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ABSTRACT 

This paper presents Hotelling T2 as a procedure for the testing of significance difference between the item 

response probabilities (���′�) of classes in a Latent Class Model (LCM). Parametric bootstrap technique is used 

in order to generate samples for ���′�. These samples are based on the estimated parameters of 2-class latent 

model. The estimation of parameters in either situation is done using  the Expectation Maximization (EM) 

algorithm through Maximum likelihood method. The hypothesis under consideration is whether the response 

probabilities (���′�)  are equal against each item in both the classes.  ���: ��� = ��
  �������   �� : =   ��� ≠��
�.  If the test exhibits significant difference between response probabilities in both classes, it will be a clear 

indication of a presence of latent variable. We consider both training and testing data sets to develop the test. 

In order to apply Hotelling T2 test the basic assumptions of normality and homogeneity of variance are also 

checked. Chi-square goodness of fit test is used for assessing normal distribution to be good fitted on the 

hypothesized (bootstrap samples) based on 2-class latent model parameters for each data and Bartlett test to 

check heterogeneity of variances in ���′�. Moreover, our procedure produces a minimum standard error of 

estimates as compared to those obtained through the package in R.Gui environment.  

 

Keywords: Latent Class Model; Hotelling T2; Maximum Likelihood; Bootstrapping; EM Algorithm;  

     goodness of fit test; Bartlett Test.  

 

 

1. INTRODUCTION 
 

atent variables are the hidden factors or some 

underlying concept which cannot be observed 

directly therefore other factors called manifest 

variables are needed. These manifest (observable) 

variables are then served as an indicator for latent 

variable. A well-known method for predicting latent 

variable is LCM. It identifies subgroups with the help 

of information provided by the manifest variables. 

These subgroups are formed over the assumption of 

local independence often called conditional 

independence. Conditional probabilities 

corresponding to each manifest variable are used to 

unfold which manifest variable plays important role in 
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the given class of latent variable. The application of 

LCM includes stratification research in social sciences 

[1], epidemiology [2] eating disorder phenotypes [3], 

Gaming disorder [4, 5] and education data [6-8].  

 

More formally, consider a p-dimensional vector x of 

manifest variables  ���, �
, ⋯ , ��  ��
 and a single 

latent variable y having j-levels (say, j = 1, 2,…, k), in 

practice j-levels will be much smaller than p. As only 

manifest variables can be observed, the main aim of 

LCM is to get information about y after x has been 

observed. Equation (1) represents the model  

 f�x� =  � h�y� ∏ g$�x$|y�&$'()* dy                           (1) 

 

L
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where g�x|y� =  ∏ g$�x$|y��&$'(   represent the 

assumption of local independence, in which j- levels 

must be chosen so that y is sufficient to explain the 

dependency among the x’s. For the K classes, equation 

(1) can be written as follows: 

 ϕ�x(-, x.-, ⋯ , x&-|Θ�  =  ∑ θ2 ∏ ω$2456&$'(72'( �1 − ω$2�(:46
   

           (2)  

The probability density function  ϕ��|Θ� depends on Θ� =  �θ(, θ., ⋯ , θ7, ω(, ω., ⋯ , ω7�. The within class 

parameters for the manifest variables ω′2 =;ω(2, ω.2, ⋯ , ω&2< for j = 1,2, …, k, where ω$2 is the 

probability of a positive response on variable i for a 

person in category j (i = 1, 2, …, p; j = 1, 2, … ,k) and 

let θ2 be the prior probability that a randomly chosen 

individual belongs to class j (i.e.  ∑ θ272'( = 1�. The 

parameters involved in equation (2) are all 

probabilities and thus range from zero to one �0 < θ2 < 1  and 0 < ω$2 < 1�.   
 

Estimation of model parameters involve iterative 

algorithm (i.e. EM) Algorithm). We have used 

Maximum Likelihood Estimation (MLE) method. 

Usually model summary statistics in LCM are Log-

likelihood ratio test statistic (-2logλ), χ., G2 and 

information criteria(s) (AIC, BIC etc.). The use of 

these statistics in making a decision, is subjective, as 

to how many number of classes will be in the model. 

Nylund et al. [9] showed in their paper that in 

comparison with other information criteria’s the 

accuracy of AIC decreases with an increase of the 

sample size and in many cases overestimate the 

number of latent classes.  

 

The Log-likelihood ratio test statistic (-2logλ) is also 

inappropriate in making such decision as regularity 

condition violates.  C. and G2 statistics are simply a 

check of how close the expected frequencies are with 

the observed frequencies, whereas, the expected 

frequencies are obtained by amalgamating the relative 

expected frequencies of all the classes present in the 

model. In addition, the basic assumption of having 

expected frequency ≥ 5 may also be violated if 

manifest variables are greater in number and the 

number of observations is small. Thus, motivates to 

develop an alternative test through which we can 

check the adequacy of the model. Anderlucci and 

Hennig [10]  compared an alternative “distance-based 

clustering” method for finding the true (“correct”) 

number of classes suggested by Hennig and Liao [11] 

to latent class analysis.  

 

In this paper we have used Hotelling T. test for testing 

the differences between the item response 

probabilities (ω$2)  in a 2-class latent model, where  ω′$2s are the subsets of parameters within each 

group/class obtained by dividing a single population 

(mixture of two classes) on the basis of the basic 

assumption of local independence. There is a basic 

difference of purpose between the “usual Hotelling 

T2”statistics and “special approach we adopted to 

Hotelling T2”. In “usual Hotelling T2” the purpose is to 

check whether the means of one multivariate normal 

population is equal to the means of the other 

multivariate normal population. Whereas, “our special 

approach to Hotelling T2” involves bootstrapping the 

estimated parameters of a 2-class latent model to 

create a large number of surrogate samples. These 

bootstrap samples will serve the purpose of testing the 

item response conditional probabilities of the two 

classes of a latent variable to be significantly different 

from each other or not. In other words, our aim is to 

test whether the Item Response Probabilities (IRP) in 

class 1 are significantly different from those against 

the same item in class 2 of a single latent variable (i.e. ω$( ≠  ω$.�. Significantly different IRP’s indicate the 

existence of latent variable while setting up an 

assumption of local independence. Thus, the IRP’s can 

be “recognizable” via this testing procedure. That is, 

the sets of parameters can be clearly identified for the 

respective conditional posterior distribution in the log-

likelihood function. 

 

When testing two mean vectors (multivariate), 

Hotelling T2 statistic can be used. The pooled variance 

covariance matrix is calculated similar to that 

obtained in univariate two sample mean testing. The 

Hotelling's T2 statistic [12] for 2-sample is 

 T. =  HIHJHIKHJ ;y�(� − y.< ~T.�q, n( + n. − 2�         (3) 

 

where P�(�
 and P.

 are averages of samples 1 and 2 

of sizes n1 and n2  respectively in equation (3). S is 

the pool variance and T2 statistic follows Hottling T2 

distribution.   
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It is related to the central F distribution as follows: 

   HIKHJ:Q:(�HIKHJ:.�Q T.~F�q, n( + n. − q − 1, α�               (4) 

 

As T2  assumes that   ;y�(� − y�.�<  follow multivariate 

normal. The data we used were investigated for 

normality and homogeneity of variance. We restrict 

our attention to 2-class model, further investigation for 

more than 2-class model is beyond the scope of this 

paper and can be considered as future work. We expect 

that the distribution of  T2 might follow Non central F 

distribution and Multivariate analysis of variance 

MANOVA may be used for a test of homogeneity of 

variance, in case of more than 2-class model.  

 

1.1 Hotelling T2 Test Approach for (ω$2′s) IRP’s  

(HAIRP): 

 

We need repeated (estimated) values of the parameters 

(ω$2′s) for which we want to carry the test described in 

this section. For this purpose, we initialized the 

parameters (we call them “Initial Estimated 

Parameters (IEP)”) obtained through applying 2-class 

latent model on given data. These IEP’s are then used 

to simulate a hypothesized population and fitting 2-

class latent model on it. The process is repeated several 

times (say “B” times) and the estimated model 

parameter of each hypothetical population is stored 

separately.   

 

In case of 2-class model with 4 manifest items, there 

will be a total of 9 parameters 

 Θ� =  �θ(, ω((, ω.(, ωT(, ωU(, ω(., ω.., ωT., ωU.�.  

 

During the computational process we will have to 

retain V( = �W((, W.(, WT(, WU(� and �
 =�ω(., ω.., ωT., ωU.� in separate matrices each of 

order B×4. 

 

The null hypothesis stated as “No class model” 

against the alternative hypothesis that “There exist at 

least two latent classes” or in other words; 

 

H0  Response probabilities in items in class1 are equal  

      to those against the same item in the other class. 

 

H1  The two sets of item response probabilities         

       vectors in the respective classes are significantly  

       different from each other. 

 

1.1.1 Test Procedure (2-Class Latent Model;  

j = 1, 2) 

 

Step1:  �� = �
 against  �� ≠ �
; for four variables 

(items) 

 

OR 

  

HZ : [ω((ω.(ωT(ωU(
\ = [ω(.ω..ωT.ωU.

\    vz.   H(: [ω((ω.(ωT(ωU(
\ ≠ [ω(.ω..ωT.ωU.

\ 

 

Step2:  Level of significance = α = 0.05 

 

Step3:  Test Statistics: 

 

Since in our case sample 1 and 2 are both of size B 

 T. = ]J
.] ��� − �
�S:(��� − �
�  

 

Step4: Critical Region: 

 

Reject H0 if  T. > �.]:.�.]:&:( F�&,.]:&:(,`� 

 

We have created our own program codes in R.Gui for 

bootstrapping and estimating LCM (the codes are 

available from the authors upon request). Although we 

have written codes for the calculation of Hotelling T2 

test statistic too, but we used R package named 

“Hotelling” version 1.0 developed by Janes Curran 

available on the CRAN repository [13]. It includes 

functions to calculate a Hotelling T2 test statistic and 

its p-value for the difference between two sets of 

(multivariate) normally distributed means. There is an 

option (command) in “hotelling.test()” function of 

whether to use a shrinkage method by “Shaefer and 

Strimmer’s James-Stein shrinkage estimator” to 

estimate the “large scale sample covariance matrices” 

or to use a simple pooled sample covariance matrix. 

By default the function uses simple pooled covariance 

matrix unless shrinkage is marked as TRUE in the 

function for the shrinkage estimates of sample 

covariance matrix. This package also includes 

“Aitchison’s additive log ratio” and “centered log ratio 

transformations” for compositional data [13].We limit 
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use of this package only to “hotelling.test()” function 

with either shrinkage TRUE/FALSE. 

 

2. BOOTSTRAPPING RESPONSE 

PROBABILITIES OF MANIFEST 

ITEM IN A SPECIFIC CLASS 
 

We used two kinds of data sets. “Classical/training 

data” used several times for applying LCM by 

different authors and scientists. Since, the model had 

been fitted on classical data, IEP are thus available. It 

includes Coleman’s panel data [14] and Mastery data 

[15]. The other is “real/test” data, which has been 

collected or obtained, for which IEP’s are to be 

obtained through applying LCM. These IEP’s are then 

used as parameters to simulate the hypothesized 

population repeated number of times. On each 

hypothesized population, LCM is again applied to 

obtain the estimates of ω$2′s. The values of these 

estimates are then stored in a matrix for testing 

differences among Wa( and Wa.; i = 1, 2, 3, 4.  

 

Efron and Tibshirani [16] suggested that 50 to 100 

replications may be sufficient for standard error and 

bias estimation, whereas, for highly accurate 

assessments or calculation of p-value, 350 replications 

may be considered a higher size [17, 18]. We simulate 

the bootstrap samples of sizes 30, 200, 500, 1500 and 

2000. In the program (codes) initial values are set to 

zero. Therefore, the first storage space does not fill 

during the 1st iteration. The program command starts 

storing the estimate from 2nd iteration onward. The 

resultant matrix with one lesser value is therefore of 

size 29, 199, 499, 999, 1499 and 1999. 

 

The estimates of the likelihood function should be 

based on the global maximum. Bartholomew 

suggested using different starting points to search 

global maxima or maxima close to global one [19]. 

Linzer and Lewis in their paper on “poLCA" (a 

package in “R” software) recommended using model 

fitting command several time to find the global 

maxima [20]. We took care of using the estimates 

based on global maxima. The reason is that, if the 

solution is from any one of the local maxima that may 

create certain problems in achieving the true 

“situation”. Such as, one, in booting samples the 

algorithm might produce “NaNs” or in other words,     

some of the booted sample may become redundant and 

could not be included for further analysis.“NaN’s” 

were due to the boundary problem where the solution 

exaggerates when item probabilities are very much 

closer to 0 and 1. The problem can be solved by adding 

a constraint that if IRP are very close to either 0 or 1 

to avoid this problem we add or subtract 0.00001 to it 

respectively. Since the value added is so small, it does 

not affect the result rather one can have control on the 

boundary issue. Secondly, there is also a possibility 

(we have experienced) of occurrence of outliers in the 

bootstrap samples which could be identified in a chi-

square quantile plot and a separate normal probability 

plot of each ω$2′s (not shown here). Presence of 

outliers may also create a problem in goodness of fit 

test. Although, it is observed that for HAIRP (Special 

approach to Hotelling’s T2 statistic) outliers have no 

influence on the results. 

 

2.1 Problem in Handling Item Response  

      Probabilities 

 

Initially LCA starts with an unconditional contingency 

table for assigning response profile to each 

class/category without any guidance and thus 

completes the table. As a result, class prevalence (θ2) 
and item response probabilities are obtained for each 

of the latent class.  

 

In the method of LCA during estimation recognition 

of “Class Identification Number (CIN)” is flexible. 

That is, due to no clear guidance to identify CIN, the 

algorithm assigned one set of estimates (class 

proportion and item response probabilities) to class 1, 

in the next iteration, are then assigned to class 2. If 

there are B iterations, (B/2) half of the CIN are assign 

to one specific class (say class 1) and the other half to 

class 2 in a random fashion. 

 

Due to no proper recognition of CIN, the sampling 

distribution of IRP’s and b  appeared bimodal. 

Thompson used the term “fractured” for such bimodal 

sampling distribution. He obtained bootstrap samples 

for class response probabilities and class proportions 

through EM algorithm using log-liner model [21]. 

Linzer and Lewis also discussed the issue of CIN and 

suggest solution while using poLCA package [22].  
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2.2 Solution to the Problem of Handling Item  

      Response Probabilities 

 

In order to resolve such bimodal sampling distribution, 

that is, the inability of EM algorithm to consistently 

recognizing the latent classes, we propose the 

following method. 

 

After, generating bootstrap samples “B” times through 

EM algorithm using Latent Class Model in case of 2-

class model (j = 1, 2) with 4 items (manifest variables; 

i = 1, 2, 3, 4), we used the following steps for 

recognition of proper CIN (“fracturing” problem).  

 

Step1: For any one item, calculate the difference in 

response probabilities for class 1 and 2. For example, 

we consider the difference in between the response 

probability of 2-classes for item 1. {i.e.; D = �ω(( −ω(.�}. 

Step2: Create a coding variable C on the basis of “D”. 

Where for every positive difference Cj takes on a value 

“1” and “2” for the negative differences {if D > 0, C = 

1 else C =2}. 

Step3: Create another vector of the absolute difference 

of 3 - C. {let C2 =|3 − C |}  

Step4: Stack Wa( and Wa. {i.e. create a new matrix T 

of Wae ′s of dimension B×4}.  

Step5: Stack C and C2 and name it “G”. 

Step6: Unstack T on the basis of grouping variable G. 

The strategy is applied to each vector of the estimate. 

After such adjustments, bootstrap solutions are 

consistent with the initial estimates. That is, solution  

 

 

will then consistently classify item response 

probabilities to the group they belong and the bimodal 

sampling distribution resolve to unimodal with means 

and variances accordingly. Thompson gave the 

solution of fracturing of estimates by identifying the 

most informative indicator for which the conditional 

probabilities given latent class membership differ 

most [21]. The command lines for such direction of 

indicators are also provided in his paper. 

 

3. DATASETS 
 

The first data used is “Mastery data” [15]. 

Bartholomew in his book discussed it and suggested a 

2-class latent model. The two classes were named as 

“Master” and “Non-master” [19]. Originally 142 

individuals were asked to take a test based on four 

problems (items) randomly selected from the area of 

problems on the multiplication of two-digit number by 

a 3 or 4 digit number, which involve use of carry 

operations. The response was marked as ‘1’ and ‘0’ for 

correct and incorrect solutions, respectively. The 

estimated 2-class latent model parameters (considered 

as IEP) are presented in Table 1. The classes are 

marked as “Master” and “Non-Master” based on item 

response probabilities in each class.  

 

The second classical data set is Coleman’s panel data 

[14]. This data is also used by Goodman [23, 24] and 

Bartholomew [19]. The data was collected from 3398 

boys  at  two  different  points  in  time. Each time the 

  

 

 

 

TABLE 1: INITIALLY ESTIMATED PARAMETERS (IEP) FOR A 2-CLASS LATENT MODEL OF 

MASTERY, COLEMAN’S  PANEL AND KUTS DATA. 

Mastery Data: 2-class latent model parameters 

  

Class prevalence 

 

Item response probabilities 

Item 1 Item 2 Item 3 Item 4 

Class 1 (Master) 0.59 0.75 0.78 0.43 0.71 

Class 2 (Non-master) 0.41 0.21 0.07 0.02 0.05 

 Coleman’s panel data: 2-class latent model parameters 

  Class prevalence Item response probabilities  

Class 1 (Optimistic attitude) 0.4 0.77 0.64 0.89 0.67 

Class 2 (Pessimistic attitude) 0.6 0.1 0.47 0.09 0.5 

KUTS Panel Data: 2-class model parameters 

  

Class prevalence 

 

Item response probabilities 

President Vice President Secretary Treasurer 

Class 1 (Rightist) 0.532 0.917 0.864 0.962 0.901 

Class 2 (Mix) 0.468 0.037 0.043 0.112 0.132 
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individuals were asked two questions that are (1) 

“Whether or not they considered themselves to be in 

the leading crowd” (1 for a positive response and 0 for 

a negative response). (2) “Whether they thought that 

such membership involved can sometimes go against 

their principles” (1 for a negative response and 0 for a 

positive response). A restricted model with an 

assumption that there exist two latent variables, and 

that they altogether form four latent classes is the 

solution for the data [19]. On the basis of their 

response probabilities obtained through estimating 2-

class model, we named the classes as being 

“optimistic” and “pessimistic” attitude groups. The 

LCM parameters (considered as IEP) are given in 

Table1.  

 

Real data which we have considered here is of election 

of Karachi University Teacher Society (KUTS) in year 

1993-1994. A total of 434 teachers participated in 

1993-94 KUTS election. We considered only the top 

four positions (President, Vice president, Secretary 

and Treasurer) in the analysis. The responses were 

coded as 1 = “Rightist” panel and 2 = “Mix” penal. A 

complete discussion regarding LCM on KUTS data is 

available in [25]. Table 1 shows 2-class latent model 

parameters for the data. 

 

4. DISCUSSION AND RESULTS 

 

In Mastery data (shown in Table 1), it should be noted 

that the two class sizes (estimated through LCM) are a 

ratio of 60:40 and the response probabilities of 

correctly answering an item for class 2 (non-master 

class) are too close to the lower boundary of the 

parameter space (i.e.; 0). Similar scenario is in the case 

of KUTS panel data that the estimated LC model 

parameters are too close to the boundaries (as high 

with maximum probability 0.96 and low with 0.03).  

 

In case of Coleman’s Panel data, the estimated model 

parameters are not too close to the boundary of the 

parameter space. Although, ω(. and ωT. seam close 

to zero but they are not as low as less than 0.09 (shown 

in Table 1).  

 

For each data considered and for each size, Hotelling T. reveals that there exist significant differences 

between the parameters of the two classes in a 2-class 

model, as the Hotelling T. test rejected the null 

hypothesis (i.e. Hf:  ω$( =  ω$.; for i = 1, 2, … , 4) 

with “0.000” p-value (Since the test statistics value(s) 

are very high and results in a p-value too close to 0). 

Therefore, it can be concluded on the basis of 

Hotelling T. test, that latent variable exist in Mastery 

and Coleman’s panel data (shown in Table 2).  

 

Bartlett test (Table 2, 3) shows that variances are 

heterogeneous in all bootstrap samples of different 

sizes for all the data set considered. It is observed that, 

where ω$2′s are not too close to the boundary of the 

parametric space, the chance of normal distribution to 

be well fitted is pretty high (shown in Table 4). It is 

also observed while bootstrapping ω$2′s that the 

normal distribution is good fitted in cases where the 

size of the bootstrap sample is relatively lower than 

1000 (for 0 < ω$2′s < 1 and particularly when ω$2� s are 

close to the boundary). 

 

For each data considered and for each size, Hotelling T. reveals that there exist significant differences 

between the parameters of the two classes in a 2-class 

model, as the Hotelling T. test rejected the null 

hypothesis (i.e. Hf:  ω$( =  ω$.; for i = 1, 2, … , 4) 

with “0.000” p-value (Since the test statistics value(s) 

are very high and results in a p-value too close to 0). 

Therefore, it can be concluded on the basis of 

Hotelling T. test, that latent variable exist in Mastery 

and Coleman’s panel data (shown in Table 2).  

 

In case of KUTS panel data we consider positive 

response when voters are in favor of the Rightist 

group. The result shows that there is a significant 

difference between ω$2′s of “Rightist” and “Mix” 

group. HAIRP reveals that there exist differences 

between the parameters of the two classes, since the 

test rejected the null hypothesis (i.e.  Hf:   ω$( =  ω$.) 

with “0.000” p-value, no matter whether the 

covariance matrices are homogenous or heterogeneous 

(shown in Table 3). Therefore, it can be concluded on 

the basis of HAIRP that there may exist a latent 

variable in KUTS panel data. 

 

4.1 Comparison of Standard Error of Estimates  

      through Bayes LCA and HAIRP: 

 

“BayesLCA” is a package in R.Gui environment, 

available at CRAN repository since 2012. The 

program was developed by Arthur White and Thomas 
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Brendan Murphy. Along with model fitting it also 

provides with the bootstrap sampling for IRP’s and 

calculate standard errors. We have considered 

“BayesLCA” to compare the shape of the densities of ω$2′s with those obtained through HAIRP (a total of 6 

(sizes (B)) × 3 (data sets) = 18 cases). Both approaches 

approximately showed same distributional behavior 

for each ω$2 {i = 1, 2, 3, 4 and j = 1, 2}. However, 

estimates obtained through HAIRP give more accurate 

results then “BayesLCA”. Comparison between 

HAIRP and “BayesLCA” is presented in Table 5 for 

all three data sets. For each size (B) the estimates of     

                                                                                           

ω$2′s are presented. The average estimates (mean) for  

each ω$2 obtained through HAIRP are much closer to  

the population  parameters (IEP’s) as compared to 

MAP obtained through “BayesLCA” (for each data). 

In most cases estimated model parameters obtained 

through “BayesLCA” are under or over estimated. 

Moreover, standard errors for ω$2′s for all sizes (B) are 

also very small than those obtained through package 

“BayesLCA”. “BayesLCA” provides comparatively 

smaller standard errors of estimates for large samples 

(B ≥ 500) as compared to smaller ones (B < 500).  

 

          TABLE 2: A SUMMARY TABLE OF BOOTSTRAP SAMPLES (OF SIZE “B”) FOR MASTERY AND COLEMAN’S PANEL DATA. 

   Bartlett Test HAIRP 

 
B 

K2 

statistics 
df p-value 

j
∗
 

statistics 

l�     m
     Wald Statistics 
P-

value 

Mastery 

Data 

29 34.1081 7 1.64E-05 1673.1 4 53 7071.09 0.000 

199 167.9892 7 2.20E-16 8842 4 393 35638.16 0.000 

499 485.5588 7 2.20E-16 19709 4 993 78072.32 0.000 

999 777.3823 7 2.20E-16 36687 4 1993 146970.1 0.000 

1499 1248.449 7 2.20E-16 57975 4 2993 232133.4 0.000 

1999 1670.973 7 2.20E-16 71780 4 3993 287335.1 0.000 

Role 

Conflict 

Data 

29 24.6535 7 0.00087 7654.8 4 53 32352.39 0.000 

199 457.0731 7 2.20E-16 26805 4 393 108038.7 0.000 

499 1206.349 7 2.20E-16 68871 4 993 276315.6 0.000 

999 2551.944 7 2.20E-16 131390 4 1993 526363.7 0.000 

1499 3499.894 7 2.20E-16 225190 4 2993 901681.7 0.000 

1999 4743.904 7 2.20E-16 289440 4 3993 1158637 0.000 

NOTE: T.∗
= Hotelling’s T.(Shrinkage = FALSE) with (υ(, υ.) degrees of freedom; p-value is same for both T.and Wald statistics. 

 

 

 

TABLE 3: KUTS PANEL DATA: A SUMMARY TABLE OF BOOTSTRAP SAMPLES (OF SIZE “B”). 

 Hotelling’s T2 test 

 Bartlett Test 
(Shrinkage 

=FALSE) 
 

degrees of 

freedom 

(Shrinkage 

=TRUE) 
 

B 
K2 

statistics 
df p-value 

T2 

statistics 

P-

value 
o( o. T2 statistics P-value 

29 21.3651 7 0.0032 18633 0.000 4 53 21587 0.000 

199 92.2596 7 2.20E-16 172920 0.000 4 393 178490 0.000 

499 352.8211 7 2.20E-16 384530 0.000 4 993 397510 0.000 

999 740.7012 7 2.20E-16 799770 0.000 4 1993 835420 0.000 

1499 1026.375 7 2.20E-16 1186300 0.000 4 2993 1223000 0.000 

1999 1343.526 7 2.20E-16 1562300 0.000 4 3993 1593200 0.000 

            NOTE: T.∗
= Hotelling’s T.(Shrinkage = FALSE) with (o(, o.) degrees of freedom; p-value is same for both      

          T.and Wald statistics. 
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TABLE 4: A SUMMARY TABLE OF CHI-SQUARE TEST FOR ASSESSING NORMAL DISTRIBUTION TO BE GOOD FITTED ON THE 

HYPOTHESIZED (BOOTSTRAP SAMPLES) BASED ON IRP’S OF A 2-CLASS LM FOR  COLEMAN’S PANEL, MASTERY AND KUTS 

PANEL DATA. 

Goodness of fit (Normal Distribution) 
B  Coleman's panel data Mastery data KUTS panel data 

  IEP χ
2 

statistics 

df p-value IEP χ
2 

statistics 

df p-value IEP χ
2 

statist

ics 

df p-value 

29 ω(( 0.77 2.633 8 0.955 0.75 11.91 7 0.10347 0.917 10.01 9 0.3493 

  ω.( 0.64 2.339 9 0.985 0.78 7.456 7 0.38295 0.864 4.213 9 0.8968 

  ωT( 0.89 2.359 8 0.968 0.43 6.736 6 0.34599 0.962 6.325 10 0.7872 

  ωU( 0.67 3.63 10 0.963 0.71 8.689 7 0.27578 0.901 5.395 9 0.7986 

  ω(. 0.1 6.226 10 0.796 0.21 3.522 7 0.83292 0.037 2.626 10 0.9889 

  ω.. 0.47 8.541 12 0.742 0.07 8.053 7 0.3279 0.043 5.943 10 0.8201 

  ωT. 0.09 1.426 9 0.998 0.02 21.94 9 0.00906 0.112 6.541 8 0.5869 

 ωU. 0.5 1.853 10 0.997 0.05 10.48 8 0.23266 0.132 4.986 8 0.7591 

199 ω(( 0.77 11.77 10 0.301 0.75 2.186 8 0.97478 0.917 7.731 13 0.8607 

  ω.( 0.64 7.83 14 0.898 0.78 4.504 8 0.80901 0.864 17.19 11 0.1024 

  ωT( 0.89 16.77 10 0.08 0.43 9.908 8 0.27154 0.962 9.451 13 0.7381 

  ωU( 0.67 6.896 13 0.907 0.71 10.94 8 0.20523 0.901 11.98 12 0.4472 

  ω(. 0.1 6.864 13 0.909 0.21 2.187 8 0.97472 0.037 3.597 14 0.9974 

  ω.. 0.47 6.233 14 0.96 0.07 37.53 8 9.20E-06 0.043 155.2 13 2.00E-26 

  ωT. 0.09 6.602 11 0.83 0.02 102.2 8 1.50E-18 0.112 7.314 12 0.8362 

  ωU. 0.5 7.664 15 0.937 0.05 74.75 8 5.54E-13 0.132 12.08 11 0.3576 

499 ω(( 0.77 7.012 12 0.857 0.75 6.505 11 0.8376 0.917 20.55 13 0.0823 

  ω.( 0.64 19.28 15 0.201 0.78 13.45 11 0.26511 0.864 5.8 13 0.9531 

  ωT( 0.89 10.61 12 0.562 0.43 56.26 11 4.60E-08 0.962 26.04 15 0.0376 

  ωU( 0.67 10.64 15 0.777 0.71 38.96 10 2.60E-05 0.901 17.17 14 0.2471 

  ω(. 0.1 6.47 13 0.927 0.21 8.415 11 0.67574 0.037 62.67 14 4.00E-08 

  ω.. 0.47 44.11 15 1.00E-04 0.07 72.74 11 3.70E-11 0.043 26.66 15 0.0316 

  ωT. 0.09 13.99 13 0.375 0.02 597.6 13 2.00E-119 0.112 7.896 13 0.8503 

  ωU. 0.5 19.84 17 0.282 0.05 226.1 12 1.30E-41 0.132 1.473 13 0.9999 

999 ω(( 0.77 126.1 13 1.00E-20 0.75 13.03 12 0.36695 0.917 88.13 14 9.00E-13 

  ω.( 0.64 14.41 17 0.638 0.78 79.15 12 6.00E-12 0.864 17.1 14 0.2507 

  ωT( 0.89 13.65 13 0.399 0.43 826.5 12 4.00E-169 0.962 19.34 17 0.3094 

  ωU( 0.67 9.354 16 0.898 0.71 371.8 11 5.70E-73 0.901 24.72 15 0.0539 

  ω(. 0.1 9.347 15 0.859 0.21 1125 11 3.00E-234 0.037 37.73 17 0.0027 

  ω.. 0.47 21.28 17 0.214 0.07 3.00E+11 11 0.000 0.043 29.17 16 0.0228 

  ωT. 0.09 34.85 14 0.002 0.02 504.7 6 8.00E-106 0.112 11.42 15 0.7222 

  ωU. 0.5 13.42 17 0.708 0.05 266 6 5.60E-49 0.132 38.74 14 0.0004 

1499 ω(( 0.77 4.514 14 0.991 0.75 31.63 12 0.00158 0.917 18.77 15 0.2243 

  ω.( 0.64 10.46 17 0.883 0.78 174.6 12 5.30E-31 0.864 11.23 15 0.7363 

  ωT( 0.89 17.91 14 0.211 0.43 436.6 12 6.50E-86 0.962 27.14 17 0.056 

  ωU( 0.67 13.84 17 0.678 0.71 6.265 13 0.93596 0.901 20.47 15 0.1547 

  ω(. 0.1 20.73 15 0.146 0.21 415.1 12 2.30E-81 0.037 38.9 17 0.0018 

  ω.. 0.47 10.65 18 0.908 0.07 1.00E+08 12 0.000 0.043 67.72 17 5.00E-08 

  ωT. 0.09 28.12 15 0.021 0.02 676.9 13 0.000 0.112 14.21 15 0.5097 

  ωU. 0.5 11.79 19 0.894 0.05 1.00E+12 12 0.000 0.132 22.54 15 0.0944 

1999 ω(( 0.77 12.13 14 0.596 0.75 153.2 13 4.70E-26 0.917 28.91 16 0.0245 

  ω.( 0.64 11.26 17 0.843 0.78 9265 13 0.000 0.864 8.708 16 0.925 

  ωT( 0.89 22.88 14 0.062 0.43 56.92 13 1.90E-07 0.962 30.19 18 0.0356 

  ωU( 0.67 16.35 16 0.429 0.71 406.7 13 8.50E-79 0.901 25.99 16 0.0541 

  ω(. 0.1 34.14 16 0.005 0.21 2278 13 0.000 0.037 80.05 18 8.00E-10 

  ω.. 0.47 5.099 18 0.999 0.07 3.00E+10 13 0.000 0.043 66.52 17 8.00E-08 

  ωT. 0.09 33.54 15 0.004 0.02 7.00E+09 14 0.000 0.112 8.547 15 0.9 

  ωU. 0.5 4.386 19 0.999 0.05 1109 13 0.000 0.132 32.07 15 0.0063 

 

5. CONCLUSION 

 

In this paper we attempt to exhibit a test which can 

identify the difference between ω$2′s of both classes of 

a single latent variable. We have demonstrated the 

problems faced, by selecting those data sets, in which 

the model parameters are on the boundary of the 

parameter space. Also, grouping formed in both 

classical data sets are almost of 60:40 ratio and   53:47 

in KUTS panel data. Regardless of a little  difference  
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between the class proportions of two classes, item 

response probabilities of class 1 are significantly 

different from those of the second class (i.e.  ω$( ≠
ω$.), in  each case considered. HAIRP proposed, as  

demonstrated earlier, leads us to accept the existence 

of latent variable forming groups or clusters and its

 TABLE 5: A COMPARISON OF THE RESULTS OBTAINED THROUGH HAIRP WITH BAYESLCA FOR COLEMAN’S PANEL, 

MASTERY AND KUTS PANEL DATA (MEAN EST IMATES (MEAN), STANDARD ERRORS (S.E.) THROUGH HAIRP) AND 

(MAXIMUM A POSTERIORI (MAP) AND STANDARD ERROR (S.E.) THROUGH BAYESLCA) 

  Coleman's panel data Mastery data KUTS panel data 

   HAIRP BayesLCA    HAIRP  BayesLCA  HAIRP BayesLCA 

B    EP Mean 

 

S.E.  AP S.E.  IEP mean  S.E. MAP S.E. IEP mean S.E. MAP S.E. 

29  ω11 0.77 0.77 0.00 0.94 0.13 0.75 0.77 0.00 0.80 0.16 0.29 0.92 0.00 0.83 0.12 

 ω21 0.64 0.64 0.00 0.46 0.19 0.78 0.79 0.00 0.82 0.14 0.86 0.87 0.00 0.89 0.10 

 ω31 0.89 0.89 0.00 0.73 0,13 0.43 0.45 0.01 0.51 0.18 0.96 0.96 0.00 1.00 0.00 

 ω41 0.67 0.67 0.00 0.89 0.09 0.71 0.71 0.00 0.61 0.17 0.90 0.90 0.00 1.00 0.00 

 ω21 0.10 0.10 0.00 0.00 0.00 0.21 0.21 0.00 0.31 0.20 0.04 0.04 0.00 0.07 0.07 

 ω22 0.47 0.47 0.00 0.52 0.17 0.07 0.09 0.00 0.10 0.14 0.04 0.04 0.00 0.00 0.00 

 ω23 0.09 0.09 0.00 0.24 0.13 0.02 0.02 0.00 0.00 0.02 0.11 0.11 0.00 0.09 0.09 

 ω42 0.50 0.50 0.00 0.54 0.05 0.05 0.05 0.00 0.05 0.05 0.13 0.13 0.00 0.13 0.03 

199 ω11 0.77 0.77 0.00 0.99 0.02 0.75 0.75 0.00 0.74 0.05 0.92 0.92 0.00 0.95 0.03 

 ω21 0.64 0.64 0.00 0.62 0.06 0.78 0.79 0.00 0.67 0.05 0.86 0.86 0.00 0.87 0.04 

 ω31 0.89 0.89 0.00 0.93 0.07 0.43 0.44 0.00 0.34 0.05 0.96 0.96 0.00 0.96 0.03 

 ω41 0.67 0.67 0.00 0.64 0.06 0.71 0.71 0.00 0.61 0.05 0.90 0.90 0.00 0.89 0.04 

 ω21 0.10 0.10 0.00 0.09 0.05 0.21 0.20 0.00 0.00 0.00 0.04 0.04 0.00 0.03 0.02 

 ω22 0.47 0.47 0.00 0.48 0.05 0.07 0.07 0.00 0.07 0.05 0.04 0.04 0.00 0.07 0.03 

 ω32 0.09 0.09 0.00 0.11 0.03 0.02 0.02 0.00 0.02 0.02 0.11 0.11 0.00 0.16 0.04 

 ω42 0.50 0.50 0.00 0.54 0.05 0.05 0.05 0.00 0.05 0.05 0.13 0.13 0.00 0.13 0.03 

499 ω11 0.77 0.77 0.00 0.93 0.06 0.75 0.76 0.00 0.71 0.03 0.92 0.92 0.00 0.91 0.02 

 ω21 0.64 0.64 0.00 0.66 0.04 0.78 0.78 0.00 0.79 0.04 0.86 0.86 0.00 0.84 0.03 

 ω31 0.89 0.89 0.00 0.92 0.06 0.43 0.43 0.00 0.41 0.04 0.96 0.96 0.00 0.97 0.01 

 ω41 0.67 0.67 0.00 0.72 0.05 0.71 0.72 0.00 0.64 0.04 0.90 0.90 0.00 0.90 0.02 

 ω12 0.10 0.10 0.00 0.12 0.04 0.21 0.21 0.00 0.26 0.03 0.04 0.04 0.00 0.04 0.02 

 ω22 0.47 0.47 0.00 0.45 0.03 0.07 0.07 0.00 0.04 0.03 0.04 0.04 0.00 0.04 0.01 

 ω32 0.09 0.09 0.00 0.17 0.03 0.02 0.02 0.00 0.01 0.01 0.11 0.11 0.00 0.12 0.03 

 ω42 0.50 0.50 0.00 0.50 0.03 0.05 0.05 0.00 0.08 0.03 0.13 0.13 0.00 0.08 0.02 

999 ω11 0.77 0.77 0.00 0.85 0.05 0.75 0.76 0.00 0.75 0.02 0.92 0.92 0.00 0.94 0.01 

 ω21 0.64 0.64 0.00 0.62 0.03 0.78 0.79 0.00 0.78 0.02 0.86 0.86 0.00 0.87 0.02 

 ω31 0.89 0.89 0.00 0.91 0.05 0.43 0.43 0.00 0.42 0.02 0.96 0.96 0.00 0.96 0.01 

 ω41 0.67 0.67 0.00 0.66 0.03 0.71 0.72 0.00 0.70 0.03 0.90 0.90 0.00 0.90 0.02 

 ω12 0.10 0.10 0.00 0.09 0.04 0.21 0.21 0.00 0.18 0.02 0.04 0.04 0.00 0.03 0.01 

 ω22 0.47 0.47 0.00 0.47 0.02 0.07 0.08 0.00 0.04 0.02 0.02 0.04 0.00 0.06 0.01 

 ω32 0.09 0.09 0.00 0.12 0.03 0.02 0.03 0.00 0.02 0.01 0.11 0.11 0.00 0.12 0.02 

 ω42 0.50 0.50 0.00 0.51 0.02 0.05 0.05 0.00 0.05 0.02 0.13 0.13 0.00 0.12 0.02 

1499 ω11 0.77 0.77 0.00 0.85 0.05 0.75 0.76 0.00 0.78 0.02 0.92 0.92 0.00 0.92 0.01 

 ω21 0.64 0.64 0.00 0.68 0.02 0.78 0.79 0.00 0.77 0.02 0.86 0.86 0.00 0.87 0.01 

 ω31 0.89 0.89 0.00 0.90 0.04 0.43 0.44 0.00 0.46 0.02 0.96 0.96 0.00 0.96 0.01 

 ω41 0.67 0.67 0.00 0.70 0.02 0.71 0.72 0.00 0.70 0.02 0.90 0.90 0.00 0.90 0.01 

 ω12 0.10 0.10 0.00 0.11 0.02 0.21 0.21 0.00 0.19 0.02 0.04 0.04 0.00 0.02 0.01 

 ω22 0.47 0.47 0.00 0.49 0.02 0.07 0.07 0.00 0.08 0.02 0.04 0.04 0.00 0.05 0.01 

 ω32 0.09 0.09 0.00 0.15 0.03 0.02 0.02 0.00 0.04 0.01 0.11 0.11 0.00 0.12 0.01 

 ω42 0.50 0.50 0.00 0.49 0.02 0.05 0.06 0.00 0.08 0.02 0.13 0.13 0.00 0.10 0.01 

1999 ω11 0.77 0.77 0.00 0.79 0.03 0.75 0.76 0.00 0.74 0.02 0.92 0.92 0.00 0.90 0.01 

 ω21 0.64 0.64 0.00 0.63 0.02 0.78 0.79 0.00 0.77 0.02 0.86 0.86 0.00 0.85 0.01 

 ω31 0.89 0.89 0.00 0.83 0.03 0.43 0.44 0.00 0.43 0.02 0.96 0.96 0.00 0.96 0.01 

 ω41 0.67 0.67 0.00 0.68 0.02 0.71 0.72 0.00 0.70 0.02 0.90 0.90 0.00 0.90 0.01 

 ω12 0.10 0.10 0.00 0.05 0.02 0.21 0.21 0.00 0.23 0.02 0.04 0.04 0.00 0.03 0.01 

 ω22 0.47 0.47 0.00 0.46 0.02 0.07 0.08 0.00 0.07 0.02 0.04 0.04 0.00 0.04 0.01 

 ω32 0.09 0.09 0.00 0.09 0.03 0.02 0.02 0.00 0.03 0.01 0.11 0.11 0.00 0.11 0.01 

 ω42 0.50 0.50 0.00 0.51 0.02 0.05 0.06 0.00 0.04 0.01 0.13 0.13 0.00 0.12 0.01 
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existence indicates significant difference between the 

classes, while setting up local independence 

assumption. Moreover, our adopted bootstrapping 

procedure provides better estimates along with their 

minimal standard errors as compared to the one 

obtained through package “BayesLCA”. 
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