilized to evaluate among more than two

self-sufficient variables and one constantly relented

variable. The multiple linear RA equation is defined as

follows:

� = α + β�X� + β
X
 + β�X� + ⋯ + B
X

where � is the predicted or expected value of the

relented variable, α is the constant or intercept value

of �, β1 to βv ˗ are the estimation regression

coefficients and X1 to Xv ˗ is v distinct self-sufficient

or predictor variables.

Each regressive coefficient is a change in relation to

the change in one of the individual self-sufficient

variables. In the case of numerous regressions, β1, for

example, Ῥ is a uniform transform in X1, relative to the

entire other self-sufficient variables, where the

outstanding self-sufficient variables are supposed in

the same sense or are observed. Once again,

arithmetical tests able to executed to evaluate whether

every regressive coefficient is substantially dissimilar

from zero.

Multiple regressive analysis is also utilized to

determine if there are conflicts. After multiple linear

RA permits to assess the relations of the self-sufficient

variable and the results of all the other inconsistent

constant, it presents a direction to adjust the potentially

confusing variables that are comprised in the model.

For instance, let's suppose it has a defect factor

variable, which is denoted as X1 and the predicted

outcome will be presented as Ῥ. Utilizing a simple

linear regression estimation it able to predict as to the

relented defect variable as, Ῥ = α+ β1X1 , where the β1

is the approximated regression coefficient that

calculates the relationship among the defect factor and

the predicted outcome.

Similarly, for more number of depended defect factor,

it denotes it from X1 to Xn and its estimated regression

coefficient as β1 to βn, and it is estimated in the form

of multiple linear regression as Ῥ = α+ β1X1+ . . . +

βnXn. The estimation of regression coefficient, β of a

defect quantifies the association between the defect

and the prediction outcome.

Since the variable is recognized as a co-initiator, it

utilizes a multiple linear RA to evaluate the

relationship defect factor and the results are adjusted

to the confounder. The value of the defect's coefficient

is associated with the defect factor in determining

whether the assessment of the factor among the factor

is statistically important on the explanation of one or

more confusing variables.

ML RA is widely utilized in various predictions of

techniques [26]. The popular application is to evaluate

the relationship among numerous predicting variables

at the same time and one, the uninterrupted result. For

instance, it perhaps interesting to see which of the

forecasts determines a relatively large number of

candidates, the most important or the most closely

associated results. This is constantly essential in

"statistical analysis", especially in varied fields that

statistical modeling leads to associations.

2.4 Software Defect Prediction Techniques

Defects analysis in early stages [30-31] reduce time,

cost and resources. The understanding of the injecting

methods and practices of the defect allows the defect

to be avoided. After this knowledge in practice, the

quality has improved. Defects can be prevented based

on the underlying causes of defects. The investigation

is able to acquire two appearances, specifically in

"logical analysis" and "statistical analysis". Logical

Analysis is an exhaustive investigation of human

consumption that requires knowledge, process,

development and environmental expertise. It inspects

logical relations among faults and bugs. Statistical

analysis is derived from similar projects or empirical

studies of local written projects. There are numerous

approaches to recognize defects such as "inspections",

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

621

"prototypes", "testing" and "validation of evidence".

The "Formal inspection" is an efficient and cost-

effective quality [4, 8] early detection of defects

identification technique.

Several demands are clearly understood through

prototype, which helps to overcome defects. Testing is

one of the most successful methods. These defects

[31], which have flown through early identification,

can be detected during testing. Corrective evidence is

also a good way to get out, especially in the coding

stage and production is the most efficient and cost-

effective method for creating software. The most DP

models are founded on ML approaches. In relenting on

what to need to predict, the model-based models are

divided into two categories as, "classification" and

"regression". After the introduction of new ML

techniques, the methods of dynamic or "semi-

supervised learning" have been utilized to improve the

DP models [9, 23]. Besides ML models few non-

statistical models are also proposed such as

"BugCache" [19].

Liu et al. [8] discuss the difficulties of modeling of

software quality has been studied, which uses the

metric database history from a single software project.

Classification modeling is not only an adequate, strong

and accurate model from a single database. To solve

this problem, the quality of the software classification

was implemented utilizing different databases from

different programs. Previous studies have shown that

utilizing multiple data sets for validation can yield a

robust genetic programming-based model. It

illustrates that the recommended approach is

additional efficient and precise for utilizing multiple

data sets.

Lessmann et al. [6] has examined the classification

algorithm. For comparison of software defect

forecasts, it has tested experiments utilizing 10 public

domain data utilizing the 22 classifiers from the

NASA metric database storage. The predictable

accuracy utilizing the metrics depended classification

is generally constructive. The outcomes also signify

that the value given for the specific classification

algorithm is not as important as it is likely. The results

showed no significant difference in the top 17

classification criteria.

Riquelme et al. [27] utilized the "PROMISE

repository" to acquire the software metric program

was utilized and suggested searching the Genetic

algorithm (GA) for searching the rules of the

subdivision, which is due to high probability. The GA

implements the difficulty of unbalanced data

effectively, particularly when the unstable set consists

of more unwanted samples than defective illustrations.

Turhan et al. [32] utilized to improve the prediction of

the cross-company's defect utilizing the Nearest

Neighbor’s (NN) filter. The main idea of the "NN

filter" is to assemble related sources of instances in

target cases in order to prepare the forecasting model.

In erstwhile, if it able to create a model of forecasting,

the cases of selected sources that includes related data

to the goal, the model can be improved predict the

target case than the model prepared from all sources.

The "NN filter" selects 10 sources as near neighbors

for each target-occurrence. Utilizing the NN filter to

estimate the performance of the cross-section defect.

The complexity of software designing and

development need an efficient plan for DP. Therefore,

to better plan it will be a maintenance strategy, it is

important to predict which software modules are

defective before it deploys your software project. The

initial knowledge of defected software modules is able

to help to plan an effective procedure for enhancement

at a realistic time and cost. This ability to lead to

quality software in addition to superior customer

satisfaction [33].

Software modules are characterized into two groups

such as, "defective" or "non-defective", which mostly

are predicted through exploiting a "binary

classification model". It acquires the improvement of

these two classes prediction for implications on how

to categorize and estimate the datasets in the next

section.

3. PROPOSED REGRESSION

 ANALYSIS BASED DEFECT

 PREDICTION

Classification and prediction of faulty methods are

designed to perform accurate fault prediction, which is

an essential problem in all software due to indirect

measurements and is dependent on several metrics.

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

622

This rule-based classification method improves

efficiency by inheriting methodology multiple RA to

improve results and reduce the number and accuracy

of rules. In the learning method, it will utilize a fault

predictor to make use of the "static code properties"

described by "McCabe" and "Halstead" [34]. These

are "module-based metrics" and it is the least unit of

functionality in a complete system.

The proposed RA-DP mechanism reveals rules from

past software defects based on learned multiple RA

associative defects to generate relevant and irrelevant

rules for defect prediction in software development.

The proposed RA-DP system architecture is illustrated

in Fig. 1. The designed system architecture provides

two main modules of learning methods through RA

and fault prediction utilizing RA-rules. The

functionality of the system works on two types of

datasets and the fault constraints and attributes. The

"Training Data" consists of classified fault data which

is used to learn the knowledge for defect prediction

utilized the defined fault constraints and attributes.

The "Test Data" is being used the evaluation of the

prediction mechanism utilizing the generated RA-

Rules for defect prediction. The "Defect Prediction

Analysis" block provides the measures to analyze the

accuracy of the prediction in comparison to other

classifiers. In the following sections it discusses these

two learning and fault prediction mechanisms.

Fig. 1: System Architecture

3.1 Learning through Regression Analysis

Association rules mining and classification are often

utilized in fault prediction to analyze the relationship

between various attributes by defect type. To establish

the rules needed for fault prediction, RA is utilized

along with defect types and attributes to determine the

relationship between different type defects. In this

framework, it utilizes the ratio partitioning, which is

utilized to estimate the development of every

predictive model. Specifically, every dataset which is

primarily separated into two elements, the predictor is

learned from the 60% instance, and the remaining 40%

are tested.

Fig. 2 illustrates the data flow mechanism for learning

through RA. It takes 60% of training data as input and

reads the attributes of the defects in association with

defect types. The obtained attributes of a fault are

processed to learn the close association through the

RA based on the defect constraints and attributes. The

outcome of these leaning generates different

prediction rules to predict a fault in a data script.

Fig.2: Data Flow Diagram for the learning process

utilizing RA

Regression-based rules contain "data structures" and

"knowledge acquisition scenarios" derived from

knowledge of human experts. The derived knowledge

is coded into a group of rules. The process of learning

from defect attributes and learning sets by the

regression process is presented in Algorithm-1.

Algorithm-1: Regression-Based Learning Process

Method: Generate_DP_Rules (Attrs, Training_set):

DP_Rule_Set

var Rule: DP_Rule

Rules: DP_Rule_Set

Begin

forDefect_Classset_of_defect_class_values do

while "t :t.Training_set" and "t.class = Defect_Class" do

 Rule.Class := Defect_Class;

Training

Data

Test Data

Learning through

Regression Analysis (RA)

with Defect Constraint

Association

Generation of RA-Rules for

Defect Prediction

Defect Prediction

Performance

Analysis

• Type of

Constraints

• Defect Data

Constraints

• Defect Attributes

• Defect Impacts -

(Support and

Confidence)

Defect Predication

Using RA-Rules

Input Training

Datasets

Reading Defect Types

Attributes

Learning Defect Associations

between Attributes and

Constraints through Regression

Analysis

Defect Prediction Rules

Defect

Constraints

and

Attributes

Defect

Types

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

623

 Rule.RPattern := best_RPattern

(Defect_Class, Attrs, Training_set, Constraints);

 remove from Training_set instances of

Defect_Class;

 Rules := Rules. Rule;

end while

 return instances of Defect_Class to Training_set;

done

return Rules

End Generate_DP_Rules

DP_Rule_Set is a set of DP_Rules.

DP_Rule is a structure with two components:

 Pattern: DP_ Regression Patterns.

 Defect_Class: Class value predicted for an instance that

matches Regression Patterns.

DP_ Regression Patterns is a combination of DP_terms.

DP_termare the form attribute–value.

The regression-based learning process has two nested

iterations. The outer iteration chooses the class-value

and the inner iteration generates the rule until the class

is applied. The function "best_RPattern" returns a

grouping of terms covering merely the instances of the

present class. The learning process makes use of an

effortless term assortment through an empirical

method depend on the probability that an instance will

have a certain classification specified for a few

"attribute-value" pairs.

The subsequent terms that are supplementary to a rule

are terms for choosing the most "positive instance" and

the "least negative instance". This is specified by the

relation in the form of "z/s", where s - "is the various

instances selected by the term", and z - "is the number

for which they are positive". The condition is

supplement until the rule choices only positive

instances. Ensures a group of rules containing all

instances covered by one or more rules and it is

consistent for every instance belongs to single fault

class.

3.2 Regression Rules-Based Defect Prediction

The system depends on the understanding of the large

constitution of concepts and rules are now consistently

utilized in numerous purposes. Acquisition of

knowledge of these systems when modern

environments take place is an ongoing requirement

that the interaction between the rules increases the

complexity of the system.

The regression rule mechanism creates a bidirectional

dependency between rules, in order that rule

establishment is inspected only in the context of

another rule establishment. If the premise of the parent

rule is "true" for a particular individual, then the

conclusion regarding the quality is presented if there

is no relented. On the other hand, if it is "true", the rule

and its relented will be examined and the unique

conclusion will merely be asserted if the premises of

the establishment are true to the authorized entity. On

the contrary, if the premise of the parent rule is false

for a particular individual, this not only cannot claim

conclusions but if it has a 'false-false' dependency, it

and its relented will also be tested.

This regression rule forms a binary DT dissimilar from

the standard DT in that it uses a compound clause to

determine the branch, and this clause does not have to

deal with all cases thoroughly to make decisions at the

inside node. This contrasts with the standard DT where

all decisions are made at the root node. Nevertheless,

the utility of the standard DT remains that simply one

decision node is lively for everyone condition.

Maintenance is simple because it needs to consider the

node only and the previous cases that were under it if

there is a defect in reaching the decision. Extensions

to regression rules include an extremely simple

"statistical decision-making" method that generates a

rule specifically recursively called on the outstanding

dataset to generate "if-true" and "if-false" rules as well

as simple and simple rules It is very natural in point.

Defects and predictive analysis are performed utilizing

regression rules generated in the following steps.

• First, the most frequent defect is the diagnosis of

the portion of the data set that takes into account

the selected target defects.

• Second, an assertion is initialized to associate the

defect patterns with the DP_ Regression Patterns.

• Third, iteratively, each possible attribute value of

the DP_term permutation is tested with a likely

regression pattern and selects the finest according

to the relevant DP_term.

• Finally, based on the similarity index of the defect

pattern and the regression pattern, it is determined

whether to determine the predicted defect

according to the rule. If it is not predicted, the

process repeats to the third stage and ends with a

defect output prediction otherwise.

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

624

The data structure of the DP_Rule is in a decision tree

structure where each node has rules for the fault class.

This structure is interpreted in the form of conditional

rules for each fault class as,

IF cond1 AND

cond2 AND ... AND

condN are True THEN

 the defect conclusion.

Each "Cond” is an attribute condition for the Boolean

evaluation. For instance, a defect, D=1, if its depended

attribute "Cond" is also true. Each individual defect

node has accurately two "successor nodes", these

"successor nodes" are related with its "predecessor

node" through an "ELSE" or "EXCEPT" condition.

An illustration of RA-DP tree which described the

recursive mechanism to reach the defect class is shown

below:

IF (DEP_ON_CHILD = "1") THEN

Child-1:

 IF (cond1 AND cond2 AND ... AND condN)

 THEN

DEFECTIVENESS="0" or "1" ;

Child-2:

 IF (cond1 AND cond2 AND ... AND condN)

 THEN

DEFECTIVENESS="0" or "1" ;

ELSE

 IF (cond1 AND cond2 AND ... AND condN)

 THEN

DEFECTIVENESS="0" or "1" ;

3.3 Defect Prediction Analysis

Classification is a process that is utilized to identify

models that define and categorize an unclassified data

class or concept of predicting the wrong object class

whose model is unknown. Definition of proposed

defect methodology aims to define a class of

prediction class according to the selected attributes

and restrictions imposed by the learning process.

The difficulty of deriving empirical DP is utilized by

specifying the set of possible test conditions in the

form of "S" for the entity universe of the entity "E"

whose target predicate is "Q" in the materialized entity

"E". The intention predicate can be conditional the

ruleset specifies the evaluation of the test predicate.

With the intent of statistical regression, the emergence

of "S" and "Q" is not important. It has to consider "S"

as an identifier to opt for "e" in the various partitions

of "E" that require "Q (e)", measure the assortment of

rules by indiscriminate identification, and the inquiries

to locate “what is the prospect of the random

classification of the identical degree of simplification

would accomplish the similar or better precision” is

been illustrated in Fig.3.

Fig.3: DP Confusion Matrix illustration

The illustration of DP confusion matrix in Fig. 3,

describes the possible predictive instance as False

Negative (FN) as "Q", or False Positive (FP) as "S"

from a complete collection of records instances as "E".

The fraction of relevant instances that have predicted

as True Positive (TP) is represented as "C" is an

intersection of instance between the classified "Q" and

"S".

For example, if a computer program has identified

with a set of faults as E, and the RA based algorithm

predicted Q instances as having faults, and others are

as S. But, form the predicted Q only "x" instances are

having faults, and from the S instance only "y" has

faults. So, the C can be as (x+y) or "Q ∩ S" instances.

According to these defined DP confusion matrix, a

probability of the defect class will be predicted using

RA rules.

4. EXPERIMENT EVALUATION

To evaluate the proposed prediction mechanism it

implements the method in a WEKA Tool environment

[21]. It utilizes the data repository of "NASA -Metric

C = Q∩S

Q S
False

Negatives

False

Positives

Data Records Correctly

Selected as Defect (TP)

Data Records

that should

Selected as FP by

RA-DP Rule

Data Records

that should to be

Selected as FN by

RA-DP Rule

E
(Set of Data Records)

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

625

Data Program" to perform the comparative analysis

for the enhancement. The description of the datasets

and its measures are discussed below.

4.1 Datasets

The data set was taken from the PROMISE repository

for a NASA project [22] consisting of 12 data sets. The

data store shows software metrics, which are attributes

of the dataset, and whether an exact dataset is

"Defective" or "non-defective". Every dataset consists

of various software modules (conditions), each one

includes an equivalent count of defects and diverse

software attributes code statistic. In subsequent to pre-

processing, one or more faulty modules are labeled as

faulty. Additional clarification of the belongings of the

code or the origin of the data set able to found in

[35].The collection of the datasets consists of 5 project

data scripts of the "CM1, JM1, KC1, KC2, and PC1".

It encloses the measurement of the static codes such

as, "Halstead, McCabe, and LOC", which defines the

fault of defected codes. The description of these

datasets is presented in Table1.

Table 1: Datasets Description

Project Source

Code

Description

CM1 C NASA spacecraft instrument

KC1 C++

Storage management for

receiving/processing ground

data

KC2 C++
Science data processing. No

software overlap with KC1

JM1 C
A real-time predictive ground

system

PC1 C
Flight software for earth-

orbiting satellite.

Every dataset has 21 software product parameters,

based on the various measurements such as, "size",

"complexity", "vocabulary", etc., of the product. The

class attribute of each data set is considered as

"TRUE", if the module has various defects, and

"FALSE" if it’s non-defective.

4.2 Performance Measures

Performance is measured according to the confusion

matrix given in Table2, which is utilized by many

researchers as in [35-36]. It shows confusing matrices

for two-class problems with positive and negative

class values.

The software DP performance of the proposed RA-DP

along with existing classifiers are measured for the

"Accuracy", "Sensitivity", and "Specificity" for the

evaluation.

Table 2: Confusion Matrix

Actual Class
Predicted Class

Defective Not Defective

Defective True Negative (TN) False Positive (FP)

Not

Defective
False Negative (FN) True Positive (TP)

• Accuracy determines the percentage of DP that

are "correctly classified".

 Accuracy =
�����

�����������

• Sensitivity determines the percentage for the

“positive classified" instances that predicted as

"positive".

 Sensitivity =
��

�����

• Specificity determines the percentage for the

“positive classified" instances that predicted as

"negative".

 Specificity =
��

�����

4.3 Result Analysis

To compare the results with the best classifier for the

prediction, such as "Naive Bayes", "OnerR", "J48",

and "RIDOR" To analyze the improvement of the

proposal by comparing the results of the classification

program execution of the WEKA Tool on the collected

datasets. The comparative performance of the

accuracy, specificity and sensitivity results of the

proposed RA-DP is shown in Tables 3-5 and Figs. 4-

6, respectively.

4.4 Accuracy Analysis

The proposed RA-DP shows an improvement in the

Accuracy value in comparison to existing classifier

expect with the CM1 datasets. An average of 10%

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

626

enhancement in the accuracy being achieved as shown

in Fig.5.

Fig.4: Accuracy Comparison

Fig. 5: Sensitivity Comparison

Fig. 6: Specificity Comparison

In the case of both sensitivity and specificity measure

also it shows an improvement. The measure of

sensitivity and specificity show the efficiency of the

probability of detection of classifiers. The detection of

the RA-DP utilizing the regression rules makes to

predict defect accurately and enhance the sensitivity

and specificity of the proposal.

As it was known that most software development

needs the best quality and reliability development.

But, in case of real-time scenario, a defect-prone

module highly affects the cost, time and resources. So,

an early prediction of defect quite useful in reducing

the wastage of the resources. The practices in the

effective defect prediction classifier are successfully

applied. The proposed RA-DP clearly demonstrate the

usage of a classifier in defect prediction through RA.

The obtained results in terms of accuracy, sensitivity,

and specificity show the impact of the proposal. The

statistical analysis among the classifiers justifies the

significance of metrics evaluation in the software

defect prediction to improvise the quality design and

coding development.

The variety of learning algorithm has a different

impact on prediction since defect prediction is very

important in finding a noble balance in designing. So,

the RA-DP provides an RA based learning with a close

correlation analysis among the attributes to provide a

better impact on the defect prediction in future

software development. As in Table3 shows, RA-DP

has better accuracy improvisation in comparison

among the existing classifiers. The role of classifiers

in defect prediction is being learned in the past. Since

every classifier has a different approach for learning

and prediction makes the variation in result.

Table 3: Accuracy Results

Methods
Prop.

RA-DP
OnerR RIDOR

Naive

Bayes
J48

CM1 94.17 91.56 91.36 84.93 91.56

KC1 80.65 79.77 80.65 80.42 80.65

KC2 85.49 84.4 84.54 84.63 84.54

JM1 83.33 79.5 79.5 83.52 79.5

PC1 94.86 90.89 93.41 89.54 93.41

Table 4: Sensitivity Results

Methods
Prop. RA-

DP
OnerR RIDOR

Naive

Bayes
J48

CM1 0.922 0.92 0.91 0.85 0.92

KC1 0.807 0.8 0.81 0.80 0.81

KC2 0.850 0.84 0.85 0.85 0.85

JM1 0.814 0.8 0.8 0.84 0.8

PC1 0.940 0.91 0.93 0.90 0.93

Table 5: Specificity Results

Methods Prop. RA-

DP

OnerR RIDOR Naive

Bayes

J48

CM1 0.851 0.831 0.827 0.70 0.831

KC1 0.652 0.596 0.613 0.61 0.613

KC2 0.723 0.688 0.691 0.69 0.691

JM1 0.666 0.59 0.59 0.67 0.59

PC1 0.883 0.818 0.868 0.79 0.868

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

627

4.5 Sensitivity and Specificity Analysis:

The better accuracy with an average sensitivity

comparison as in Table-4 and better Specificity as in

Table 5 make it more beneficial in current software

defect prediction. The sensitivity results in comparison

to the different prediction classifiers as shown in Fig.

5 suggest an improvisation of ~ 2% in the positive data

prediction. It shows an average 1% better in

comparison to CM1 and PC1, and almost similar

results in comparison to KC1, KC2, and JM1.

Whereas, Fig. 6 shows the specificity comparison

results. It shows an improvisation of ~3% in terms

specificity measures. In shows an average of 2% better

specificity with CM1, 3% with KC1, KC2, 5% with

JM1 and PC1.

5. CONCLUSIONS

Finding and fixing defects makes it simpler for

developers to comprehend the program. In order to get

better, the competence and excellence of software

development are able to obtain the benefit of data

mining techniques for analysis and predict a big

numeral of defect data assemble in software

development. This paper presents a regression-based

defect prediction (RA-DP). The designed system

implements defect prediction utilizing a learning

method and RA-rule by RA. The learning method

creates rules with two exception types that are easy to

understand and automatically find search rules, so the

designer does not have to do that physically. A rule is

characterized as an arrangement of attributes that

enhanced to fits in known cases of design flaws. The

experimental analysis illustrates improved

performance in defect prediction evaluated to the

existing classification methods.

6. FUTURE WORK

In future improvement, the RA-DP can be considered

for the variant model in the software development for

improvising non-functional software defects. In

support of the real-time need, it can be used for

runtime defect prediction or as a tool to extend the

software quality development process.

ACKNOWLEDGMENT

Authors acknowledge to the Department of

Computing, Faculty of Engineering, Science &

Technology, Indus University, Karachi Pakistan, for

continuous support to carry out this research.

REFERENCES

1. Song Q., Shepperd M., Cartwright M., Mair C.,

"Software Defect Association Mining and Defect

Correction Effort Prediction", IEEE Transactions

on Software Engineering, Vol. 32, No. 2, pp. 69

- 82, February 2006.

2. Tantithamthavorn C., McIntosh S., Hassan, A. E.,

Matsumoto, K., "An Empirical Comparison of

Model Validation Techniques for Defect

Prediction Models", IEEE Transactions on

Software Engineering, Vol. 43, No. 1, pp. 1 - 18,

2017.

3. Jing X.-Y., Wu F., Dong X., Xu B., "An

Improved SDA Based Defect Prediction

Framework for Both Within-Project and Cross-

Project Class-Imbalance Problems", IEEE

Transactions on Software Engineering, Vol. 43,

No. 4, pp. 321 - 339, 2017.

4. Dromey R. G., "Software Control Quality -

Prevention Versus Cure?", Vol. 11, No. 3, pp.

197 - 21, 2003.

5. Ge J., Liu J., Liu W., "Comparative Study on

Defect Prediction Algorithms of Supervised

Learning Software Based on Imbalanced

Classification Data Sets", Proceedings of the 19th

IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing, pp. 399 -

406, Busan, South Korea, 27 – 29 June 2018.

6. Lessmann S., Baesens B., Mues C., Pietsch S.,

"Benchmarking classification models for

software defect prediction: A proposed

framework and novel findings", IEEE

Transactions on Software Engineering, Vol. 34,

No. 4, pp. 485 - 496, 2008.

7. Abraham Z., Tan P.-N., "A Semi-supervised

Framework for Simultaneous Classification and

Regression of Zero-Inflated Time Series Data

with Application to Precipitation Prediction",

Proceedings of the IEEE International

Conference on Data Mining Workshops, pp. 644

- 649, Miami, F.L., U.S.A., December 2009.

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

628

8. Liu, Y., Khoshgoftaar, T. M., Seliya, N.,

"Evolutionary Optimization of Software Quality

Modeling with Multiple Repositories", IEEE

Transaction on Software Engineering, Vol. 36,

No. 6, pp. 852 - 864, 2010.

9. Koru A., Liu H., "Building effective defect-

prediction models in practice", IEEE Software,

Vol. 22, No. 6 pp. 23 - 29, 2005.

10. Witten I., Frank E., "Data Mining: Practical

Machine Learning Tools and Techniques",

Morgan Kaufmann, San Francisco, 2 editions, pp

1-33, 2005.

11. Marian Z., Mircea I.-G., Czibula I.-G., Czibula

G., "A Novel Approach for Software Defect

Prediction Using Fuzzy Decision Trees",

Proceedings of the 18th International Symposium

on Symbolic and Numeric Algorithms for

Scientific Comp. (SYNASC), pp. 240 - 247,

Timisoara, Romania, 24-27 September 2016.

12. Shan C., Zhu H., Hu C., Cui J., Xue J., "Software

defect prediction model based on improved LLE-

SVM", Proceedings of the 4th International

Conference on Computer Science and Network

Technology (ICCSNT), Vol.1, pp. 530 - 535,

Harbin, China, 2015.

13. Rajbahadur G. K., Wang S., Kamei Y., Hassan,

A. E., "The Impact of Using Regression Models

to Build Defect Classifiers", Proceedings of the

14th IEEE/ACM International Conference on

Mining Software Repositories (MSR), pp. 135 -

145, Buenos Aires, Argentina, 20-21 May 2017.

14. Suffian M. D. M., Ibrahim S., "A Prediction

Model for System Testing Defects using

Regression Analysis", International Journal of

Soft Computing and Software Engineering, Vol.

2, No. 7, pp. 2251-7545, 2012.

15. Bibi S., Tsoumakas G., Stamelos I., Vlahvas, I.,

"Software Defect Prediction Using Regression via

Classification", IEEE International Conference

on Computer Systems and Applications, pp. 330 -

336, Dubai, U.A.E., March 2006.

16. Ali S., Iqbal N., Hafeez, Y., “Towards

Requirement Change Management for Global

Software Development using Case Base

Reasoning”, Mehran University Research

Journal of Engineering and Technology, Vol. 37,

No 3, pp. 639-652, 2018.

17. Hani S. U., Alam A. T., Shaikh A. B., “Tuning

COCOMO-II for software process improvement:

A tool based approach”, Mehran University

Research Journal of Engineering and

Technology, Vol. 35, No 4, pp 505-522, 2016.

18. Felix E. A., Lee S. P., "Integrated Approach to

Software Defect Prediction", IEEE Access, Vol 5,

pp. 21524 - 21547, 2017.

19. Rahman F., Posnett D., Hindle A., Barr E.,

Devanbu P., "BugCache for inspections: hit or

miss?”, Proceedings for 19th ACM SIGSOFT

Symposium of Software Engineering, pp. 322-

331, Szeged, Hungary, September 2011.

20. Yu X., Liu J., Yang Z., Jia X., Ling Q., Ye S.,

"Learning from Imbalanced Data for Predicting

the Number of Software Defects", Proceedings of

the 28th IEEE International Symposium on

Software Reliability Engineering (ISSRE), pp. 78

- 89, Toulouse, France, 23-26 October, 2017.

21. Ambardekar P., Jamthe A., Chincholkar M.,

"Predicting defect resolution time using cosine

similarity", Proceedings of the International

Conference on Data and Software Engineering

(ICoDSE), pp. 1 - 6, Palembang, Indonesia, 1-2

November 2017.

22. Software Defect Dataset, PROMISE Repository

for NASA Projects, available at:

http://promise.site.uottawa.ca/SERepository

23. Yildiz O. O. T., "Software defect prediction using

Bayesian networks", Empirical Software

Engineering, Vol. 19, No. 1, pp 154–181, 2014.

24. Can H., Jianchun X., Juelong Z. R. L., Quiliang

Y., Liqiang X., "A new model for software defect

prediction using Particle Swarm Optimization and

support vector machine", Proceedings of the 25th

Chinese Control and Decision Conference

(CCDC), pp. 4106 - 4110, Guiyang, China, 25- 27

May 2013.

25. Zhang F., Zheng Q., Zou Y., Hassan A. E.,

"Cross-Project Defect Prediction Using a

Connectivity-Based Unsupervised Classifier",

Proceedings of the 38th IEEE/ACM International

Conference on Software Engineering (ICSE), pp.

309 - 320, Austin, T.X., U.S.A., 14-22 May 2016

26. Yan Z., Chen X., Guo P., "Software Defect

Prediction Using Fuzzy Support Vector

A Regression Analysis Based Model for Defect Learning and Prediction in Software Development

Mehran University Research Journal of Engineering and Technology, Vol. 40, No.3, July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

629

Regression", Advances in Neural Networks, Vol.

60, No 64, pp 17-24, 2010.

27. Riquelme J. C., Ruiz, Rodriguez, R., D., Aguilar

Ruiz, J. J. S., "Finding Defective Software

Modules by Means of Data Mining Techniques",

IEEE Latin America Transactions, Vol. 7, No. 3,

pp. 377 - 382, 2009.

28. Hafeez A., Musavi S. H. A., “Ontology-based

verification of UML class/OCL model”, Mehran

University Research Journal of Engineering and

Technology, Vol. 37, No 4, pp 521-534, 2018.

29. Wang J., Shen B., Chen Y., "Compressed C4.5

Models for Software Defect Prediction",

Proceedings of the 12th IEEE International

Conference on Quality Software (QSIC), pp. 13-

16, Xi'an, China, 27-29 August 2012.

30. Chillarege R., Bhandari I. S., Chaar J., Halliday

M. J., Moebus D. S., Ray B. K., Wong M. Y.,

"Orthogonal Defect Classification-A Concept for

In-Process Measurements", IEEE Transaction on

Software Engineering, Vol. 18, No. 11, pp. 943-

956, 1992.

31. Huber J.T., "A Comparison of IBM's Orthogonal

Defect Classification to Hewlett Packard's Defect

Origins, Types, and Modes", Hewlett Packard

Company Metrics, pp. 13-16, 1999.

32. Turhan B., Msrl A. T., Bener A., "Empirical

evaluation of the effects of mixed project data on

learning defect predictors", Information and

Software Technology, Vol. 55, No. 6, pp. 1101-

1118, 2013.

33. Rahman F., Khatri S., Barr E. T., Devanbu P.,

"Comparing static bug finders and statistical

prediction", Proceedings of the 36th ACM

International Conference on Software

Engineering, pp. 424-34, Hyderabad, India, May

2014.

34. Halstead M. H., "Elements of Software Science",

Elsevier, New York, pp 124-127, 1977.

35. Zhang H., Zhang X., Gu M., "Predicting defective

software components from code complexity

measures", Proceedings of the 13th IEEE Pacific

Rim International Symposium on Dependable

Computing, pp. 93-96, Melbourne, V.I.C.,

Australia, 2007.

36. Fenton N. E., Pfleeger S. L., "Software Metrics: a

Rigorous and Practical Approach", PWS

Publishing Co, pp 1-77, 1998.

