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ABSTRACT

LPV (Linear Parameter Varying) system is an important class of system, as it covers many physical
systems. In the existing design theory related to control system, the major part is related to linear and
non-linear systems. However, the LPV system is getting prominence and hence is an attractive area of
research. Control issues linked with LPV systems are an emerging area of modern research. To
investigate the control of this predominant class, the idea of observer design has been carried out in this
article. In this paper, an observer based on RKF (Routine KalmanFiltering) scheme and LQR (Linear
Quadratic Regulator) is employed for a set of linear parameter variations. The state and gain matrices
are scheduled using an interpolation method, which is linear according to each parameter and is expected
to be non-linear globally. For stability of observer, bound on rate of parameter variation is imposed. For
simulation purpose, a real life case study of Boeing-747 is adopted. The proposed scheme is implemented
for the stated LPV system. All the associated states of the system are examined with and without observer.
Results obtained in this work show better performance as manifested by errors. Error in measurement
is much reduced by employing this scheme. Short-listed features are presented in this paper to comprehend
the performance of observer.

Key Words: Observer, Linear Parameter Varying System, Linear Quadratic Regulator and
Kalman Filter.

†Corresponding Author (E-Mail:Engr.wasiullahkhan@gmail.com)
*Department of Electrical Engineering, University of Engineering & Technology, Peshawar.

inputs and noisy measurement data [2]. Though,
abstraction of factual system data from measurements with
noise due to sensors is the key goal of the Kalman filter [3].
Towards this end, the sensor readings are used to compute
the minimum mean square error estimate of the system state.
There are several estimation methods which are capable
for linear, LPV and nonlinear systems. Observer design for
LPV systems is overgrowing field of modern research due
to its wide applications.

1. INTRODUCTION

State estimation has remained a vast area of
research in control and communication system
engineering. When the data signal overlaps with

the noise signal, ordinary filtering schemes fail to cope the
filtration and hence, state estimation comes into being.
Perhaps the best known tool for state estimation of LTI
(Linear Time Invariant) systems is Kalman filter [1].
However, it depends heavily on perfect knowledge of the
system dynamics, information of unmeasured stochastic
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LPV system is an emerging class of modern research era.
It covers a wide range of systems, including UAVs,
turbofan engines, missiles, which are most common
applications of LPV systems. There is a considerable
research work on LPV observer designs [4-10] and also
on LPV control using various type of controllers [11-13].
Many results of stability using gain scheduling methods
have been shown [14-15], in addition Kalman type
realization of LPV system is used in [16]. Frequently, in
nonlinear case, the observers and/or controllers designs
are based on transformation of the system’s canonical
form, but the design of such a transformation can be an
obstruction in practical scenario. This short coming
persuade the application of LPV systems scheme [17]. In
some standpoints due to uncertainties (unidentified
parameters and/or disruption) the design of a typical
observer, merging in case of no noise to the true value of
the state, is problematic [17]. An efficient way to formulate
an LPV model by adding linear models obtained at various
conditions [18], which will cover the variation in dynamics
of a system. Apart from the above mentioned applications,
another common applied area for LPV systems is
aerospace problems. Perhaps the recent work on
computation for LPV system’s states, is application of
EKF (Extended Kalman Filter) which is a nonlinear
approach [19-20], but it bears the complexity of
nonlinearity. In this research contribution a sub-optimal
observer dependent on standard MMSE (Minimum Mean
Square Error) scheme, LQR and interpolation is employed
for a set of linear parameter variations. The state and gain
matrices are scheduled by using an interpolation method,
which is linear according to each parameter and is expected
to be non linear globally. The employed observer gives
appreciable results. Designed observer is implemented
for a case study of Boeing 747, which is an LPV system.

The LPV model is taken from [18] and the state and gain
matrices are scheduled by using an interpolation method.
For stability of observer, bound on rate of parameter

variation is imposed. A numerical example of LPV system
is taken from [11], for which the designed observer is
implemented. This research work is a linear approach
towards control design of LPV system, which avoids the
complexity of nonlinearity. The proposed scheme is also
expected to be efficient from computational point of view.
Results obtained are acceptable as presented in section
6.2.

This research contribution is coordinated as follows.
Section 2 describes a generalized form of the LPV model.
Section 3 presents LPV system with process and
measurement noises. Section 4 proposes structure of
observer for LPV systems. Section 5 presents the basic
derivation involved in obtaining state matrix using RKF.
Section 6 describes design state feedback controller to
get gain matrix for each parameter. Section 7 shows Boeing
747 series 100/200 as a true life example and simulation
results with and without employment of proposed
observer. Section 8 concludes the paper with emphasis
on main topics.

2. LINEAR PARAMETER VARYINGSYSTEM

In this section, a very brief discussion has been provided
for LPV system; initially a generalized format followed by
an LPV system subjected to Gaussian noise.

2.1 Generalized Linear Parameter Varying
System

LPV systems are basically linear systems whose dynamics
vary linearly with a time varying parameter, say (k). In
normal routine, parameter itself may be time-varying but
it must have specific bounds [18]. In other words,
(k)(k)(k) where (k) is a set with specific bounds.
The parameter (k) may or may not be the states of the
system. The LPV system presents a specific behavior at
lower bound(s) of linearly varying parameter, while another
distinct aptitude at upper bound. A generalized LPV
system with varying parameter (k) can be represented
as:
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In the Equation (1) A((k)): Rs Rnxn, B((k)): RsRnxm,
C((k)): RsRpxn, and D(q(k)): RsRpx1, are parameter
dependent system dynamics, x(k): RsRnx1, u(k): Rs

Rpx1, y(k): RsRpx1 represent state of the system,
deterministic input and defined output of the above
mentioned system respectively. The factor of  A((k)),
B((k)), C((k)) and D((k)) are polynomials of the
parameter (k) which have specific bounds. Hence
varying the system parameters (k), the respective system
matrices also vary due to variation in its elements. The
elements of these matrices are functions of that varying
parameter. The following assumptions are made.

Assumption-1: Each parameter i ranges between known

external values  iiki  ,)(   and 0,0  ii  [16].

Assumption-2: The rate at which each parameter i(k)

varies is limited by known upper and lower bounds i.e.
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2.2 System Model with Gaussian Noise

It is hard to imagine, a system free of interruption (noise,
disturbance, etc.) in practical scenario. There may be
various situations where these unwanted signals may
not be avoided. There may some noises like Gaussian,
colored etc or it may be certain faults. The interrupted
version of the above mentioned LPV system would have
the following dynamics.
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In the above model, v(k)k: RsRpx1 andw(k)k: RsRnx1 are
measurement noise and process noise vectors
respectively. The two noises may be of various formats

and types, depending upon different scenarios. For
simplification purposes, these noises are assumed to be
white Gaussian, uncorrelated, having mean equal to zero
and a covariance matrices which are bounded as w(k) 
N(0,Qk), and v(k)  N(0,Rk) Qkin which Qk and Rk are matrices
showing the covariance. In addition, noise process is
uncombined covariance given by:
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where QRnxn, SRnxp and RRpxp.
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For other type of noise, the interested readers are referred
to literature. Since the core objectives of the manuscript
is to design and complete LPV matrices using interpolation
scheme, the two noises are assumed to be simpler. In the
next section proposed observer design is presented.

3. PROPOSED OBSERVER FOR LPV
SYSTEMS

Consider the representation of LPV model
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where A0, A1,…AK, B0, B1…BK are known matrices and i

is a time varying parameter. The parameter vector (k) has
been considered to be bounded in a Hyper-rectangle
having 2K vertices such that
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(6)

where 
i
  is the ith vertex of hyper-rectangle. Similarly the

rate of variation of this parameter 
i
 is bounded to upper

and lower limits and it belongs to other hyper rectangles
as defined by the following set of vertices [16].

(7)

In the manuscript emphasis has been made to achieve a
sub optimal observer that would estimate the state of the
defined LPV system, provided that the assumptions are
fulfilled. In other words, a linearly parameter varying gain
matrix is investigated that can estimate the state(s) sub
optimally. The reader may wonder of the word sub optimal,
but the fact is that generalized LPV poses infinite
collection of systems upon varying parameter i(k).
However, the authors assume that the defined bound,
variation and rate of variation of i(k) would lead to finite
linearly varying system denoted by Equation (1). In this
case, the assumed system would lose the actual trajectory
of the operation but should remain in limitations. The
sub-optimal observer may be of the format

(8)

(9)

and can be obtained by various methods including
interpolation among extreme points. These extreme points
associated to the proposed observer, in order to estimate
the system’s state when  i. The interpolation
procedure can be imagined as a linear process according
to each element of parameter set.

In the design of observer, only the extreme points are
considered to be found. This assumption would lead to a
finite set of observer’s parameters including gain matrices
and the proposed Quadratic control law. In achieving the
above goal, the following assumption needs to be made.

Definition-3.1: The system is assumed to be AQS
(AffinelyQuardratically Stable) if there exists K+1
symmetric matrices P0,P1,P2,…,PK such that the following
inequalities

(10)

(11)

hold  = [1,2,…,K]T from these variations, it is evident
that the proposed sub optimal observer will also be of
linear parameter varying format and would differ from the
standard linear observer. Importantly saying, that the
interpolation procedure shall be a linear process with
respect to each parameter but from global solution point
of view, it is expected to be product of these linear
interpolations. The transition matrix F(), the gain matrix
K()and input matrix G() are determined by interpolation
and hence, F(), G() and K() are defined by a polytope
having nxn, nxm and nxp dimensions respectively. In
other words:

F = F0 + F1,…,F2K-1 (12)

K + K0 + K1,…,K2K-1 (13)

G = G0 + G1,…,G2K-1 (14)

Every Fi of F, Ki of K and Gi of G, relates to a specific vertex
of .The relationship among these vertices can be
explained in the following paragraph.

Let bj for j={0,1,2,…,K-1} be the binary representation of
index i. In such a case, the polytope vertices associated
to Fi, Ki and Gi are  where  shows
extreme values such that :

(15)

Thus, the interpolation scheme matrices are:

F(q), m0(q)F0 + …+ m2k-1(q)F2K-1 (16)



Mehran University Research Journal of Engineering & Technology, Volume 37, No. 2, April, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
261

On The Design and Characteristics of a Sub-Optimal Observer for Boeing-747

K(q) = m0(q)K0 +…+ m2k-1(q)K2K-1 (17)

G(q) = m0(q)G0 +…+ m2k-1(q)G2K-1 (18)

Where  i()i = {0,1,2,…,2K-1}are nonlinear functions.
These functions are bounded as:

m0(q) + m1(q) + … + m2K-1(q) = 1 (19)

Where 0 i()  1 and each interpolation function is
given by:
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Matrices Fi, Ki, andare calculated for each element of
parameter vector are interpolated as follow:
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With the above format of interpolated strategy, it is

believed that the task of observer design could be reduced

to finding the matrices Fi,Fi,Gii =[1,2,….,2K-1] in order to

sub optimally estimate the state of an affinely LPV system.

In other words, a total of 3x2K matrices need to be

computed to carry out the estimation process.

4. STEPS INVOLVED IN
SUBOPTIMAL OBSERVER

Continuous time Kalman filter for LTI systems have been

shown in numerous literature such as [2,21]. In this

section, the existing Kalman filter (discrete time) is

adjusted for the above mentioned LPV system model with

noise. Kalman filter, predicts state of the system, using a

previous output and input data samples.

)()())(()())(()( kwkukBkxkAkx   (23)

y(k) = C(q(k))x(k) + v(k) y(k) (24)

where A((k)):RsRnxn system’s transition matrix:

dependent on parameter, B((k)):Rs  Rnxm is input matrix:

dependent on parameter, C((k)):Rs Rpxn is output matrix:

dependent on parameter. x(k):RsRnx1, u(k):RsRpx1,

y(k):RsRpx1 represent state of a system, deterministic

input and output of a system respectively. w(k):RsRnx1

is noise in the process  and v(k):RsRpx1 is noise in the

measurement. The scheme is initialized as follow:

4.1 Initiation Step

The following assumptions are made for initiation
purpose

X() = 0 (25)

F() = A() (26)

F(0) = A(0) (27)
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4.2 First Estimation step

In this step of prediction, states or state of a system are/
is predicted as shown

)())(()())(()( kukBkxkAkx   (28)

The covariance matrix of the corresponding error will be:

)]()([EP keke T  (29)

   )(P))(((k))()(P Q))](([)P()(P))(()(P -1 kkCRCkkAkkkAk TT  

The change in the actual and predicted outputs known
as innovation is given as:

yynn a
I (30)

where ya is  actual output and  is estimated output.

4.3 Observer Gain

The sub optimal value of modified observer gain matrix is
calculated as:

K(q(k)) = Ppred[C(q(k))][R]-1 (31)

It can be seen, as expected that observer gain elements
depend on linear parameter varying element (k). Gain is
calculated for each element of parameter vector linearly.

4.4 Updated Estimation

The estimation achieved in step 4.2 can be updated using
the schedule gain, computed in step 4.3

nnkKkxkx predup I))](([)()(   (32)

where K(q(k))  is sub optimal observer gain matrix. Update
error covariance is:

prednnup kCkKk P))])(())][(([I()(P    (33)

Equations (29-33) describe the basic steps involved in
the design of suboptimal observer. It is important to say
that various matrices involved in the design procedure
are computed using interpolation scheme, discussed
earlier. This scheme makes the computation cumbersome
and computationally expensive. Gaussian theory implies
that the innovation term is uncorrelated with x(k) and
u(k). The following standard Gaussian theory
assumptions can be made to ease the calculation process.

E[x(k)InnT] = 0nxp (34)

E[u(k)InnT] = 0(n+sms)xp (35)

Parameter (k) is also uncorrelated with x(k). For an affine
LPV system, the use exhibits the following properties;

E[x(k)q(k)T] = 0nxsn (36)

E[u(k)q(k)T] = 0nxsm (37)

On the other hand, E[x(k)v(k)T] = 0nxp, which results in

pn
TT Ckxkx  0])()(ˆ[E (38)

It shows that either  is rank deficient matrix
with its rows lying in the orthogonal complement of C, or

 and x(k) are uncorrelated. For cross covariance
matrix to be rank deficient x(k) and  must be depended
vectors, which is not possible. As a result, and x(k) are
uncorrelated.

5. GAIN MATRIX USING STATE
FEEDBACK  CONTROLLER DESIGN

It has been discussed that variation of P(·) causes
variation in the matrices, and hence the issue of stability
arises. To overcome this issue, a robust control law would
be needed. An LQR controller scheme, based on state
feedback control is employed in this paper. The state
feedback gain elements are organized to achieve very
fast eigen values (considerably faster than the average
rate operating point’s changes with a defined bound) by
constructing the ARE (Algebraic Riccati Equation) with
proper matrices having definite weighting. For the LPV
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system, given uniform controllability and observability
of important pairs of matrices, the gain of observer
stabilizes the plant, in spite of fast fluctuations in operating
point by utilizing the result of a RDE (Riccati Differential
Equation) that is time-varying [14]. Perhaps the major pre-
eminence of LQR is that it is well applicable for time
varying system dynamics. In this manuscript, the LQR
parameters are used to minimize the undesired alteration
and for decreasing the cost, where cost function is the
difference of actual measurement from the desired
measurement.

Consider the uninterrupted LPV system

)())(()())(()( kukBkxkAkx   (39)

A((.)) and B((.)) can be stabilized. An in standard
scheme state feedback control, u*k) = Fx(k) cab be
employed to stabilize the unstable system based on the
following two specifications

(1) Transient response specification

(2) Magnitude constraints on x(k) and u(k)

Controller Setting:

Choose Q:RsRnxn and R:RsRnxm so that Q = MMT with
(A((k)),M) detectable and R = RT> 0. Solving the ARE

PA((k)) + A((k))T P + Q – P B((k)) R-1 B((k))T P = 0

The above equation is solved for P, which is used in
calculation of feedback gain matrix F:RsRnx1 as:

F((k)) = - R-1 B((k))T P (40)

States are fed back to the system with gains computed in
feedback gain matrix F((k)). Simulating the initial
response of:

)(]F)(())(([)( kxkBkAkx   (41)

For different initial conditions of the specification of
transient response and the constraints on magnitude, the
response of the system is checked. Typically Q and R are
taken as:
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Order of ‘Q’ matrix depends on order of A((k)) and order

of ‘R’ matrix depends on order of B((k)).

6. NUMERICAL  SIMULATION  RESULTS

The model of aircraft adopted in this paper is Boeing 747

series 100/200. This case study has been chosen since it

has wide array of features (Flap with leading and trailing

edges, spoilers, different surfaces for control, Jet engines

with four fans ) which makes it good representative for

most of nowadays flying airplanes. In other words it can

be imagine a better test bed to verify the adaptability of

LPV design and modeling techniques [18]. For B747-100/

200 aircraft, the system variables have got the factors as

polynomial of parameter (k) [11]. The parameter is also a

polynomial of total air speed (vtas) and angle of attack (),

where (), and (vtas) have defined bounds i.e.

 () ranges in [-2, 8]æ%.
 (vtas) ranges in [150, 250] m/s.

6.1 Boeing-747 LPV System Model

The typical model for the aircraft mentioned above is as
follow:
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(44)

In the above model the system variables are A()Rnxn,
B()Rnxm, C()Rpxm and D()Rnxq which depends
on parameter (k)affinely as given by:

(45)

Initial states value x(0) has taken to zero.  The parameter
() is given by

D() is taken zero for simulation purpose.

where

(46)

Trim values of the system’s states are:

(47)

Trim values of the system’s inputs are:

(48)

Unknown matrices for the system are calculated using
interpolation of matrices found in the previous step as
shown

(49)

Expanding the above expression for the mentioned
system:

 (50)

Similarly

(51)

For this system it will be:

 (52)

and

(53)

Now for this system

 (54)
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Resulting estimated LPV model with the above
interpolated dynamics are simulated with and without the
designed observer. Acceptable results obtained are shown
in Section 6.2.

6.2 Simulation Results

This section describes all the simulation results associated
with Boeing 747 series 100/200. The LPV system as
discussed in the previous section is checked with and
without implementation of LQR controller. The various
outputs including actual measurements and estimated
results are presented to express the performance of
proposed controller.

6.2.1 Response of LPV System without LQR

The system is observed for various input signals however
a unit step response is shown in this paper to elaborate
the modified observer. The step response results are
shown in Fig. 1.

It can be seen from the figure that the system is not
converging. In other words, the output of the system is

exceeding the limits for unit step input. For stability
purpose, LQR is employed.

6.2.2 Response of LPV System with LQR

Implementing LQR controller the system is observed for
step input. The result is shown in Fig. 2.

It can be seen from Fig. 2 that applying LQR controller,
the system can be stabilized. The output is bounded for
bounded step input. Now this system is subjected to
random interruption (Gaussian noise), afterwards observer
is employed, results are shown.

6.2.3 Implementation of Sub-Optimal
Observer

A sub-optimal observer has been implemented for the
above mentioned scenario in the subsequent section. The
observed states using sub-optimal observer are described
in various Fig. 3.

Fig. 3 shows the results of the designed observer, related
to LPV system state (angle of attack). The continuous

FIG. 1. UNSTABLE STEP RESPONSE (WITHOUT CONTROLLER)
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line represents the true values of angle of attack, dotted
line depicts measurements and dashed line is meant for
the observed angle of attack. It is clear that the measured
state shows more deviation from the true state. The Fig. 3
also shows that the observed state one is closer to the
true state. Hence, the observed results outperform the
measured results.

Fig. 4 shows the associated results of pitch rate. Evidently,
it can be seen that the estimated pitch rate by the observer
surpasses the measured pitch rate. It tracks the actual
results and avoids the effect of interruptions.

Finally, the performance of modified observer is tested in
view of the state, speed of air characteristics. In Fig. 5,
the observer provides better results for this parameter
too.

To evaluate the performance of the proposed scheme
percentage error is computed in both measurement and
observed output. Table 1 shows the percentage error.

It is clear from table 1 that the percentage error has been
much reduced by employing the proposed observer, which
manifests the better performance of this scheme.

FIG.2. STABLE STEP RESPONSE (WITH CONTROLLER)

FIG. 3. ANGLE OF ATTACK
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.oN etatS derusaeMnirorrEegatnecreP
)%(retemaraP

devresbOnirorrEegatnecreP
)%(retemaraP

.1 kcattafoelgnA 93.85 71.12

.2 etarhctiP 55.65 30.91

.3 riafodeepS 8.45 89.31

TABLE 1. PERCENTAGE ERROR COMPARISON

FIG. 4. PITCH RATE

FIG. 5. SPEED OF AIR
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