
Mehran University Research Journal of Engineering and Technology
Vol. 39, No. 2, 342 - 352, April 2020
p-ISSN: 0254-7821, e-ISSN: 2413-7219
DOI: 10.22581/muet1982.2002.10

This is an open access article published by Mehran University of Engineering and Technology, Jamshoro under CC BY 4.0
International License.

342

Impact of Design Patterns on Software Complexity and Size

Nosheen Qamar1 Ali Afzal Malik2

RECEIVED ON 19.02.2019, ACCEPTED ON 03.05.2019

ABSTRACT

Many different factors influence the quality of software. Among the most important of these factors is software

complexity. One way to improve software quality, therefore, is to minimize its complexity making it more

understandable and maintainable. The design phase of the software development life cycle plays an

instrumental role in fostering quality in software. Seasoned designers often use past design best practices

codified in the form of design patterns to make their designs and the resultant code more elegant, robust, and

resilient to change. Little work, however, has been done to empirically assess the quantitative impact of design

patterns on software complexity. This research is an attempt to fill this gap. A comparative analysis of before

and after versions of program pairs written without and with design patterns was performed for all twenty-

three GoF (Gang of Four) design patterns. These program pairs were collected (or, in some cases, developed)

and compared with respect to their complexity and size. The results of this comparative analysis reveal that the

cyclomatic complexity of the programs written using design patterns was less for most of the design patterns

as compared to the programs written without using design patterns. However, the values of CK metrics,

number of classes, and software size SLOC (Source Lines of Code) increased when design patterns were used.

Key Words: CK Metrics, Design Patterns, Gang of Four, Software Complexity, Software

Quality, Software Size.

1. INTRODUCTION

Software has become an invisible driving force of our

individual and collective existence. It is now playing

an indispensable role in our international trade, our

stock exchanges, our educational institutions, our

healthcare, and our entertainment. Yet, despite the fact

that software has penetrated different aspects of our

lives, it is still engineered following a set of steps

which together constitute the SDLC. Some of these

steps focus on the problem domain while others on the

solution domain. The first step, and probably the most

important, in the solution domain is design.

Design is the step in which the software engineer starts

to think about solving the problem which has been

understood in the upstream SDLC steps like

1
 Department of Computer Science and Information Technology, University of Lahore, Lahore, Pakistan

 Email: nqz786@gmail.com (Corresponding Author)
2 Department of Computer Science, National University of Computer & Emerging Sciences, Lahore, Pakistan

 Email: ali.afzal@nu.edu.pk

requirements engineering and analysis. Designers

focus on different aspects of the solution e.g. design of

interfaces, design of data and data storage, design of

software configuration, etc. Needless to say, most of

the times it is impossible to get the design right the first

time. Usually, multiple iterations are required and for

most medium and large scale software-intensive

systems design is a challenging exercise.

Software designers, however, often face recurring

problems. Such problems can be solved using similar

solutions called design patterns. In simple terms, a

design pattern can be defined as a template or

description for solving a recurring design problem [1].

Gamma et al. [1], commonly referred to as the GoF,

were the first to catalog a collection of 23 commonly

used design patterns. Apart from enabling the reuse of

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

343

design concepts, these design patterns were considered

useful for making designs more flexible and elegant.

Past research has shown that these design patterns

have a positive impact on different software quality

factors e.g. reusability, understandability,

maintainability, etc. [2]. Software quality, however,

can also be improved by reducing its complexity.

Naturally, code that is less complex is easy to

understand, maintain, modify, and reuse. It is also less

error prone.

One of the commonly used metrics for quantitatively

measuring code complexity is the cyclomatic

complexity metric proposed by McCabe [3]. Given a

program, it identifies the number of linearly

independent paths through that program [3]. Generally

speaking, the more the number of conditional

statements (representing branching logic) in a

program, the more the value of its cyclomatic

complexity. Apart from the number of conditional

statements (e.g. if-else, switch-case, etc.), the size of

the software itself has an impact on its complexity.

SLOC (Source Lines of Code) is one of the mostly

commonly used metric for measuring the physical size

of a program [4].

For object-oriented programs (including those written

using design patterns), the well-known suite of OO-

metrics proposed by Chidamber and Kemerer [5] can

be used to measure complexity. This suite consists of

six metrics which are commonly referred to as the CK

metrics. Table 1 includes a brief description of each of

these six CK metrics.

Even though researchers have conducted different

studies to explore the impact of design patterns on

different aspects of software quality [2,6], little work

has been done to empirically examine the impact of

design patterns on software complexity – one of the

most important quality factors [6]. To the best of our

knowledge, no past research has systematically

assessed the impact of all 23 GoF design patterns on

cyclomatic complexity, values of CK metrics, number

of classes, and size measured using SLOC. This

research is an attempt to fill this gap.

TABLE 1. CK METRICS [5]

Name Description

WMC (Weighted

Methods per Class)

Aggregated value of weights

for the methods defined in a

class

DIT (Depth of

Inheritance Tree)

The length of the longest

inheritance path from a root

class to the current class

NOC (Number of

Children)

Number of sub-classes which

inherit directly from the

current class

CBO (Coupling

Between Objects)

The number of other classes

which are coupled to the

current class

RFC (Response For a

Class)

Sum of the number of methods

in a class and other remote

methods those directly be

called by that class

LCOM (Lack of

Cohesion of

Methods)

Lack of cohesion among the

methods of a class

We gathered before and after versions of programs

written to solve the same problem. The only difference

between the before and after versions was that the

before version was written without using any design

pattern whereas the after version used one of the 23

GoF design patterns. The before/after program pairs

were then analyzed to quantitatively assess the impact

of using design patterns on software complexity and

size.

The next section briefly summarizes the relevant work

in this area. Section three provides the details of our

research methodology while section four contains a

discussion on the main results of our research. Finally,

section five concludes this paper by summarizing our

main findings and providing directions for future work

in this area.

2. LITERATURE REVIEW

After design patterns were first introduced by Gamma

et al. [1], people have shown immense interest in the

use of design patterns. Lange and Nakamura, for

instance, looked at how design patterns improve

program understandability [7]. Their study, however,

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

344

focused on only one quality attribute and was

applicable on only a few design patterns.

Wydaeghe et al. [8] built an OMT (Osteopathic

Manipulative Treatment), editor and presented a

detailed study on the use of six different design

patterns. They described the impact of these patterns

on modularity, reusability, understandability, and

flexibility. They concluded that, while design patterns

have various advantages not all design patterns have a

positive impact on software quality. This study also

was limited to authors’ own experiences and the

evaluations made and conclusions drawn may not be

applicable to all design patterns.

McNatte and Bieman [9] evaluated the coupling

between design patterns and their impact on quality

attributes. Their results reveal that maintainability,

reusability, and performance can be greatly improved

when design patterns are abstracted and loosely

coupled. Subburaj et al. [10] also assessed the effect

of design patterns on software reusability. Their

results reveal that design patterns improve

architecture-level reusability of software.

Prechelt et al. [11] carried out an experiment on four

systems to analyze the impact of five design patterns

(i.e. Abstract, Factory, Composite, Decorator,

Observer and Visitor) on maintainability. They

concluded that design patterns are highly preferable

even for simple design solutions. Hegedus et al. [12]

also assessed the impact of design patterns on software

maintainability. They took into account a total of three

hundred revisions of the J Hot Draw software system.

Their results revealed that the system’s maintainability

showed great improvement after using design patterns.

This conclusion is corroborated by another

experiment, conducted by Abdullah [13], to study the

impact of design patterns on maintainability and

performance. The results of this experiment also show

that applying design patterns helps in attaining fairly

good maintainability.

Rudzki [14] chose a slightly different approach. He

assessed the impact of two distinct design patterns (i.e.

Command and Façade) on the same software to see

how the two differed in their respective impact on the

level of performance of the software. While

conducting this study, he ran the software in nine

different test cases and reached the conclusion that the

Command design pattern worked better than Façade

and had a positive impact on software performance.

Jeanmart et al. [15] assessed how the Visitor design

pattern affects quality factors like understandability

and maintainability. They concluded that the Visitor

pattern is more time consuming in understanding and

handling of tasks that require adjustments to be made.

However, it was also revealed that when the Visitor

design pattern is used in its canonical form, much less

work and effort is required for adjustment tasks.

Aydinoz [16] applied refactoring on object-oriented

programs with design patterns and found that

complexity in terms of CBO (Coupling Between

Objects), WMC (Weighted Method Per Class), and

RFC (Response for a Class) had reduced. Huston [17]

theoretically evaluated the impact of design patterns

on class metric scores. He compared the complexity

score of three design patterns (i.e. Bridge, Mediator,

and Visitor) with non-pattern solutions. His results

indicated that quality could improve by reducing the

NOC (Number of Children) value.

Hsueh et al. [18] theoretically analyzed the impact of

design patterns using QMOOD (Quality Model for

Object Oriented Design). Their results showed that

polymorphism and abstraction can be improved by

using design patterns and Singleton design pattern

does not contribute to quality improvement. Yu and

Ramaswamy [19] analyzed the impact of 13 design

patterns on class structure quality extracted from five

different open source projects. Their results revealed

that the use of design patterns can increase class

complexity.

3. RESEARCH METHODOLOGY

Fig. 1 shows the main steps of our research process.

The first step was the selection of design patterns for

this experiment. We selected only GoF design patterns

since they are widely used in the software industry.

These 23 patterns are divided into three purposes (i.e.

creational, behavioral and structural) and two scopes

(i.e. object and class). The choice of appropriate

object-oriented programming languages was the next

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

345

step. C++ and Java were selected as they are popular

object-oriented languages and a lot of applications

patterns.

The third step was the collection of programs written

with and without design patterns for the same problem.

For most of the GoF design patterns, we found such

programs with before and after versions at

SourceMaking.com [20]. Before versions of just four

design patterns were missing there. These were written

by the first author herself [21]. Fig. 2 depicts the

before/after program pair for the Builder design

pattern.

FIG 1: RESEARCH STEPS

FIG. 2. PART OF BEFORE/AFTER PROGRAM PAIR FOR BUILDER (CODE TAKEN FROM SOURCEMAKING.COM [20])

Design

Pattern

Selection

Programming

Language

Selection

Collect/Develop

Programs with Design

Patterns

Collect/Develop

Programs without Design

Patterns

Programs’

Analysis

And

Results

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

346

In the fourth step, we used “Source Monitor” [22] and

“CCCC” [23] - two measurement/assessment tools - to

compare the programs written using design patterns

with those written without using design patterns.

These tools were selected because they can measure

values of selected metrics for both C++ and Java

programming languages. The program pairs were

compared using average and aggregate cyclomatic

complexity and four CK metrics (i.e. WMC, DIT,

NOC and CBO) since “CCCC” provides values for

just these four metrics. Size was measured by counting

the non-blank and non-comment SLOC. Table 2

summarizes the choices made at each step of our

research process.

TABLE 2. PARAMETER VALUES

Parameter Value(s)

Design

Patterns
GoF Design Patterns

Programming

Language
C++, Java

Tools Used

for Analysis

SourceMonitor, C & C++ Code

Counter (CCCC)

Comparison

Attributes

Average & Aggregate Cyclomatic

Complexity,

Size of Code (SLOC), Number of

Classes,

CK Metrics (WMC, DIT, NOC

and CBO)

4. RESULTS AND ANALYSIS

Table 3 shows the detailed comparison of program

pairs with respect to size and cyclomatic complexity.

It contains the values of SLOC, number of classes,

average cyclomatic complexity, and aggregate

cyclomatic complexity for programs written before

and after using design patterns. Note that 24 program

pairs (instead of 23) are selected and analyzed since

the Adapter design pattern has two variants – one for

class scope and one for object scope. The data in Table

3 reveals that SLOC increases for most of the design

patterns except Composite, Command, Template

Method, and Visitor. The number of classes increases

or remains the same for all the design patterns. It can

be seen that the average cyclomatic complexity of the

programs either decreases or remains the same for

most of the design patterns except Flyweight, Chain of

Responsibility and Observer. The aggregate

cyclomatic complexity increases for Abstract Factory,

Factory Method, Prototype, Flyweight, Proxy, Chain

of Responsibility, and Mediator. It remains the same

or decreases for rest of the design patterns.

Fig. 3 shows, pictorially, the impact of using different

design patterns on program average cyclomatic

complexity. In the case of Builder, Prototype, Adapter

(Class), Interpreter, Mediator, State, and Template

Method the complexity decreases by at least 25% and

by at most 53%. In the case of Abstract Factory,

Decorator, and Strategy there is no change in average

cyclomatic complexity. For Flyweight, Chain of

Responsibility and Observer, there is only a slight

(around 10%) increase in complexity.

FIG. 3. IMPACT OF DESIGN PATTERNS ON PROGRAM AVERAGE CYCLOMATIC COMPLEXITY

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

347

TABLE 3. BEFORE AND AFTER USING DESIGN PATTERNS – SIZE & CYCLOMATIC

COMPLEXITY COMPARISON

No

.
Purpose Scope PL Design Pattern

SLOC
No. of

Classes

Average

Cyclomatic

Complexity

Aggregate

Cyclomatic

Complexity

B A B A B A B A

1.

Creational

Patterns

Object C++ Abstract Factory 58 80 6 9 1.00 1.00 1 4

2. Object Java Builder 93
11

4
4 5 2.56 1.38 12 4

3. Class C++ Factory Method 50 55 4 4 2.75 2.40 7 10

4. Object C++ Prototype 50 51 4 5 2.75 1.50 7 9

5. Object C++ Singleton 39 40 1 1 1.50 1.17 4 3

6.

Structural

Patterns

Class Java
Adapter

25 46 3 5 2.00 1.14 3 1

7. Object C++ 33 39 5 5 1.76 1.58 1 1

8. Object C++ Bridge 68 72 5 6 2.00 1.42 4 4

9. Object Java Composite 31 28 3 3 1.50 1.17 2 1

10. Object C++ Decorator 66 74 6 6 1.00 1.00 1 1

11. Object C++ Façade
13

5

14

3
4 4 2.22 2.00 10 10

12. Object C++ Flyweight 29 54 1 2 1.67 1.83 2 6

13. Object C++ Proxy 31 52 1 2 1.50 1.43 3 4

14.

Behaviora

l Patterns

Object Java
Chain of

Responsibility
27 41 2 2 2.50 2.75 3 4

15. Object C++ Command 77 35 2 3 1.56 1.20 3 3

16. Class Java Interpreter 54 67 1 4 5.50 2.58 10 5

17. Object Java Iterator 26 52 2 3 1.67 1.50 1 1

18. Object C++ Mediator 49 55 1 2 2.40 1.50 4 5

19. Object C++ Memento 43 44 2 3 1.70 1.58 3 3

20. Object C++ Observer 48 60 3 4 1.00 1.13 1 1

21. Object Java State 40 58 2 6 2.50 1.22 4 1

22. Object C++ Strategy 97
10

2
5 5 1.50 1.50 4 4

23. Class C++ Template Method 60 58 2 3 3.20 2.40 11 9

24. Object C++ Visitor 85 85 3 6 1.13 1.09 1 1

*PL= Programming Language, B = Before, A = After

Fig. 4 depicts how program aggregate cyclomatic

complexity is influenced by design patterns. The

aggregate complexity decreases between 18-75% for

Builder, Singleton, Adapter (Class), Composite,

Interpreter, State, and Template Method. In the case of

Adapter (Object), Bridge, Decorator, Façade,

Command, Iterator, Memento, Observer, Strategy, and

Visitor there is no change in aggregate complexity. For

Abstract Factory and Flyweight, the increase in

aggregate complexity is more prominent as compared

to the increase in case of Factory Method, Prototype,

Proxy, Chain of Responsibility, and Mediator. This

decrease in the average and aggregate cyclomatic

complexity of the programs examined in this research

implies that using design patterns may lead to an

improvement in program understandability and,

thereafter, an enhancement in program flexibility and

maintainability.

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

348

Fig. 5 shows, graphically, the impact of using different

design patterns on program size (SLOC). Fig. 5 clearly

reveals that the size in SLOC decreases for Composite,

Command, and Template Method only. In the case of

Visitor, there is no change in size. The increase in size

is very nominal for Prototype, Singleton, Bridge,

Façade, Memento, and Strategy design patterns.

Change is more prominent (at least 40%) for some

patterns namely Adapter (Class), Flyweight, Proxy,

Chain of Responsibility, Iterator, and State. This

increase in program size may simply be due to the fact

FIG. 4. IMPACT OF DESIGN PATTERNS ON PROGRAM AGGREGATE CYCLOMATIC COMPLEXITY

FIG 5: .IMPACT OF DESIGN PATTERNS ON PROGRAM SIZE (SLOC)

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

349

FIG. 6. IMPACT ON CYCLOMATIC COMPLEXITY FOR DIFFERENT CATEGORIES OF DESIGN PATTERNS (A) AVERAGE

CYCLOMATIC COMPLEXITY (B) AGGREGATE CYCLOMATIC COMPLEXITY

FIG.7. IMPACT ON SIZE AND NUMBER OF CLASSES FOR DIFFERENT CATEGORIES OF DESIGN PATTERNS (A) SIZE (SLOC) (B)

NUMBER OF CLASSES

that design patterns add additional classes and layers

of indirection to achieve design elegance and

flexibility.

Fig. 6(a-b) depicts the impact on average and

aggregate cyclomatic complexity, respectively, for

different categories of design patterns. The average

cyclomatic complexity decreases for all combination

of scopes and purposes. This decrease in complexity is

most prominent for class behavioral design patterns.

The aggregate cyclomatic complexity decreases for

object creational, class structural, and both

combinations of behavioral design patterns only. This

decline, however, is most prominent for class

structural and class behavioral design patterns.

Fig. 7(a-b) illustrates the impact on program size

(SLOC) and number of classes, respectively, for

different categories of design patterns. It is evident

that, after using design patterns, the SLOC and number

of classes increase for all categories of design patterns.

The only exception to this is class creational design

patterns for which the number of classes remain the

same.

This slight increase in the program size and the

number of classes is the necessary by-product of using

design patterns which achieve design reusability by

introducing additional classes and hence program

statements.

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

350

TABLE 4. BEFORE AND AFTER USING DESIGN PATTERNS – CK METRICS COMPARISON

No

.
Purpose Scope PL

Design

Pattern

WMC DIT NOC CBO

B A % B A % B A % B A %

1.

Creational

Patterns

Object C++
Abstract

Factory
9 16 77.8 4 6 50.0 4 6 50.0 8 14 75.0

2. Object Java Builder 9 20 122.2 0 3 - 0 3 -
2

4
38 58.3

3. Class C++
Factory

Method
5 6 20.0 3 3 0.0 3 3 0.0 6 6 0.0

4. Object C++ Prototype 5 10 100.0 3 3 0.0 3 3 0.0 6 8 33.3

5. Object C++ Singleton 6 7 16.7 0 0 - 0 0 - 0 0 -

6.

Structural

Patterns

Class Java
Adapter

3 8 166.7 0 2 - 0 2 - 2 10 400.0

7. Object C++ 10 11 10.0 1 1 0.0 1 1 0.0 8 11 37.5

8. Object C++ Bridge 8 12 50.0 0 4 - 0 4 - 2 10 400.0

9. Object Java Composite 5 6 20.0 0 2 - 0 2 - 8 12 50.0

10. Object C++ Decorator 10 17 70.0 7 8 14.3 8 5
-

37.5

1

6
16 0.0

11. Object C++ Façade 9 11 22.2 0 0 - 0 0 - 6 6 0.0

12. Object C++ Flyweight 3 6 100.0 0 0 - 0 0 - 0 2 -

13. Object C++ Proxy 4 7 75.0 0 0 - 0 0 - 0 2 -

14.

Behaviora

l Patterns

Object Java
Chain of

Responsibility
2 4 100.0 0 0 - 0 0 - 4 4 0.0

15. Object C++ Command 5 7 40.0 0 0 - 0 0 - 0 2 -

16. Class Java Interpreter 2 12 500.0 0 3 - 0 3 - 2 12 500.0

17. Object Java Iterator 0 0 - 0 0 - 0 0 - 0 0 -

18. Object C++ Mediator 5 6 20.0 0 0 - 0 0 - 0 4 -

19. Object C++ Memento 5 7 40.0 0 0 - 0 0 - 0 2 -

20. Object C++ Observer 8 9 12.5 0 2 - 0 2 - 4 12 200.0

21. Object Java State 4 10 150.0 0 4 - 0 4 - 4 24 500.0

22. Object C++ Strategy 13 13 0.0 3 3 0.0 3 3 0.0 6 6 0.0

23. Class C++
Template

Method
5 6 20.0 0 2 - 0 2 - 0 4 -

24. Object C++ Visitor 14 14 0.0 4 4 0.0 4 4 0.0
2

6
26 0.0

 *PL=Programming Language, B = Before, A = After, %=Percentage Change

Table 4 shows the detailed comparison with respect to

the values of four CK metrics. It can be seen from the

data of Table 4 that the values of WMC, DIT (Depth

of Inheritance Tree), NOC, and CBO increase or

remain the same for all design patterns. The only

exception is the value of NOC for Decorator. The

values of WMC, DIT, NOC, and CBO remain the

same for Iterator, Strategy, and Visitor.

Fig. 8(a-d) shows the impact of design patterns on

values of four CK metrics for all combinations of

scopes and purposes. As is evident from Fig. 8(a-d),

after using design patterns, the values of WMC, DIT,

NOC, and CBO increase for almost all categories of

design patterns. The values of DIT, NOC, and CBO

remain the same for the class creational (i.e. Factory

Method) design patterns only. The increase in the

values of these four CK metrics for most design

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

351

 FIG.8. IMPACT ON VALUES OF CK METRICS FOR DIFFERENT CATEGORIES OF DESIGN PATTERNS (A) IMPACT ON WMC (B)

IMPACT ON DIT (C) IMPACT ON NOC (D) IMPACT ON CBO

patterns may be attributed to the fact that almost all

design patterns use inheritance thereby adding

additional parent and child classes and their associated

methods.

5. CONCLUSIONS

The aim of this research was to evaluate,

quantitatively, the impact of all 23 GoF design patterns

on software size and complexity. Program pairs

written with and without these design patterns were

selected and analyzed for this purpose. The results of

this study reveal that design patterns have a positive

impact on the average cyclomatic complexity of the

system i.e. average complexity decreases for most of

the patterns. The impact on the values of CK metrics,

number of classes, and size (SLOC) of software,

however, is mostly negative.

This research is the first attempt in studying the

quantitative impact of all 23 GoF design patterns on

software complexity and size. Even though the results

seem promising, there is lots of room for further

exploration and experimentation. For instance, so far

we have looked at programs with medium complexity

level. It would be interesting to determine the impact

of design patterns on more complex industrial and

open-source projects (obtained, for instance, from

GitHub). Another beneficial exercise would be to

study the impact of using a combination of related

design patterns (e.g. Abstract Factory and Factory

Method) on program size and complexity. Different

assessment tools (other than the ones we selected)

could be used for this purpose. Similarly, it also seems

worthwhile to replicate this experiment for different

programming languages, project sizes, and application

domains. Broadening the scope of this study may help

us in drawing further insights regarding the impact of

design patterns.

ACKNOWLEDGEMENT

The authors acknowledge the Department of

Computer Science and Information Technology,

University of Lahore, and Department of Computer

Science, National University of Computer and

Emerging Sciences Lahore, Pakistan for providing

facilities to do this research.

REFERENCES

[1] Gamma, E., Helm, R., Johnson, R., and

Vlissides, J., “Design Patterns – Elements of

Reusable Object-Oriented

Software”, Addison-Wesley, 1994.

Impact of Design Patterns on Software Complexity and Size

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

352

[2] Riaz, M.N., “Impact of Software Design

Patterns on the Quality of Software: A

Comparative Study”, Proceedings of

International Conference on Computing,

Mathematics and Engineering Technologies,

pp. 1-6, 2018.

[3] McCabe, T J., “A Complexity Measure”,

IEEE Transactions on Software Engineering,

Volume. 2, pp. 308-320, 1976.

[4] Nguyen, V., Deeds-rubin, S., Tan, T.,

Boehm, B., “A SLOC Counting Standard”,

COCOMO-II Forum, 2007.

[5] Chidamber, S.R., and Kemerer, C.F., “A

Metrics Suite for Object Oriented Design”,

IEEE Transactions on Software Engineering,

Volume 20, pp. 476–493, 1994.

[6] West, A., “NASA Study on Flight Software

Complexity”, Technical Report, NASA,

2009.

[7] Lange, D.B., and Nakamura, Y., “Interactive

Visualization of Design Patterns Can Help in

Framework Understanding”, Proceedings of

10th Annual Conference on Object-Oriented

Programming Systems, Languages, and

Applications, pp. 342 -357, 1995.

[8] Wydaeghe, B., Verschaeve, K., Michiels, B.,

Damme, B.V., Arckens, E., and Jonckers, V.,

“Building an OMT-Editor Using Design

Patterns: An Experience Report”,

Proceedings of Technology of Object-

Oriented Languages, 1998.

[9] McNatt, W.B., and Bieman, J.M., “Coupling

of Design Patterns: Common Practices and

their Benefits”, Proceedings of 25th

Conference on Computer Software and

Applications, pp. 574-579, 2001.

[10] Subburaj, R., Jekese, G., Hwata, C., “Impact

of Object Oriented Design Patterns on

Software Development”, International

Journal of Scientific & Engineering

Research, Volume 6, pp. 961-967, 2015.

[11] Prechelt, L., Unger, B., Tichy, W.F.,

Brossler, P., and Votta, L.G., “A Controlled

Experiment in Maintenance: Comparing

Design Patterns to Simpler Solutions”, IEEE

Transactions on Software Engineering,

Volume 27, pp. 1134-1144, 2001.

[12] Hegedűs, P., Dénes, B., Rudolf, F., and

Tibor, G., “Myth or Reality? Analyzing the

Effect of Design Patterns on Software

Maintainability”, Computer Applications for

Software Engineering, Disaster Recovery,

and Business Continuity, pp. 138-145, 2012.

[13] Abdullah, F., “Evaluating Impact of Design

Patterns on Software Maintainability and

Performance”, Thesis, Institute of

Informatics Faculty of Mathematics and

Natural Sciences, University of Oslo, 2017.

[14] Rudzki, J., “How Design Patterns Affect

Application Performance–a Case of a Multi-

tier J2EE Application”, Scientific

Engineering of Distributed Java

Applications, pp. 12-23, 2005.

[15] Jeanmart, S., Gueheneuc, Y.G., Sahraoui, H.,

and Habra, N., “Impact of the Visitor Pattern

on Program Comprehension and

Maintenance”, Proceedings of 3rd

International Symposium on Empirical

Software Engineering and Measurement, pp.

69-78, 2009.

[16] Aydınoz, B., “The Effect of Design Patterns

on Object–Oriented Metrics and Software

Error–Proneness”, Thesis, Middle East

Technological University, Turkey, 2006.

[17] Huston, B., “The Effects of Design Pattern

Application on Metric Scores”, Journal of

Systems and Software, Volume 58, pp. 261-

269, 2001.

[18] Hsueh, N.L., Chu, P.H., and Chu, W., “A

Quantitative Approach for Evaluating the

Quality of Design Patterns”, Journal of

Systems and Software, Volume 81, pp. 1430-

1439, 2008.

[19] Yu, L., and Ramaswamy, S., “An Empirical

Study of the Effect of Design Patterns on

Class Structural Quality”, Handbook of

Research on Emerging Advancements and

Technologies in Software Engineering, pp.

106-125, 2014.

[20] SourceMaking: https://sourcemaking.com/

[17 December, 2018]

[21] Design Pattern Programs:

http://zelogix.com/programs/ [27 November,

2018]

[22] Source Monitor:

http://www.campwoodsw.com/sourcemonito

r.html [15 September, 2017]

[23] CCCC – C & C++ Code Counter:

http://cccc.sourceforge.net/ [02 November,

2018]

[24] GitHub Inc.: https://github.com/ [01 January,

2019]

