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ABSTRACT 

The development of software undergoes multiple regression phases to deliver quality software. Therefore, to 

minimize the development effort, time and cost it is very important to understand the probable defects 

associated with the designed modules. It is possible that occurrence of a range of defects may impact the 

designed modules which need to be predicted in advance to have a close inter-association with the depended 

modules. Most of the existing defect prediction classifier mechanisms are derived from the past project data 

learning, but it is not sufficient for new project defect predicting as the new design may have a different kind 

of parameters and constraints. This paper recommends Regression Analysis (RA) based defect learning and 

prediction Defect Prediction (RA-DP) mechanism to support the defective or non-defective prediction for 

quality software development. The RA-DP approach provides two methods to perform this prediction analysis. 

It initially presents an association learning through RA to construct the regression rules from the learned 

knowledge required for the defect prediction. The constructed regression rules are used for defect prediction 

and analysis. To measure the performance of the RA-DP a regression experimental evaluation is performed 

over the defect-prone PROMISE dataset from NASA project. The outcome of the results is analyzed through 

measuring the prediction Accuracy, Sensitivity and Specificity to demonstrate the improvisation and 

effectiveness of the proposal in comparison to a few existing classifiers.     
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1.  INTRODUCTION 

 
oftware is a complicated object composed of 

several modules with different degrees of 

defect incidence. Software defects represent 

errors or defects in software artifacts or software 

processes and are primarily focused on predicting 

defects that affect the project or product performance. 

Software failure prediction helps detect, track, and 

resolve software anomalies, particularly critical 

security systems that may affect the user’s safekeeping  
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and lifespan.  

 

Defect Detection (DD) techniques work out hand in 

hand to limit deficit attempts [5] and enhance the 

probability of meeting the investigation team with its 

defined investigation targets and goals. The 

occurrence of defect avoidance schemes does not 

merely imitate a high stage of investigation-discipline 

development, but it as well characterizes the 

significant cost-effective overhead related to the on the 

S
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whole testing effort. There are numerous mechanisms, 

tools, techniques, and practices for defect prevention, 

but the entire seems to be inadequate. Much work 

remains to be done to avoid defects in the techniques 

to agree, the tools to use, and the guidelines to be 

drafted for the prevention. 

 

Classifications and predictions [6-7] able to be utilized 

to extract models that describe critical defect data 

classes or to predict possible defect tendencies. The 

classification predicts definite or distinct labels and 

labels without order, while the predictive model 

predicts functions of continuous value. This analysis 

helps us to better understand software defect data. In 

case of defects are detected in the "development 

lifecycle" or "requirements specifications" is able to 

prevent defects from being migrated from design and 

code development. Defect prevention is extremely 

important for improving the eminence of the 

institutions [8].  

 

The foremost goal of high-quality costs is not to 

reduce costs, however, to invest costs in the right 

investments. Instead, it has to be considered to save 

time, costs and resources. It provides a lot of 

reprocessing, which is essential while the defects 

occur in the concluding stage or after the delivery. 

Defects have to be implemented at each phase of the 

software lifecycle to obstruct defects as quickly as 

possible, take corrective action to eliminate it and 

prevent it from being repeated. Even existing metrics 

and defect prediction models may not guarantee good 

overall predictive performance.  

 

Software Defect Prediction (DP) framework [3] refers 

to a system that specifies that the specific software 

modules are defective or not. In general, this model is 

trained to utilize software metrics and defect data, 

collected by beforehand developed software releases 

or alike projects. DP model [9] are functional to 

program modules with unidentified defective data. 

The characteristics or features of the set of prediction 

data for software defects influence the efficiency and 

effectiveness of the DP model.  

 

The existing DP methods [4] are not always able to fix 

all defects from accessing applications under testing 

since the application is extremely difficult and it is 

impractical to grab the entire defects. DP reduces 

software costs and improves customer satisfaction [1]. 

However, there is no software DP technology that able 

to solve all defect problems. Therefore, with 

efficiently and appropriately predicting the occurrence 

of software flaws, software project supervisors able to 

utilize in the improved manner of the costs and time to 

gain enhanced quality assurance [2-3]. Most of the 

experiments associated with DP are executed in the 

Machine Learning (ML) tool, such as "WEKA" [10]. 

In ML approaches the construction of a predictable 

model and classified software modules related to 

defect, one of the significant characteristics of the 

software, and also analyses the defects. Different data 

mining approaches such as, DT (Decision Tree),    

Bayesian Belief Network (BBN), Artificial Neural 

Network (ANN), Support Vector Machine  (SVM) and 

Clustering are various techniques which are usually 

utilized to predict defects in software [11-12]. But 

these approaches and prediction mechanism are 

mostly based on past project defects learned, which is 

insufficient to handle the new project development 

conditions and designs. So, its required a regressive 

analysis of the defect in a continuous manner to learn 

from the past and current defect to suggest an effective 

DP mechanism to cater the today's agile software 

development needs.   

 

This paper presents a regression-based defect-

association prediction (RA-DP) mechanism for 

proficient DP in software applications. The main 

principle of RA-DP is to build an efficient rule model 

for precisely classifying software defects utilizing 

"NASA" repository datasets [20] for experimental 

evaluation. As each institution attempt to maintain 

their data private, it cannot publish data sets that able 

to utilize in testing. The most frequently existing 

datasets are "MDP" and "PROMISE" repositories 

presented by NASA.  

 

The RA-DP implements an RA method for fault-

related learning of data sets to generate defect 

knowledge to be used to develop RA-based fault 

prediction classifiers to improve DP strategies. It will 

be supporting the classification of a defective or non-

defective software project in an efficient manner for 

the deployment. The RA-DP mechanism extends the 

methodology of multiple regression-based 

classifications to construct an effective regression 
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analyzer that accurately classifies software defects. 

This method improves software DP, allowing software 

testers to utilize additional time for testing defective 

modules. The subsequent paper is organized as the 2nd 

Section discuss the background study, the 3rd Section 

discuss the recommended based defect prediction, the 

4th Section discussed the experiment assessment 

implementing the datasets and finally in the 5th 

section it summarizes the conclusion of the paper.  

 

2.  BACKGROUND STUDY 
 

Suggestions for preventing software defects are 

usually based on tools, technologies, methods, and 

standards [16, 17]. In the field of software engineering, 

it is one of the active research focus [18]. Since DP 

models include a group of "defect-prone software 

artifacts" [18], "quality assurance teams" which 

resourcefully allocated to the inadequate resources to 

analysis and examine software products [20, 21]. 

 

Several DP studies [23-25] have been carried out and 

all are based on ML approach or a statistical approach. 

ML algorithms are employed in software failure 

prediction models for classification and regression 

[26]. Several learning methods have recently used ML 

techniques to improve the predictability of defects. 

Pre-processing techniques are also important in 

software DP. In order to progress the performance of 

the ML technique before constructing the DP model, 

the following techniques such as "feature selection" 

and "data normalization and noise reduction" able to 

applied [27, 28]. A quite number of "feature selection 

techniques" are utilized to mine essential functions for 

the DP model. However, several studies [29] have 

shown that predictive performance able to improved 

through processing techniques and several studies 

have not been applied because they have considered 

that traffic techniques may be optional and able to 

ignore. 

 

2.1  Regression Support for Prediction 

 

Regression techniques being utilized to advance 

software eminence by utilizing software metrics to 

predict defect counts in software modules [7, 13, 14]. 

It can assist developers in distributing adequate 

resources to modules that contain further defects. The 

regressive analysis is a method associated with the 

outcome of the variable and the interaction of one or 

extra threat features or mystifying variables. The 

results variable is also identified as reacting or reliant 

variables and threat features and confounders are 

identified "predictors", or "explanatory" or "self-

sufficient variables". In RA, the relented variable is 

indicated as "y" and the self-sufficient variables are 

indicated as "x". 

 

RA [13, 14] is a statistical technique commonly used 

for studying the linear relationship between variables. 

This analysis technique is useful when defects are 

distributed over a wide range of classes. Multiple RA 

is an extension of linear RA that includes one or more 

predictor variables [15]. It allocates a related variable 

to be modeled as a linear function of, say, n predictor 

variables or features, "A1, A2, . . . ,An",  describing a 

defect, D, that is,  "D= (x1, x2,  . . . , xn)".  The training 

data set, T, includes data in the form "(D1, C1), (D2, 

C2), ⋯, (D|T|, C|D|)", where the Di are the "n-

dimensional training data" with related to the defect 

class labels, Ci. 

 

2.2  Correlation Analysis 

 

The process of correlation or association analysis 

approximates the Correlation Coefficient (CC) for a 

sample data denoted as R. It association value "R 

ranges between -1 and +1", which enumerate the 

direction and potency of the linear relationship among 

the two variables.  

 

Correlation among two variables is "positive" if the 

variable is associated with higher or higher if the 

variable is correlated with the shorter level of the 

erstwhile level. The value of the CC indicates the 

direction of the Association. The CC indicates the 

potential of the association. For instance, the 

"correlation of R = 0.9" recommends that there is a 

well-built positive connection among the two 

variables, and the "correlation of R = -0.2" suggests a 

weak or negative relation. Correlation of "zero" 

proximity does not allow the existence of a linear 

connection among two consistent variables. It is 

significant to the reminder that there perhaps two 

continuous variables of nonlinear communication, but 

it will not be revealed when calculating the CC. 

Therefore, it is constantly significant to assist to assess 
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the data cautiously prior to the CC. 

 

2.3  Multiple Regression Analysis: 

 

The regressive analysis is widely utilized in techniques 

that are constructive for estimating "multiple self-

sufficient variables" [15]. Therefore, it is especially 

valuable for assessment and adjustment. It can as well-

utilized to measure the existence of amendment. In 

many applications, there is more than one factor that 

affects the reaction. Therefore, many regression 

models describe how one response variable is Ῥ 

depending on a number of predictive variables. 

Multiple Linear RA is a derivation of the simple linear 

RA, which is utilized to evaluate among more than two 

self-sufficient variables and one constantly relented 

variable. The multiple linear RA equation is defined as 

follows: 

 

� =  α +  β�X� + β
X
 + β�X� + ⋯ + B
X
  
 

where � is the predicted or expected value of the 

relented variable, α is the constant or intercept value 

of �, β1 to βv ˗ are the estimation regression 

coefficients and X1 to Xv ˗ is v distinct self-sufficient 

or predictor variables. 

 

Each regressive coefficient is a change in relation to 

the change in one of the individual self-sufficient 

variables. In the case of numerous regressions, β1, for 

example, Ῥ is a uniform transform in X1, relative to the 

entire other self-sufficient variables, where the 

outstanding self-sufficient variables are supposed in 

the same sense or are observed. Once again, 

arithmetical tests able to executed to evaluate whether 

every regressive coefficient is substantially dissimilar 

from zero.  

 

Multiple regressive analysis is also utilized to 

determine if there are conflicts. After multiple linear 

RA permits to assess the relations of the self-sufficient 

variable and the results of all the other inconsistent 

constant, it presents a direction to adjust the potentially 

confusing variables that are comprised in the model. 

For instance, let's suppose it has a defect factor 

variable, which is denoted as X1 and the predicted 

outcome will be presented as Ῥ. Utilizing a simple 

linear regression estimation it able to predict as to the 

relented defect variable as, Ῥ = α+ β1X1 , where the β1 

is the approximated regression coefficient that 

calculates the relationship among the defect factor and 

the predicted outcome. 

  

Similarly, for more number of depended defect factor, 

it denotes it from X1 to Xn and its estimated regression 

coefficient as β1 to βn, and it is estimated in the form 

of multiple linear regression as Ῥ = α+ β1X1+ . . . + 

βnXn. The estimation of regression coefficient, β of a 

defect quantifies the association between the defect 

and the prediction outcome. 

 

Since the variable is recognized as a co-initiator, it 

utilizes a multiple linear RA to evaluate the 

relationship defect factor and the results are adjusted 

to the confounder. The value of the defect's coefficient 

is associated with the defect factor in determining 

whether the assessment of the factor among the factor 

is statistically important on the explanation of one or 

more confusing variables. 

 

ML RA is widely utilized in various predictions of 

techniques [26]. The popular application is to evaluate 

the relationship among numerous predicting variables 

at the same time and one, the uninterrupted result. For 

instance, it perhaps interesting to see which of the 

forecasts determines a relatively large number of 

candidates, the most important or the most closely 

associated results. This is constantly essential in 

"statistical analysis", especially in varied fields that 

statistical modeling leads to associations. 

 

2.4  Software Defect Prediction Techniques 

 
Defects analysis in early stages [30-31] reduce time, 

cost and resources. The understanding of the injecting 

methods and practices of the defect allows the defect 

to be avoided. After this knowledge in practice, the 

quality has improved. Defects can be prevented based 

on the underlying causes of defects. The investigation 

is able to acquire two appearances, specifically in 

"logical analysis" and "statistical analysis". Logical 

Analysis is an exhaustive investigation of human 

consumption that requires knowledge, process, 

development and environmental expertise. It inspects 

logical relations among faults and bugs. Statistical 

analysis is derived from similar projects or empirical 

studies of local written projects. There are numerous 

approaches to recognize defects such as "inspections", 
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"prototypes", "testing" and "validation of evidence". 

The "Formal inspection" is an efficient and cost-

effective quality [4, 8] early detection of defects 

identification technique.  

 

Several demands are clearly understood through 

prototype, which helps to overcome defects. Testing is 

one of the most successful methods. These defects 

[31], which have flown through early identification, 

can be detected during testing. Corrective evidence is 

also a good way to get out, especially in the coding 

stage and production is the most efficient and cost-

effective method for creating software. The most DP 

models are founded on ML approaches. In relenting on 

what to need to predict, the model-based models are 

divided into two categories as, "classification" and 

"regression". After the introduction of new ML 

techniques, the methods of dynamic or "semi-

supervised learning" have been utilized to improve the 

DP models [9, 23]. Besides ML models few non-

statistical models are also proposed such as 

"BugCache" [19]. 

 

Liu et al. [8] discuss the difficulties of modeling of 

software quality has been studied, which uses the 

metric database history from a single software project. 

Classification modeling is not only an adequate, strong 

and accurate model from a single database. To solve 

this problem, the quality of the software classification 

was implemented utilizing different databases from 

different programs. Previous studies have shown that 

utilizing multiple data sets for validation can yield a 

robust genetic programming-based model. It 

illustrates that the recommended approach is 

additional efficient and precise for utilizing multiple 

data sets. 

 

Lessmann et al. [6] has examined the classification 

algorithm. For comparison of software defect 

forecasts, it has tested experiments utilizing 10 public 

domain data utilizing the 22 classifiers from the 

NASA metric database storage. The predictable 

accuracy utilizing the metrics depended classification 

is generally constructive. The outcomes also signify 

that the value given for the specific classification 

algorithm is not as important as it is likely. The results 

showed no significant difference in the top 17 

classification criteria. 

Riquelme et al. [27] utilized the "PROMISE 

repository" to acquire the software metric program 

was utilized and suggested searching the  Genetic 

algorithm (GA) for searching the rules of the 

subdivision, which is due to high probability. The GA 

implements the difficulty of unbalanced data 

effectively, particularly when the unstable set consists 

of more unwanted samples than defective illustrations. 

 

Turhan et al. [32] utilized to improve the prediction of 

the cross-company's defect utilizing the Nearest 

Neighbor’s (NN) filter. The main idea of the "NN 

filter" is to assemble related sources of instances in 

target cases in order to prepare the forecasting model. 

In erstwhile, if it able to create a model of forecasting, 

the cases of selected sources that includes related data 

to the goal, the model can be improved predict the 

target case than the model prepared from all sources. 

The "NN filter" selects 10 sources as near neighbors 

for each target-occurrence. Utilizing the NN filter to 

estimate the performance of the cross-section defect. 

The complexity of software designing and 

development need an efficient plan for DP. Therefore, 

to better plan it will be a maintenance strategy, it is 

important to predict which software modules are 

defective before it deploys your software project. The 

initial knowledge of defected software modules is able 

to help to plan an effective procedure for enhancement 

at a realistic time and cost. This ability to lead to 

quality software in addition to superior customer 

satisfaction [33]. 

 

Software modules are characterized into two groups 

such as, "defective" or "non-defective", which mostly 

are predicted through exploiting a "binary 

classification model". It acquires the improvement of 

these two classes prediction for implications on how 

to categorize and estimate the datasets in the next 

section. 

 

3.  PROPOSED REGRESSION  

     ANALYSIS BASED DEFECT  

     PREDICTION 
 

Classification and prediction of faulty methods are 

designed to perform accurate fault prediction, which is 

an essential problem in all software due to indirect 

measurements and is dependent on several metrics.  



A Regression Analysis Based Model for Defect Learning and Prediction in Software Development 

 

Mehran University Research Journal of Engineering  and Technology, Vol. 40, No.3,  July 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219] 

 

622 

 

This rule-based classification method improves 

efficiency by inheriting methodology multiple RA to 

improve results and reduce the number and accuracy 

of rules. In the learning method, it will utilize a fault 

predictor to make use of the "static code properties" 

described by "McCabe" and "Halstead" [34]. These 

are "module-based metrics" and it is the least unit of 

functionality in a complete system. 

 

The proposed RA-DP mechanism reveals rules from 

past software defects based on learned multiple RA 

associative defects to generate relevant and irrelevant 

rules for defect prediction in software development. 

The proposed RA-DP system architecture is illustrated 

in Fig. 1. The designed system architecture provides 

two main modules of learning methods through RA 

and fault prediction utilizing RA-rules. The 

functionality of the system works on two types of 

datasets and the fault constraints and attributes. The 

"Training Data" consists of classified fault data which 

is used to learn the knowledge for defect prediction 

utilized the defined fault constraints and attributes. 

The "Test Data" is being used the evaluation of the 

prediction mechanism utilizing the generated RA-

Rules for defect prediction. The "Defect Prediction 

Analysis" block provides the measures to analyze the 

accuracy of the prediction in comparison to other 

classifiers. In the following sections it discusses these 

two learning and fault prediction mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: System Architecture 

 

3.1  Learning through Regression Analysis  

 

Association rules mining and classification are often 

utilized in fault prediction to analyze the relationship 

between various attributes by defect type. To establish 

the rules needed for fault prediction, RA is utilized 

along with defect types and attributes to determine the 

relationship between different type defects. In this 

framework, it utilizes the ratio partitioning, which is 

utilized to estimate the development of every 

predictive model. Specifically, every dataset which is 

primarily separated into two elements, the predictor is 

learned from the 60% instance, and the remaining 40% 

are tested. 

 

Fig. 2 illustrates the data flow mechanism for learning 

through RA. It takes 60% of training data as input and 

reads the attributes of the defects in association with 

defect types. The obtained attributes of a fault are 

processed to learn the close association through the 

RA based on the defect constraints and attributes. The 

outcome of these leaning generates different 

prediction rules to predict a fault in a data script. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Data Flow Diagram for the learning process 

utilizing RA 

 

Regression-based rules contain "data structures" and 

"knowledge acquisition scenarios" derived from 

knowledge of human experts. The derived knowledge 

is coded into a group of rules. The process of learning 

from defect attributes and learning sets by the 

regression process is presented in Algorithm-1. 

 
Algorithm-1: Regression-Based Learning Process 

 

Method: Generate_DP_Rules (Attrs, Training_set): 

DP_Rule_Set 

var Rule: DP_Rule 

Rules: DP_Rule_Set 

Begin 

forDefect_Classset_of_defect_class_values do 

while "t :t.Training_set" and "t.class = Defect_Class"  do 

 Rule.Class := Defect_Class; 
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 Rule.RPattern := best_RPattern   

(Defect_Class, Attrs, Training_set, Constraints); 

 remove from Training_set instances of 

Defect_Class; 

 Rules := Rules. Rule; 

end while 

 

 return instances of Defect_Class to Training_set; 

done 

return Rules 

 

End Generate_DP_Rules 
 

DP_Rule_Set is a set of DP_Rules. 

DP_Rule is a structure with two components: 

 Pattern: DP_ Regression Patterns. 

 Defect_Class: Class value predicted for an instance that 

matches Regression Patterns. 

DP_ Regression Patterns is a combination of DP_terms. 

DP_termare the form attribute–value. 

 

The regression-based learning process has two nested 

iterations. The outer iteration chooses the class-value 

and the inner iteration generates the rule until the class 

is applied. The function "best_RPattern" returns a 

grouping of terms covering merely the instances of the 

present class. The learning process makes use of an 

effortless term assortment through an empirical 

method depend on the probability that an instance will 

have a certain classification specified for a few 

"attribute-value" pairs. 

 

The subsequent terms that are supplementary to a rule 

are terms for choosing the most "positive instance" and 

the "least negative instance". This is specified by the 

relation in the form of "z/s", where s - "is the various 

instances selected by the term", and z - "is the number 

for which they are positive". The condition is 

supplement until the rule choices only positive 

instances. Ensures a group of rules containing all 

instances covered by one or more rules and it is 

consistent for every instance belongs to single fault 

class. 

 

3.2  Regression Rules-Based Defect Prediction 
 

The system depends on the understanding of the large 

constitution of concepts and rules are now consistently 

utilized in numerous purposes. Acquisition of 

knowledge of these systems when modern 

environments take place is an ongoing requirement 

that the interaction between the rules increases the 

complexity of the system.  

The regression rule mechanism creates a bidirectional 

dependency between rules, in order that rule 

establishment is inspected only in the context of 

another rule establishment. If the premise of the parent 

rule is "true" for a particular individual, then the 

conclusion regarding the quality is presented if there 

is no relented. On the other hand, if it is "true", the rule 

and its relented will be examined and the unique 

conclusion will merely be asserted if the premises of 

the establishment are true to the authorized entity. On 

the contrary, if the premise of the parent rule is false 

for a particular individual, this not only cannot claim 

conclusions but if it has a 'false-false' dependency, it 

and its relented will also be tested. 

 

This regression rule forms a binary DT dissimilar from 

the standard DT in that it uses a compound clause to 

determine the branch, and this clause does not have to 

deal with all cases thoroughly to make decisions at the 

inside node. This contrasts with the standard DT where 

all decisions are made at the root node. Nevertheless, 

the utility of the standard DT remains that simply one 

decision node is lively for everyone condition. 

Maintenance is simple because it needs to consider the 

node only and the previous cases that were under it if 

there is a defect in reaching the decision. Extensions 

to regression rules include an extremely simple 

"statistical decision-making" method that generates a 

rule specifically recursively called on the outstanding 

dataset to generate "if-true" and "if-false" rules as well 

as simple and simple rules It is very natural in point.  

 

Defects and predictive analysis are performed utilizing 

regression rules generated in the following steps. 

• First, the most frequent defect is the diagnosis of 

the portion of the data set that takes into account 

the selected target defects. 

• Second, an assertion is initialized to associate the 

defect patterns with the DP_ Regression Patterns.  

• Third, iteratively, each possible attribute value of 

the DP_term permutation is tested with a likely 

regression pattern and selects the finest according 

to the relevant DP_term. 

• Finally, based on the similarity index of the defect 

pattern and the regression pattern, it is determined 

whether to determine the predicted defect 

according to the rule. If it is not predicted, the 

process repeats to the third stage and ends with a 

defect output prediction otherwise. 
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The data structure of the DP_Rule is in a decision tree 

structure where each node has rules for the fault class. 

This structure is interpreted in the form of conditional 

rules for each fault class as, 

 

IF cond1 AND  

cond2 AND ... AND  

condN are True THEN 

 the defect conclusion. 

 

Each "Cond” is an attribute condition for the Boolean 

evaluation. For instance, a defect, D=1, if its depended 

attribute "Cond" is also true. Each individual defect 

node has accurately two "successor nodes", these 

"successor nodes" are related with its "predecessor 

node" through an "ELSE" or "EXCEPT" condition.  

 

An illustration of RA-DP tree which described the 

recursive mechanism to reach the defect class is shown 

below: 

 

IF (DEP_ON_CHILD = "1") THEN 

Child-1: 

 IF (cond1 AND cond2 AND ... AND condN )

 THEN  

DEFECTIVENESS="0" or "1" ; 

Child-2:  

 IF (cond1 AND cond2 AND ... AND condN )

 THEN  

DEFECTIVENESS="0" or "1" ; 

ELSE 

 IF (cond1 AND cond2 AND ... AND condN )

 THEN  

DEFECTIVENESS="0" or "1" ; 

 

3.3  Defect Prediction Analysis 

 

Classification is a process that is utilized to identify 

models that define and categorize an unclassified data 

class or concept of predicting the wrong object class 

whose model is unknown. Definition of proposed 

defect methodology aims to define a class of 

prediction class according to the selected attributes 

and restrictions imposed by the learning process. 

 

The difficulty of deriving empirical DP is utilized by 

specifying the set of possible test conditions in the 

form of "S" for the entity universe of the entity "E" 

whose target predicate is "Q" in the materialized entity 

"E". The intention predicate can be conditional the 

ruleset specifies the evaluation of the test predicate. 

With the intent of statistical regression, the emergence 

of "S" and "Q" is not important. It has to consider "S" 

as an identifier to opt for "e" in the various partitions 

of "E" that require "Q (e)", measure the assortment of 

rules by indiscriminate identification, and the inquiries 

to locate “what is the prospect of the random 

classification of the identical degree of simplification 

would accomplish the similar or better precision” is 

been illustrated in Fig.3. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: DP Confusion Matrix illustration 

 

The illustration of DP confusion matrix in Fig. 3, 

describes the possible predictive instance as False 

Negative (FN) as "Q", or False Positive (FP) as "S"  

from a complete collection of records instances as "E".  

The fraction of relevant instances that have predicted 

as True Positive (TP) is represented as "C" is an 

intersection of instance between the classified "Q" and 

"S". 

 

For example, if a computer program has identified 

with a set of faults as E, and the RA based algorithm 

predicted Q instances as having faults, and others are 

as S. But, form the predicted Q only "x" instances are 

having faults, and from the S instance only "y" has 

faults. So, the C can be as (x+y) or "Q ∩ S" instances. 

According to these defined DP confusion matrix, a 

probability of the defect class will be predicted using 

RA rules. 

 

4.  EXPERIMENT EVALUATION 
 

To evaluate the proposed prediction mechanism it 

implements the method in a WEKA Tool environment  

[21]. It utilizes the data repository of "NASA -Metric 
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Data Program" to perform the comparative analysis 

for the enhancement. The description of the datasets 

and its measures are discussed below. 

 

4.1  Datasets 

 

The data set was taken from the PROMISE repository 

for a NASA project [22] consisting of 12 data sets. The 

data store shows software metrics, which are attributes 

of the dataset, and whether an exact dataset is 

"Defective" or "non-defective". Every dataset consists 

of various software modules (conditions), each one 

includes an equivalent count of defects and diverse 

software attributes code statistic. In subsequent to pre-

processing, one or more faulty modules are labeled as 

faulty. Additional clarification of the belongings of the 

code or the origin of the data set able to found in 

[35].The collection of the datasets consists of 5 project 

data scripts of the "CM1, JM1, KC1, KC2, and PC1".  

It encloses the measurement of the static codes such 

as, "Halstead, McCabe, and LOC", which defines the 

fault of defected codes. The description of these 

datasets is presented in Table1. 

 

Table 1: Datasets Description 

Project Source 

Code 

Description 

CM1 C NASA spacecraft instrument 

KC1 C++ 

Storage management for 

receiving/processing ground 

data 

KC2 C++ 
Science data processing. No 

software overlap with KC1 

JM1 C 
A real-time predictive ground 

system 

PC1 C 
Flight software for earth-

orbiting satellite. 

 

Every dataset has 21 software product parameters, 

based on the various measurements such as, "size", 

"complexity", "vocabulary", etc., of the product. The 

class attribute of each data set is considered as 

"TRUE", if the module has various defects, and 

"FALSE" if it’s non-defective. 

 

4.2  Performance Measures 
 

Performance is measured according to the confusion 

matrix given in Table2, which is utilized by many 

researchers as in [35-36]. It shows confusing matrices 

for two-class problems with positive and negative 

class values. 

 

The software DP performance of the proposed RA-DP 

along with existing classifiers are measured for the 

"Accuracy", "Sensitivity", and "Specificity" for the 

evaluation. 

 

Table 2: Confusion Matrix 

Actual Class 
Predicted Class 

Defective Not Defective 

Defective True Negative (TN) False Positive (FP) 

Not 

Defective 
False Negative (FN) True Positive (TP) 

 

• Accuracy determines the percentage of DP that 

are "correctly classified". 

 

        Accuracy =  
�����

�����������
  

 

• Sensitivity determines the percentage for the 

“positive classified" instances that predicted as 

"positive". 

 

         Sensitivity =  
��

�����
  

 

• Specificity determines the percentage for the 

“positive classified" instances that predicted as 

"negative". 

 

         Specificity =  
��

�����
  

 

4.3  Result Analysis 

 

To compare the results with the best classifier for the 

prediction, such as "Naive Bayes", "OnerR", "J48", 

and "RIDOR" To analyze the improvement of the 

proposal by comparing the results of the classification 

program execution of the WEKA Tool on the collected 

datasets. The comparative performance of the 

accuracy, specificity and sensitivity results of the 

proposed RA-DP is shown in Tables 3-5 and Figs. 4-

6, respectively. 

 

4.4  Accuracy Analysis 
 

The proposed RA-DP shows an improvement in the 

Accuracy value in comparison to existing classifier 

expect with the CM1 datasets. An average of 10% 
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enhancement in the accuracy being achieved as shown 

in Fig.5.  

 

 

 

 
Fig.4: Accuracy Comparison 

 

 
Fig. 5: Sensitivity Comparison 

 
Fig. 6: Specificity Comparison 

 

In the case of both sensitivity and specificity measure 

also it shows an improvement. The measure of 

sensitivity and specificity show the efficiency of the 

probability of detection of classifiers. The detection of 

the RA-DP utilizing the regression rules makes to 

predict defect accurately and enhance the sensitivity 

and specificity of the proposal. 

 

As it was known that most software development 

needs the best quality and reliability development. 

But, in case of real-time scenario, a defect-prone 

module highly affects the cost, time and resources. So, 

an early prediction of defect quite useful in reducing 

the wastage of the resources. The practices in the 

effective defect prediction classifier are successfully 

applied. The proposed RA-DP clearly demonstrate the 

usage of a classifier in defect prediction through RA. 

The obtained results in terms of accuracy, sensitivity, 

and specificity show the impact of the proposal. The 

statistical analysis among the classifiers justifies the 

significance of metrics evaluation in the software 

defect prediction to improvise the quality design and 

coding development.  

 

The variety of learning algorithm has a different 

impact on prediction since defect prediction is very 

important in finding a noble balance in designing. So, 

the RA-DP provides an RA based learning with a close 

correlation analysis among the attributes to provide a 

better impact on the defect prediction in future 

software development. As in Table3 shows, RA-DP 

has better accuracy improvisation in comparison 

among the existing classifiers. The role of classifiers 

in defect prediction is being learned in the past. Since 

every classifier has a different approach for learning 

and prediction makes the variation in result.  

Table 3: Accuracy Results 

Methods 
Prop. 

RA-DP 
OnerR RIDOR 

Naive 

Bayes 
J48 

CM1 94.17 91.56 91.36 84.93 91.56 

KC1 80.65 79.77 80.65 80.42 80.65 

KC2 85.49 84.4 84.54 84.63 84.54 

JM1 83.33 79.5 79.5 83.52 79.5 

PC1 94.86 90.89 93.41 89.54 93.41 

Table 4: Sensitivity Results 

Methods
Prop. RA-

DP 
OnerR RIDOR

Naive 

Bayes 
J48 

CM1 0.922 0.92 0.91 0.85 0.92 

KC1 0.807 0.8 0.81 0.80 0.81 

KC2 0.850 0.84 0.85 0.85 0.85 

JM1 0.814 0.8 0.8 0.84 0.8 

PC1 0.940 0.91 0.93 0.90 0.93 

Table 5: Specificity Results 

Methods Prop. RA-

DP 

OnerR RIDOR Naive 

Bayes 

J48 

CM1 0.851 0.831 0.827 0.70 0.831 

KC1 0.652 0.596 0.613 0.61 0.613 

KC2 0.723 0.688 0.691 0.69 0.691 

JM1 0.666 0.59 0.59 0.67 0.59 

PC1 0.883 0.818 0.868 0.79 0.868 
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4.5  Sensitivity and  Specificity Analysis: 

 

The better accuracy with an average sensitivity 

comparison as in Table-4 and better Specificity as in 

Table 5 make it more beneficial in current software 

defect prediction. The sensitivity results in comparison 

to the different prediction classifiers as shown in Fig. 

5 suggest an improvisation of ~ 2% in the positive data 

prediction. It shows an average 1% better in 

comparison to CM1 and PC1, and almost similar 

results in comparison to KC1, KC2, and JM1.  

Whereas, Fig. 6 shows the specificity comparison 

results. It shows an improvisation of ~3% in terms 

specificity measures. In shows an average of 2% better 

specificity with CM1,  3% with KC1, KC2, 5% with 

JM1 and PC1. 

 

5.  CONCLUSIONS 
 

Finding and fixing defects makes it simpler for 

developers to comprehend the program. In order to get 

better, the competence and excellence of software 

development are able to obtain the benefit of data 

mining techniques for analysis and predict a big 

numeral of defect data assemble in software 

development. This paper presents a regression-based 

defect prediction (RA-DP). The designed system 

implements defect prediction utilizing a learning 

method and RA-rule by RA. The learning method 

creates rules with two exception types that are easy to 

understand and automatically find search rules, so the 

designer does not have to do that physically. A rule is 

characterized as an arrangement of attributes that 

enhanced to fits in known cases of design flaws. The 

experimental analysis illustrates improved 

performance in defect prediction evaluated to the 

existing classification methods. 

 

6.  FUTURE WORK 
 

In future improvement, the RA-DP can be considered 

for the variant model in the software development for 

improvising non-functional software defects. In 

support of the real-time need, it can be used for 

runtime defect prediction or as a tool to extend the 

software quality development process. 
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