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ABSTRACT 

This paper describes the implementation of a computationally efficient embedded system on an Field 

Programmable Gate Array (FPGA) platform for real-time brain activity estimation with multiple channels. 

The brain signals from multiple channels are considered as output of independent linear systems with unknown 

parameters representing the brain activity in corresponding channels. Multiple adaptive Recursive Least-

Squares Estimation (RLSE) cores are implemented in FPGA to independently estimate the brain activity in 

each channel concurrently. The proposed RLSE-FPGA system provides dedicated (no time or resource 

sharing) and parallel processing environment. The universal asynchronous receiver transmitter core is also 

developed to communicate the measured and estimated parameters supported by storage facility programmed 

as shared memory. The computational precision is guaranteed by deploying a 32-bit floating point core for all 

the variables. The validation carried out by real Functional Near-Infrared Spectroscopy dataset and 

comparative analysis with the previously reported result, demonstrates the effectiveness of the proposed 

system. The computational cost endorses the effectiveness of concurrent processing of multiple channelsꞌ data 

in a sample before the arrival of the next sample. The proposed methodology has potential in real-time medical, 

military and industrial applications. 
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1.  INTRODUCTION 

 
unctional Near Infrared Spectroscopy (fNIRS) 

monitors the brain activity by measuring 

variation in the absorption of near infrared light 

in brain tissues. It is non-invasive technology that uses 

the variation in infrared light of wavelength 650–950 

nm to monitor the brain activity [1]. The variation in 

absorption of infrared light is directly related with the 

concentration of Oxygenated Hemoglobin (HbO) and 

Deoxygenated Hemoglobin (HbR) in brain tissues. As 

subject is involved in performing cognitive tasks, the 

concentration of oxygenated and deoxygenated 

hemoglobin varies in brain tissues, these variations are 

then measured by fNIRS techniques. In recent years, 
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many researchers have used fNIRS technique to 

investigate for biomedical and Brain-Computer 

Interface (BCI) applications [2-5]. Non-invasive 

feature of fNIRS, makes it attractive to utilize it for 

brain imaging (BI) and BCI. In reference to BCI 

techniques, fNIRS offers several benefits over other 

non-invasive technologies, like functional magnetic 

resonance imaging (fMRI) in terms of better temporal 

resolution, cost and computational efficiency. The 

fNIRS offers good spatial resolution and noise 

immunity against electromagnetic interference, when 

it is compared to Electroencephalography (EEG) 

technique.  

 

Studies  have  been  carried out  to  investigate for the  

F 
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possibility of a fast fNIRS response [6, 7]. The 

averaging of multiple trials besides burdening the 

computational cost limits the use especially for an 

online environment. In recent years, works have been 

reported for recursive estimation of brain activity as 

coefficients of a linear system by the RLSE algorithm 

[2-4], and by a Kalman Filter (KF) [3, 8]. These 

methodologies, having potential of being utilized for 

real-time applications, were validated online in a time 

sharing environment by a sequential processing 

strategy of each channel. The online results provide a 

fast (compared to an offline) solution to the 

experimental investigation. But the outcome of each 

sample of multichannel brain data cannot be ensured 

before the occurrence of the next multichannel sample. 

As a consequence, the delay between the occurrence 

of a sample and its processing grows. Accumulation in 

this latency drags the online processing away from the 

real-time results.  This is a swear issue for event 

related real-time studies, e.g., BCI and BI for 

rehabilitation and gamming, etc. A real-time solution 

would be having the potential for complex, 

multichannel, and multitasking BCI studies [9,10]. 

 

The RLSE is used as adaptive filter that is meant to 

estimate the model iteratively [2-4, 11]. It is 

advantageous over other iterative algorithms: E.g., fast 

convergence compared to least mean square filtering 

and computational efficiency over KF. The RLSE 

exhibits extremely fast convergence due its second-

order nature and consistently performs to a higher 

accuracy than the other iterative algorithms [12]. 

 

Reprogrammable hardware attracted a growing 

interest of researchers for the obtainment of enormous 

gain in speed and saving of energy besides its 

capability to be reprogrammed to desired application 

or functionality requirements after deployment [13-

16]. The ease of providing parallel processing 

environment makes FPGA a high performance 

computing hardware for real-time processing of 

multichannel (multi-input, multi-output) systems [17], 

[18]. An FPGA required minimum expertise of a 

Hardware Description Languages (HDL; e.g., Verilog 

or VHDL) to program it. Third party software (like 

MatLab) introduced HDL code generator to convert 

the scientific coding into an HDL code for FPGA 

deployment [19]. Recently, the FPGA vendors 

presented an open computing language (OpenCL) [20] 

to get two-fold benefits: (i) A generalized coding 

environment for different vendors' FPGAs, and (ii) 

Abstract (high-level) coding environment for an 

FPGA. Although the programming of an FPGA by this 

high level language/software significantly reduces the 

development time compared to the traditional low-

level languages (e.g., Verilog or VHDL) but results in 

significantly under-utilizing the computing 

capabilities of the device [21]. Thus, a trade-off exist 

between ease of coding and optimized coding. 

Researchers are focusing on investigating appropriate 

optimizers with the high-level software to reduce this 

trade-off [21]. 

 

The current study is aimed to provide a hardware 

solution for the estimation of brain activity, modelled 

as coefficients of a linear recursive model, in real-

time. For this purpose, the RLSE algorithm [2-4, 11] 

is implemented on a Field Programmable Gate Array 

(FPGA) platform. Its multiple cores are instantiated to 

process multiple channels’ data of a sample 

simultaneously. A communication core is 

implemented to receive the sampled data serially (with 

RS-232 protocol) and place it as global variables. Each 

RLSE core is signaled by the communication core 

once its liable data is received and tapped at the 

designated place. Upon completion of each RLSE 

process, the computed parameters are transmitted back 

in real-time for display purposes. The proposed FPGA 

based embedded environment provides the parallel 

processing of multiple channels in a sample well 

before the arrival of the new sample. Thus, ensures the 

actual real-time processing of brain signals. The 

computational efficiency of the proposed system is 

described with quantitative details. On the basis of 

which, the sampling frequency of the imaging 

modality is aided for real-time processing of multiple 

channels. The entire methodology is realized on an 

FPGA kit (Spartan-6 LX150T) and validated with an 

fNIRS dataset. A t-statistics is formed to signify the 

results. A t-score based interpolated brain activation 

map is draw over the range of the channels. The 

accuracy of the obtained results are compared with the 

previously reported offline and online results.  

 

This paper is organized as follows: Materials and 

methods    section     provides     the    modelling   and  
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estimation theory of the activity parameters. It further 

provides the FPGA implementation and 

computational efficiency for the targeting estimation 

theory. The subsequent section covers the Results and 

Discussion of proposed embedded system realized as 

octal-core on an FPGA platform, which follows the 

concluding remarks. 

 

2.  MATERIALS AND METHODS 
 

Block diagram of the proposed RLSE-FPGA 

embedded system is shown in Fig. 1. The brain 

signals, modeled as the coefficients of a linear model, 

are measured in real-time and received into the 

platform along with the modeling regressors. The 

platform stores the data sample to a shared memory 

and inform the RLSE cores to start the estimation task. 

Upon completion, the RLSE cores intimate the 

transmitter to send the estimated parameters for 

display purpose. The descriptive detail of each block 

is provided in the following subsections.   

 

 
Fig. 1:  Schematic Diagram of Fnirs-RLSE Brain 

Activity Estimation for a Single Channel 

 

2.1: Brain Activity Model  

 
A linear brain activation model with coefficient 

representing the brain activity is considered as [2-4] 

 

 y ��k� � x	�k�β	
� �k� � x��k�β�

� �k� ⋯ �

x��k�β�
� �k� � ε� �k�, (1) 

where k is discrete sampling time instant, y ��k� is the 

brain signal acquired from i-th channel (i � 1,2, … , N) 

at k sampling instant, �	
 ���, x�

 �k�, …, x�
 �k� are the 

k-th samples of p regressors, β	
� �k�, β�

� �k�, … , β�
� �k� 

are the coefficients of corresponding regressors 

representing their strength in channel i at k sampling 

instance, and ε� �k� is the Gaussian noise with zero 

mean. Equation (1) can be rewritten in vector form as 

 

 y ��k� � �� �k��� �k� � ε� �k�.    (2) 

 

The estimation method and its deploying hardware 

will decide the accuracy, precession, and speed of the 

modelled activity parameters. 

 

2.2. RLSE Estimation of Activity         

       Parameters  
 

For each value of input and output at discrete time 

instant, RLSE recursively estimates the coefficients of 

an adaptive filter. In our case, the RLSE estimates the 

optimal values of ��k� of a measured channel by 

minimizing the following cost-function, 

 

V��β , k� �
	

�
λ��� ∑ !e��j�$��

�%	 ,                       (3) 

 

where &' is the estimation error and ( is the forgetting 

factor whose value can be varied from 1 to 0 to rely on 

recent measurements more than the previous ones. The 

estimation error at time instance k is given by, 

 

e��k� � y��k� ) ��k�����k ) 1�.                      (4) 

 

Solving for minimizing the cost-function in (3), new 

set of equations are obtained as in [2-4, 11] 

 

+�k� � ,�k ) 1���k��λ � ���k�,�k )
1���k���	, (5) 

 

���k � � ���k ) 1� � +�k�e��k�,   (6) 
 

,�k� � -,�k ) 1� ) +�k����k�,�k ) 1�./λ,   (7)  
 

where +�k� ∈ ℝ� is known as weighting vector and 

,�k� ∈ ℝ�2� is  the recursive  inverse  of  the  input  

covariance matrix. The above mentioned RLSE 

equations (4)-(7) recursively estimate the optimal 

values of ��k� for a single channel. For multichannel 

estimation, multiple RLSE processes are needed to 

workout independently, as illustrated in Fig. 1. Thus, 

it becomes the responsibility of the implementing 

hardware to provide independent processing, precise 



FPGA Implementation of RLSE Algorithm for Multichannel Brain Imaging 

Mehran University Research Journal of Engineering  and Technology, Vol. 40, No. 1, January 2021 [p-ISSN: 0254-7821, e-ISSN: 2413-7219] 

 

244 

 

estimation, and fast (without latency: processing of the 

last sample before the arrival of the next sample) 

environment.  

 

3.  PROPOSED HARDWARE 
 

Field programmable gate arrays are reprogrammable 

semiconductor devices based on configurable logic 

blocks. These logic blocks can be programmed in any 

configuration to perform desired arithmetic and 

logical operations through programmable 

interconnects. Nowadays, the Matlab based high level 

coding is advantageous for user prospective [19]. But 

the Matlab converted verilog/VHDL code is 

generalized in nature and is not optimal [21]. Such 

implementation uses more resources and introduces 

computational complexities as compare to the same 

algorithm implemented with low level Verilog/VHDL 

coding. Unlike microcontrollers and digital signal 

processors where the execution of the code is 

performed sequentially amongst the channels' 

estimation, FPGA provides the concurrent and order 

independent execution of different core instances. This 

approach drastically reduces the computational time.  

 

The lower (near to machine) level coding of 

programmable interconnects of an FPGA is not easy 

especially for a real-time interfacing with high density 

data computations. But the FPGA platform is 

preferred owing to its concurrent, order independent, 

and fast performance. Furthermore, the coding based 

re-configurability is advantageous for further 

advancement of the design in future. A block diagram 

of the proposed FPGA based system is shown in Fig. 

1. The fast processing speed of the FPGA along with 

the low level programing methodology reduces the 

computation time of an RLSE core. Multiple RLSE 

cores process multiple channels simultaneously and 

elevate the computational efficiency.  

 

4. IMPLEMENTATION OF  

    EMBEDDED RLSE FPGA 

 

This section describes the hardware considerations of 

FPGA platform for the targeting blocks: a serial 

receiver core, N RLSE cores, and a serial transmitter 

core. The communication interface is defined for two 

single precision 32 bit data inputs X�k� ∈  � � and 

y�k� ∈  � 	2 4 by RS232_RXD, and an output β�k� ∈

 � �2 4 by RS232_TXD. Whereas RS232_RXD and 

RS232_TXD provides single bit serial receive and 

transmit interfaces, respectively, based on standard 

RS-232 protocol. The communication is facilitated by 

RESET and CLK as controlling inputs while LED[7:0] 

as status indicators. To make a serial interface 

compatible with universal asynchronous receiver 

transmitter (UART) protocol, a CLKX is opted for a 

desired baud-rate of 115200 bps. The receiver 

CLK16X is defined 16 times faster to avoid the bit 

error of the receiving data. Receiver module uar_top 

receives N channels' sampled dataset y�k� ∈  � 	2 4 

followed by the regression vector X�k� ∈  � � and 

generates start signals rls_starti �for i � 1 to N�. 

Upon receiving the start signals, the RLSE cores 

initiate the processing to compute activity parameters. 

Finally, these cores generate rdy2_i �for i � 1 to N� 

signals for the transmitter core uat_top to transmit the 

computed parameters β�k� ∈  �  �2 4 for real-time 

presentation. The rdy_i �for i � 1 to N� signals, 

connected with LEDs, are used as test points to verify 

RLSE cores' computations. A typical realization of the 

proposed system for eight channel (N=8) is provided 

in Fig. 2, only selected elements are shown. An RS-

232 based UART module is instantiated in top level 

module including two cores:  (i) uar_top to receive the 

data inputs, and (ii) uat_top to transmit back the 

estimated parameters. The received data is stored in a 

memory, not shown in Fig. 2 for simplicity of 

illustration, and shared to all RLSE cores deployed in 

FPGA. Though a single RLSE core is shown for 

simplicity, the complete port list for multiple RLSE 

cores, working simultaneously, can easily be seen 

from Fig. 2. 

 

5. COMPUTATIONAL EFFICIENCY 

 

The computational efficiency of the proposed 

embedded system is assessed for a real-time sample. 

For a baud-rate of 115200bps, the bit communication 

time is 8.6805 µs and the transmission time for a single 

precision parameter (4 bytes × 10 bits/bytes = 40 bits) 

is 0.347 ms. A receiving sample of the dataset consists 

of p parameters of regression vector X(k) and one 

measured (HbO/HbR) parameter each for N channels. 

Whereas, transmitting sample consists of p estimated 
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parameters, β	�k�, β��k�, … , β��k�, each for N 

channels. Thus, total time consumed in 

communicating data of N channels is summarized in 

Table 1.  

 

 
Fig. 2: RTL Schematic of the fNIRS-RLSE Embedded 

System Implemented in FPGA (Selected    

Elements Shown) 

 

Table 1: Communication Time Summary With 

Different Number of Channels Implemented on 

FPGA with p � 4 

Number of RLSE Cores 
Communication Time 

(ms) 

N-Core !p �  �p � 1�N$ × 0.347 

Single core 3.123 

Dual-core 4.858 

Quad-core 8.328 

Octal-core 15.268 

 

6.  FNIRS DATASET FOR        

     VALIDATION 
 

The validation of the proposed methodology is carried 

out by utilizing the block-design finger-tapping data 

made available by Ye et al. [22]. The fNIRS signals 

were measured from the left motor cortex at 24 

locations, Fig. 3 shows the channels' configuration. 

The behavioral protocol consisted of an initial 42 sec 

for signal equilibrium followed by ten repetitions of 21 

sec right-index-finger-tapping alternated with 30 sec 

rest periods. The Oxymon MK III, Artinis instrument 

was used to acquire the fNIRS data with a sampling 

rate of 9.75Hz (sample time of 102.6 msec). The 

availability of the complete dataset provides 

controllability of the imitated sampling rate to verify 

the speed of the computations of the system under test. 

 

 
Fig. 3:  Configuration of 24 Channels Covering the 

Left Motor Cortex for Right-Index-Finger-Tapping 

Task [22] 

 

7.  RESULTS AND DISCUSSION 

 

For convenient comparison with the previously 

reported results, four regressor functions (@ � 4) have 

been used [2, 3]. To model brain activity for a 

cognitive task, �	
  is taken to be the Hemodynamic 

Response Function (HRF) of the experiment with ��
  

and �A
  are the delay and dispersion derivatives of �	

 , 

respectively, while �B
  is taken as unity to counter the 

offset.  

 

7.1. Typical Realization of FPGA-RLSE System  

 

The validation is carried out by realization the 

proposed FPGA-RLSE system on Spartan-6 LX150T 

FPGA development platform for eight channels 

(N=8).  The eight channels are concurrently processed 

by eight RLSE cores at the available CLK speed of 100 

MHz. Top level RTL schematic of the selected 

elements is shown in Fig. 2. At the beginning, the 
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receiver core receives the regression vector X�k� 

which would be common to all the channels for model 

driven approach. Then receiver core receives the NIRS 

measurement y�k� for channel 1 and generates 

rls_start1 while receiving the measurements of 

channel 2. This enables RLSE core 1 to start its 

processing promptly. Similarly, each of the eight 

RLSE cores is interrupted by its respective start signal 

once its dataset is being completed. Likewise, when 

the first RLSE core finishes its processing, it generates 

the ready signals: (i) rdy2_1 for transmitter core to 

send the computed parameters serially, and (ii) rdy_1 

to indicate the task completion on LED0. Similarly, 

the other RLSE cores will respond to the transmitter as  

soon as their parameters are ready to be transferred. 

This approach reduces the computation time further 

even with a serial interface.    

 

The stated hardware aspects described above are 

programmed on the FPGA platform by Verilog HDL. 

The device utilization summary of the platform is 

described in Fig. 4 as obtained in ISE Design Suit 14.2. 

The implemented system processes eight channels 

concurrently in 1.32 µs. It is worth mentioning that 

more than eight RLSE cores will take the same 

processing time because they will be working in 

parallel. 

 

Device Utilization Summary 
 

 

Fig. 4: Device Utilization Summary of Spartan-6 Lx150t for the fNIRS-RLSE System Implemented for 8 Channels 

 

7.2   Real-Time fNIRS Estimation 

 

A User-friendly graphical User Interface (GUI), 

shown in Fig. 5(a) is made on PC to effectively 

interface the fNIRS data in real-time with the proposed 

RLSE-FPGA system. Intially the Connect/Disconnect 

option checks the availability  of the system for 

connection or disconnect the link. Once available, the

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 19,602 184,304 10% 

Number used as Flip Flops 19,530   

Number used as Latches 8   

Number used as Latch-thrus 0   

Number used as AND/OR Logics 64   

Number of Slice LUTs 51,729 92,152 56% 

Number used as logic 51,355 92,152 55% 

Number using O6 Output only 39,474   

Number using O5 Output only 695   

Number using O5 and O6 11,186   

Number used as ROM 0   

Number used as Memory 0 21,680 0% 

Number used exclusively as route-thrus 374   

Number with same slice register load 65   

Number with same slice carry load 309   

Number with other load 0   

Number of occupied slices 16,397 23,038 71% 

Number of MUXCYs used 20,288 46,076 44% 

Number of LUT Flip Flop pairs used 53,308   

Number with an unused Flip Flop 35,796 53,308 67% 

Number with an unused LUT 1,579 53,308 29% 

Number of fully used LUT-FF pairs 15,933 53,308 29% 

Number of Unique Control Sets 248   

Number of Slice Register Sites Lost to Control Set 

Restrictions 

470 184,304 1% 

Number of bounded IOBs  12 396 3% 

Number of LOCed IOBs 9 12 75% 

Number of RAMB16BWERs 0 268 0% 
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Start/Stop button initiates/inhibits the real-time 

process by sending/stopping the data. The data is sent 

sample-by-sample with a predefined sampling rate. 

The Iteration_Number indicates the number of the 

under processing sample. After reception in PC, the 

estimated brain activity parameters, ��k�, of each 

channel is saved in the local drive besides plotting the 

channels' HRF coefficients β	
� �k� (for i � 1 to 8) only 

along with the estimated outputs for quick 

interpretation of the results. The HRF regressor is 

plotted alongside for reference. The results of two 

distinguished channels are plotted in Fig. 5(b-c) for 

elaboration.  

 

An interpolated t-statistics based brain activation map 

is drawn, illustrated in Fig. 6, by using the 

methodology of Aqil et al. [2,3]. Although the map is 

drawn over the range of 24 measuring channels for 

comparative analysis but the t-scores of only first 8 

processed channels are utilized by keeping the 

remaining channels at non-active values. The brain-

mapping template (left lateral view) was depicted 

using the open-source software NIRS-SPM that was 

made available by Ye et al. [22]. It is apparent from 

Fig. 5-6 that the brain activity parameters obtained in 

real-time are (i) in accordance with the offline results 

in Ye et al. [22] and (ii) consistent with the online 

results presented in Aqil et al. [2] with the same 

dataset (Comparative analysis may be carried out with 

other FPGA implementations related to the field: No 

such implementation within the targeted BCI field). 

Same results in comparison with a non-real-time but 

precision environment proves the obtainment of 

desired accuracy of the manually implemented data 

format and their handling (mathematical operations 

and communication). The proposed FPGA-RLSE 

system offers beneficial BCI and BI applications in 

real-time including prompt medical diagnostics and 

therapeutics.   

 

7.3.  Computational Cost of Octal Core FPGA- 

        RLSE  
 

Considering the bit size of the parameters for octal 

core realization, the twelve parameters were received 

in the FPGA in 4.164 msec. The activity parameters 

were estimated by the octal RLSE cores concurrently 

in 1.32 µs. In return, the four activity parameters each 

for eight channels (4 × 8 = 32 parameters) were 

transmitted from the FPGA in 11.104 msec. Thus, the 

total time consumed to process a sample of 8 channels 

was 15.269 msec, which is much lower than the 

sampling time of a typical fNIRS datasets (in the order 

of 100 ms). Although, the proposed embedded system 

has faster sample processing rate than the usual 

sampling rate of an fNIRS modality, the sample 

processing rate can be made much faster by reducing 

the communication time by switching from serial (RS-

232) to fast protocols (e.g., USB, Ethernet etc.). It is 

worth mentioning that the processing time of the 

proposed fNIRS-RLSE realization is very small as 

compared to the time consumed in communicating the 

parameters. The processing time still can be reduced 

further by realizing the proposed system on a fast 

clocking FPGA platform.  

 

Currently, the FPGA platform transmits the estimated 

brain activity parameters to a PC for storage in a file 

besides real-time plotting. The real-time visualization 

of the results can be facilitated in FPGA by 

implementing a video graphic adapter (VGA) or high 

definition multimedia interface (HDMI) core on 

FPGA. Once introduced, the VGA/HDMI core can 

further be advanced to display brain activity on an 

anatomical brain template for effective brain imaging 

applications. 

 

11. CONCLUSIONS 

 

An embedded RLSE-FPGA system is provided for 

real-time brain activity estimation. Brain activity of 

multiple channels, coefficients of independent linear 

models, are estimated by concurrent RLSE cores 

implemented in an FPGA platform. The interfacing of 

the RLSE cores for (i) measuring and modeling inputs, 

and (ii) estimated activity outputs are facilitated by 

UART interface and FPGA memory. A 32-bit floating 

point core is deployed to provide computational 

accuracy. The real-time processing is ensured by 

assessing the computational cost of the proposed 

RLSE-FPGA system. The demonstration is carried out 

by an octal core realization at Spartan-6 LX150T 

platform validated by real fNIRS dataset. The 

proposed system has potential real-time BCI and BI 

applications.  
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Fig. 6: Brain Activation Map over the range of First 8 Channels Drawn Covering the Left Motor Cortex for Right-

Index-Finger-Tapping Task 
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