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 A new family of iterative methods with a strong converging order of twenty to 

solve nonlinear equations and systems is presented in this study. A simple strategy 

of blending some existing methods is used to develop the proposed family. The 

theoretical order of convergence is derived by employing Taylor’s series. The 

performance of the iterative methods in the proposed family is examined by 

applying the methods on real-world engineering problems. A nonlinear equation 

modeled by NASA for launching “Wind” satellite and some other complex 

applied systems, such as combustion problem, tank-reactor problem, kinematic 

synthesis mechanism, neurophysiology application and one boundary-value 

problem, have been solved to check the performance of the proposed family 

against other methods under similar test conditions. All the numerical results show 

that the proposed family converges very fast in complex and difficult problems as 

compared to other well-known methods. The methods in the proposed family have 

an efficiency improvement of 11.99% over the classical Newton method for scalar 

nonlinear equations. 

1. Introduction 

Let F
~
(x) = (𝑓1(x), 𝑓2(x), . . . , 𝑓𝑛(x))

𝑡
 be a nonlinear 

system of n algebraic equations in n unknowns which 

can also be written as F(x) = 0, where                                  

x = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 . Finding the solutions to such 

systems is very important and challenging task in 

computational mathematics. The task is more 

complicated when nonlinear equations are involved in 

systems. The systems of nonlinear equations are used in 

many mathematical and engineering problems. Some 

case study nonlinear systems like neurophysiology 

application, chemical equilibrium problem, kinematics 

problem, combustion application, economics modeling 

problem, arithmetic benchmark problem were studied in 

[1]. Awawdeh [2] highlighted the applications iterative 

methods on nonlinear systems for non-adiabatic stirred 

tank reactors and steering problem. 

The systems of nonlinear equations also result from 

the discretization of nonlinear differential equations by 

using well-known finite element, finite volume and 

finite difference methods. Some nonlinear systems 

appearing after the discretization of nonlinear elliptic 

partial differential equation by means of finite element 

method were discussed in [3]. Similarly, nonlinear 
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systems arise from the discretization of second order 

nonlinear ordinary differential equation by employing 

finite difference method [4], nonlinear ordinary and 

partial differential equations by using Chebyshev 

pseudo-spectral collocation method [5], and nonlinear 

one-dimensional heat conduction equation by using 

finite difference method [6]. The discretization process 

of nonlinear integral equations also require nonlinear 

systems to be solved such as Chandrasekhar’s integral 

equation related to radiative transfer theory, gas kinetic 

theory and transport of neutrons in [4], [7-10] and 

Fredholm–Volterra Hammerstein integral equation in 

[11-12]. 

In situation where important variables, representing 

important properties of physical systems, are related in 

form of a nonlinear system, the numerical methods play 

a vital role to acquire robust, accurate and stable 

solution. Due to this importance, many iterative methods 

have been developed to solve such systems. The well-

known classical Newton’s method (NM) [13] is a very 

basic technique to find the solutions of systems of 

nonlinear equations. The method is defined by the well-

known scheme: 

x𝑖+1 = x𝑖 − F′(x𝑖)
−1F(x𝑖), 𝑖 = 0,1,2,…        (1) 

The NM requires one evaluation of F and one 

evaluation of its Jacobian which comprises of first order 

partial derivatives of F. The NM finds solution with 

second order convergence. In recent years, many 

modifications to NM have been proposed in order to 

accelerate the order of convergence, and to get the 

solution in fewer numbers of iterations. It is obvious that 

the new modifications with higher order convergence 

need extra evaluations of function and higher order 

partial derivatives. Noor [14] proposed an iterative 

method of third order convergence in 2006 by using first 

and second order derivatives. Noor [15] presented third 

and fourth order iterative methods which require five 

and eight new functions and derivatives respectively in 

2010. Waseem [8] developed a fifth order method in 

2016 which require five functional evaluations. 

Srivastava [3] proposed fifteenth order convergent 

iterative method to solve nonlinear systems in 2016 

requiring seven evaluations of functional and first order 

partial derivatives per iteration. Zhong Yong presented 

an iterative method of ninth order convergence for 

nonlinear systems in [16]. Raza [17] proposed an 

eleventh order convergent method for nonlinear 

equations and systems. 

Different techniques have been used in past to 

develop higher order convergent methods such as 

Adomian decomposition method [18], rules of 

quadrature [19], method of variational iteration [20] and 

homotopy perturbation method [21]. Shaikh et al. 

[22,23] attempted to solve the nonlinear Colebrook’s 

equation for Darcy friction factor in rough pipes under 

highly turbulent flow by utilizing an iterative scheme 

based on the use of fixed-point method in a 1000 by 

1000 mesh of Reynolds number and relative roughness 

values. The developed database was designed for further 

studies on explicit equations for the Colebrook’s 

equation with soft computing techniques.   

The order of convergence of methods may also be 

accelerated by combining two different iterative 

methods [24]. Two methods of converging orders 𝑞1 and 

𝑞2 respectively may be combined to achieve a new 

iterative method of order 𝑞1𝑞2. This technique may 

require new evaluations of functions and derivatives but 

results in rapid acceleration of order of convergence. 

The technique of [24] is referred here as the blending 

technique. The main objective of this paper is to 

accelerate the convergence order of iterative methods to 

obtain the desirable solution in lesser number of 

iterations. To do so, we use the same blending technique, 

i.e. combining two different iterative methods to 

develop some higher order convergent methods, 

particularly, a family of twentieth order convergent 

methods. 

The paper is arranged as follows: Section-1 

highlights importance of nonlinear solvers in 

mathematics, science and engineering. Related literature 

on the proposition of nonlinear solvers and their 

performance is added, and the main objectives of this 

study are described. Section-2 contains some important 

results which are required to prove the order of 

convergence. The development of the proposed family 

and theorems regarding its theoretical order of 

convergence using Taylor’s expansion are discussed. 

The efficiency indices of the methods in proposed 

family and some other well-known methods are also 

discussed in Section-2. The numerical setup to verify 

performance of proposed family and the some applied 

case study nonlinear systems of equations from 

engineering and science are presented in Section-3. The 

application of the proposed methods is also discussed 

with comments on their performance in Section-3. 

Finally, the main contributions of this paper are 

presented in the conclusion, Section-4. 

 



 

© Mehran University of Engineering and Technology 2023                                167 

2. Material and Methods 

In this section, we start with some basic definitions and 

concepts. The general form of the proposed family is 

discussed and theorems concerning the order of 

convergence of methods in the proposed family are 

proved. We also compare the efficiency indices of 

proposed methods against some other existing methods.  

2.1 Some Basic Concepts 

Here, a few important definitions and a lemma are 

presented to support the main contributions of this study. 

Definition 1. [4] 

Let {x𝑖}, 𝑖 ≥ 1 be a sequence in R𝑛 that converges to 

s. Then the sequence is said to be of converging order p, 

p>1, if there exists 𝑀,𝑀 > 0, and i0 such that 

‖e𝑖+1‖ ≤ 𝑀‖e𝑖‖
𝑝 ∀𝑖 ≥ 𝑖0,         (2) 

where e𝑖 = x𝑖 − s 

Definition 2. [4] 

For multidimensional case, if e𝑖 = x𝑖 − s be the error at 

ith iteration, then the error equation is defined as, 

e𝑖+1 = 𝐿(e𝑖)
𝑝 + 𝑂(e𝑖)

𝑝+1         (3) 

where, p represents the converging order and L is a p-

linear function, i.e. 𝐿 ∈ £(R𝑛 ×. . .× R𝑛, R𝑛), £ is the set 

of linear functions and e𝑖 = (𝑒𝑖, 𝑒𝑖 , … , 𝑒𝑖). 

Lemma 1. [26] 

Let F: 𝑄 ⊆ 𝑅𝑛 → 𝑅𝑛 be a p-times Frechet differentiable 

in a convex set 𝑄 ⊆ 𝑅𝑛, then for any x, ℎ ∈ 𝑅𝑛 the 

following expression holds true: 

F(x + ℎ) = F(x) + F′(x)ℎ +
1

2!
F′′(x)ℎ2 

+
1

3!
F′′′(x)ℎ3+. . . + +

1

𝑢!
F(𝑢−1)(x)ℎ(𝑢−1) + 𝑅𝑢       (4) 

where ‖𝑅𝑢‖ ≤
1

𝑢!
sup
0<𝑡<1

‖F(𝑢)(x + 𝑡ℎ)‖‖ℎ‖𝑢 and  

ℎ𝑢 = (ℎ, ℎ, . .𝑢 . , ℎ). 

2.2 Development of Proposed Family of Nonlinear 

Iterative Methods 

Following the blending strategy suggested in [24], we 

present a new family of iterative methods having 

twentieth order of convergence by blending a fourth 

order method in [25] and the fifth order composite 

Newton-Traub method in [4]. The general form of the 

proposed family of five-step iterative methods for 

nonlinear equations and systems can be defined as:   

{
 
 
 
 
 

 
 
 
 
 a𝑖 = x𝑖 −

2

3
F′(x𝑖)

−1F(x𝑖)

y𝑖 = x𝑖 − [
(−

1

2
) I +

9

8
F′(a𝑖)

−1F′(x𝑖)

+
3

8
F′(x𝑖)

−1F′(a𝑖)

] F′(x𝑖)
−1F(x𝑖)

z𝑖 = y𝑖 − 𝜓F
′(y𝑖)

−1F(y𝑖)

w𝑖 = y𝑖 − [(1 +
1

2𝜓
) I −

1

2𝜓
F′(y𝑖)

−1F′(z𝑖)] F
′(y𝑖)

−1F(y𝑖)

x𝑖+1 = w𝑖 − [𝐴I + 𝐵F
′(y𝑖)

−1F′(z𝑖)]F
′(y𝑖)

−1F(w𝑖)
𝑖 = 0,1,2, …

(5) 

where, I is the identity matrix of order n, 𝜓 ≠ 0 is a 

fixed real number, and the parameters A, B, depending 

on 𝜓, are chosen so that the order of convergence of the 

proposed methods is twenty. 

2.3 Convergence Analysis of the Proposed Family 

We first prove order of convergence of methods in the 

proposed family for any fixed real number 𝜓 ≠ 0. The 

conditions on the parameters A and B so that the 

proposed methods have twentieth order of convergence 

are also outlined. Then, some special cases of the 

proposed methods will be discussed in the nest section. 

To prove the order of convergence for proposed 

family, we use the Taylor’s expansion for vector 

functions defined in Lemma 1 from [26]. 

Theorem 1. 

Let the function F: 𝑄 ⊆ 𝑅𝑛 → 𝑅𝑛be sufficiently 

differentiable in a convex set Q containing the zeros of 

F(x). Let us consider that F′(x) is continuous and 

nonsingular in s, then, the solution x obtained by using 

(5) converges to s with twentieth order convergence, if 

x0 close to s is taken as initial guess. 

Proof of Theorem 1. 

Let e𝑖 = x𝑖 − s. Using Taylor’s expansion for F(x𝑖), 

F(x𝑖) = F′(𝛼)[e𝑖 + c2e𝑖
2 + c3e𝑖

3 + c4e𝑖
4 + 𝑂(e𝑖

5)]        (6) 

where, 𝑐𝑗 =
F𝑗(𝛼)

𝑗!F′(𝛼)
, 𝑗 = 2,3, …   

Using Taylor’s expansion for F′(x𝑖), 

F′(x𝑖) = F′(𝛼)[I + 2c2e𝑖 + 3c3e𝑖
2 + 4c4e𝑖

3 + 𝑂(e𝑖
4)]      (7) 

The inversion of F′(x𝑖) becomes, 

F′(x𝑖)
−1 = F′(𝛼)−1 [

I − 2c2e𝑖 + (4c2
2 − 3c3)e𝑖

2

+(12c2c3 − 8c2
3 − 4c4)e𝑖

3

+𝑂(e𝑖
4)

]         (8) 

The multiplication of (8) and (6) becomes, 

F′(x𝑖)
−1F(x𝑖) = e𝑖 − c2e𝑖

2 + (2c2
2 − 2c3)e𝑖

3  

+(7c2c3 − 4c2
3 − 3c4)e𝑖

4 + 𝑂(e𝑖
5)          (9) 
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Using (9) in first step of (5), we have: 

ê𝑖 = a𝑖 − s =
1

3
[

e𝑖 + 2c2e𝑖
2 + (4c3 − 4c2

2)e𝑖
3

+(6c4 + 8c2
3 − 14c2c3)e𝑖

4 + 𝑂(e𝑖
5)
]      (10) 

Using Taylor’s expansion for F′(a𝑖), 

F′(a𝑖) = F′(𝛼) [
I + 2c2ê𝑖 + 3c3ê𝑖

2

+4c4ê𝑖
3 + 𝑂(ê𝑖

4)
]        (11) 

The inversion of F′(a𝑖) becomes, 

F′(a𝑖)
−1 = F′(𝛼)−1 [

I − 2c2ê𝑖 + (4c2
2 − 3c3)ê𝑖

2

+(12c2c3 − 8c2
3 − 4c4)ê𝑖

3

+𝑂(ê𝑖
4)

]      (12) 

The multiplication of (12) and (7) becomes, 

F′(a𝑖)
−1F′(x𝑖) = 2c2e𝑖 + 3c3e𝑖

2 + 4c4e𝑖
3 

−2c2ê𝑖 − 4c2
2e𝑖ê𝑖 − 6c2c3e𝑖

2ê𝑖 + (4c2
2 − 3c3)ê𝑖

2 

+(8c2
3 − 6c2c3)e𝑖 ê𝑖

2 + (12c2c3 − 8c2
3 − 4c4)ê𝑖

3       (13) 

Also the multiplication of (8) and (11) gives: 

F′(x𝑖)
−1F′(a𝑖) = −2c2e𝑖 + (4c2

2 − 3c3)e𝑖
2 

+(12c2c3 − 8c2
3 − 4c4)e𝑖

3 + 2c2ê𝑖 − 4c2
2e𝑖 ê𝑖 

+(8c2
3 − 6c2c3)e𝑖

2ê𝑖 + 3c3ê𝑖
2  − 6c2c3e𝑖ê𝑖

2 + 4c4ê𝑖
3       (14) 

Using (9), (10), (13) and (14) in second step of (5): 

ẽ𝑖 = y𝑖 − s = (
7

3
c2
3 − c2c3 +

c4

9
) e𝑖

4 +𝑂(e𝑖
5)      (15) 

Using Taylor’s expansion for F(y𝑖), 

F(y𝑖) = F′(𝛼)[ẽ𝑖 + c2ẽ𝑖
2 + c3ẽ𝑖

3 + 𝑂(ẽ𝑖
4)]      (16) 

F′(y𝑖)
−1 = F′(𝛼)−1 [

I − 2c2ẽ𝑖 + (4c2
2 − 3c3)ẽ𝑖

2

+(12c2c3 − 8c2
3 − 4c4)ẽ𝑖

3

+𝑂(ẽ𝑖
4)

]      (17) 

The product of (17) and (16) becomes, 

F′(y𝑖)
−1F(y𝑖) = ẽ𝑖 − c2ẽ𝑖

2 + (2c2
2 − 2c3)ẽ𝑖

3 

+(7c2c3 − 4c2
3 − 3c4)ẽ𝑖

4 + 𝑂(ẽ𝑖
5)                    (18) 

Using (18) in third step of (5), we have: 

e̅𝑖 = z𝑖 − s = (1 − 𝜓)ẽ𝑖 + 𝜓c2ẽ𝑖
2 + 𝜓(2c3 − 2c2

2)ẽ𝑖
3 

+𝜓(3c4 + 4c2
3 − 7c2c3)ẽ𝑖

4 + 𝑂(ẽ𝑖
5)        (19) 

Using Taylor’s expansion for F′(z𝑖), 

F′(z𝑖) = F′(𝛼)[I + 2c2e̅𝑖 + 3c3e̅𝑖
2 + 4c4e̅𝑖

3 + 𝑂(e̅𝑖
4)]      (20) 

The multiplication of (17) and (20) becomes, 

F′(y𝑖)
−1F′(z𝑖) = I − 2c2ẽ𝑖 + (4c2

2 − 3c3)ẽ𝑖
2 

+(12c2c3 − 8c2
3 − 4c4)ẽ𝑖

3 + 2c2e̅𝑖 − 4c2
2ẽ𝑖e̅𝑖 

+(8c2
3 − 6c2c3)ẽ𝑖

2e̅𝑖 + 3c3e̅𝑖
2 − 6c2c3ẽ𝑖e̅𝑖

2 + 4c4e̅𝑖
3        (21) 

Using (18) and (21) in fourth step of (5), we have: 

ĕ𝑖 = w𝑖 − s = (2c2
2 + (

3

2
𝜓 − 1) c3) ẽ𝑖

3 

−[9c2
3 + (

15

2
𝜓

−12
) c2c3 + (

2𝜓2

−6𝜓 + 3
) c4] ẽ𝑖

4 + 𝑂(ẽ𝑖
5)       (22) 

Using Taylor’s expansion for F(w𝑖), 

F(w𝑖) = F
′(𝛼)[ĕ𝑖 + 𝑂(ĕ𝑖

2)]        (23) 

Using (17), (21) and (23) in fifth step of (5): 

e𝑖+1 = (1 − 𝐴 − 𝐵)ĕ𝑖 + 2(𝐴 + (1 + 𝜓)𝐵)ẽ𝑖ĕ𝑖 

−(
(4c2

2 − 3c3)(𝐴 + 𝐵) + 10𝐵𝜓c2
2

+3𝜓(𝜓 − 2)𝐵c3
) ẽ𝑖

2ĕ𝑖         (24) 

For a family of twentieth order convergence, we take:  

𝐴 + 𝐵 = 1 and 𝐵 = −
1

𝜓
.       (25) 

Using (25) in (24), we get: 

e𝑖+1 = (6c2
2 + 3(𝜓 − 1)c3)ẽ𝑖

2ĕ𝑖       (26) 

Using (15) and (22) in (26), leads to: 

e𝑖+1 = [
6c2

2

+3(𝜓 − 1)c3
] [

2c2
2

+(
3𝜓

2
− 1) c3

]

(

 
 

7

3
c2
3

−c2c3

+
c4
9 )

 
 

5

e𝑖
20 

+𝑂(e𝑖
21)           (27) 

Equation (27) shows twentieth order of convergence of 

all methods of the proposed family (5) under imposed 

conditions on the parameters A and B, i.e. (25), and for 

a fixed real number 𝜓 ≠ 0.  

2.4 The Proposed Family with Some Particular Cases 

Using the impositions (25) in the general form of the 

proposed family (5), the final version of the iterative 

schemes of methods in proposed family take the form: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐚𝑖 = 𝐱𝑖 −

2

3
𝐅′(𝐱𝑖)

−1𝐅(𝐱𝑖)

𝐲𝑖 = 𝐱𝑖 − [
(−

1

2
) 𝐈 +

9

8
𝐅′(𝐚𝑖)

−1
𝐅′(𝐱𝑖)

+
3

8
𝐅′(𝐱𝑖)

−1𝐅′(𝐚𝑖)

] 𝐅′(𝐱𝑖)
−1𝐅(𝐱𝑖)

𝐳𝑖 = 𝐲𝑖 − 𝜓𝐅′(𝐲𝑖)
−1𝐅(𝐲𝑖)

𝐰𝑖 = 𝐲𝑖 − [(1 +
1

2𝜓
) 𝐈 −

1

2𝜓
𝐅′(𝐲𝑖)

−1𝐅′(𝐳𝑖)] 𝐅′(𝐲𝑖)
−1𝐅(𝐲𝑖)

𝐱𝑖+1 = 𝐰𝑖 − [(1 +
1

𝜓
) 𝐈 −

1

𝜓
𝐅′(𝐲𝑖)

−1𝐅′(𝐳𝑖)] 𝐅′(𝐲𝑖)
−1𝐅(𝐰𝑖)

𝑖 = 0,1,2, . . .                                                          (28)

 

For some particular cases, we take 𝜓 = 1,−1 ,−
1

2
. 

The algorithms of proposed methods A1, A2, A3 with 

these values are defined in schemes (29), (30) and (31). 
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{
 
 
 
 
 

 
 
 
 
 a𝑖 = x𝑖 −

2

3
F′(x𝑖)

−1F(x𝑖)

y𝑖 = x𝑖 − [
(−

1

2
) I +

9

8
F′(a𝑖)

−1
F′(x𝑖)

+
3

8
F′(x𝑖)

−1F′(a𝑖)

] F′(x𝑖)
−1F(x𝑖)

z𝑖 = y𝑖 − F′(y𝑖)
−1F(y𝑖)

w𝑖 = y𝑖 − [
3

2
I −

1

2
F′(y𝑖)

−1F′(z𝑖)] F′(y𝑖)
−1F(y𝑖)

x𝑖+1 = w𝑖 − [2I − F′(y𝑖)
−1F′(z𝑖)]F′(y𝑖)

−1F(w𝑖)

𝑖 = 0,1,2, . . . (29)

 

{
 
 
 
 
 

 
 
 
 
 a𝑖 = x𝑖 −

2

3
F′(x𝑖)

−1F(x𝑖)

y𝑖 = x𝑖 − [
(−

1

2
) I +

9

8
F′(a𝑖)

−1
F′(x𝑖)

+
3

8
F′(x𝑖)

−1F′(a𝑖)

] F′(x𝑖)
−1F(x𝑖)

z𝑖 = y𝑖 + F′(y𝑖)
−1F(y𝑖)

w𝑖 = y𝑖 − [
1

2
I +

1

2
F′(y𝑖)

−1F′(z𝑖)] F′(y𝑖)
−1F(y𝑖)

x𝑖+1 = w𝑖 − [F′(y𝑖)
−1F′(z𝑖)]F′(y𝑖)

−1F(w𝑖)

𝑖 = 0,1,2, . . . (30)

 

{
 
 
 
 
 

 
 
 
 
 a𝑖 = x𝑖 −

2

3
F′(x𝑖)

−1F(x𝑖)

y𝑖 = x𝑖 − [
(−

1

2
) I +

9

8
F′(a𝑖)

−1
F′(x𝑖)

+
3

8
F′(x𝑖)

−1F′(a𝑖)

] F′(x𝑖)
−1F(x𝑖)

z𝑖 = y𝑖 +
1

2
F′(y𝑖)

−1F(y𝑖)

w𝑖 = y𝑖 − [F′(y𝑖)
−1F′(z𝑖)]F′(y𝑖)

−1F(y𝑖)

x𝑖+1 = w𝑖 + [I − 2F′(y𝑖)
−1F′(z𝑖)]F′(y𝑖)

−1F(w𝑖)

𝑖 = 0,1,2, . . . (31)

 

The error equations of methods A1-A3 are defined in 

(32)-(34), respectively, 

e𝑖+1 = 3c2
2(4c2

2 + c3) (
7

3
c2
3 − c2c3 +

c4

9
)
5
e𝑖
20 + 𝑂(e𝑖

21)       (32) 

e𝑖+1 = 3(c2
2 − c3)(4c2

2 − 5c3) (

7

3
c2
3 − c2c3 

+
c4

9

)

5

e𝑖
20 + 𝑂(e𝑖

21)    (33) 

e𝑖+1 =
3

8
(4c2

2 − 3c3)(8c2
2 − 7c3)(

7

3
c2
3

−c2c3

+
c4

9

)

5

e𝑖
20 +𝑂(e𝑖

21)      (34) 

The coefficients of the error equations defined in 

(32)-(34) for methods A1-A3 depend on derivatives of 

the nonlinear function F(x) near the solution. While all 

the proposed methods: A1-A3 are twentieth order 

convergent, their numerical performance to achieve 

some pre-specified error tolerance may slightly differ 

due to different coefficients in (32)-(34).   

2.5 Efficiency Index 

The efficiency index E of an iterative method is 

calculated by the formula E=p1/m, also used by [8] where 

p denotes the converging order of method and m is the 

total computational cost (functional and derivative 

evaluations) taken by that method per iteration. For n 

dimensional case, the total computational cost m 

depends on “n” evaluations for new functions and “n2” 

evaluations for new first order partial derivatives. We 

compare the efficiency index of proposed family with 

well-known second order convergent classical NM and 

fifteenth order convergent method of Srivastava [3] 

denoted by M15 in the following discussion. Thus, the 

efficiency index of proposed family requiring three new 

functional evaluations and four new first order 

derivatives per iteration is 20
1
(3𝑛+4𝑛2)⁄

, whereas the 

efficiency indices of NM and M15 are 2
1
(𝑛+𝑛2)⁄

 and  

15
1
(4𝑛+3𝑛2)⁄

 respectively. For n= 1, i.e. for the case of 

scalar nonlinear equations the efficiency indices of the 

proposed methods A1-A3, the NM and the M15 

methods are 1.53412740, 1.41421356 and 1.47235670. 

The percentage improvement in efficiency index of the 

proposed methods over the NM and M15 methods are 

11.99% and 6.177%, respectively. The proposed 

methods are better in efficiency than NM and M15 

methods, and many other methods in literature. The 

comparison of efficiency indices of proposed family, 

NM and M15 versus order of nonlinear system (𝑛 >  1) 

is shown in Fig. 1. Further, it can be observed from Fig. 

1, as the size of system increase the efficiency indices of 

all methods decrease and there is no significant 

difference in the efficiency indices. 

 

Fig. 1. Efficiency index comparison for different size 

systems 

3. Numerical Setup, Results and Discussion 

In this section, we use the proposed algorithms A1, A2 

and A3 to solve some systems of nonlinear equations, 

including complicated case studies, as included here. 

The numerical test conditions are also explained. 

Finally, the results are discussed for all examples to 
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demonstrate the numerical performance, accuracy and 

efficiency of proposed methods. 

Example 1. A nonlinear model for the distance “r” of 

satellite “Wind” launched by NASA from earth 

discussed in [27] is given as. 

𝐺
𝑀𝑆𝑚

𝑟2
= 𝐺

𝑀𝑒𝑚

(𝑅 − 𝑟)2
+𝑚𝑟𝜔2 

Where, 𝐺 = 6.67 × 10−11, 𝑀𝑆 = 1.98 × 10
30[𝑘𝑔], 

𝑀𝑒 = 5.98 × 10
24[𝑘𝑔], m=the mass of satellite [kg], 

𝑅 = 1.49 × 1011[𝑚], 𝜔 =
2𝜋

𝑇
, 𝑇 = 3.15576 × 107[s]. 

We begin numerical proceedure with initial guess   

r0 = 2, to hit the required solution as given using 

schemes: 𝑟 = 147617750096.1504621902. 

Example 2. A system nonlinear equation from [7]. 

{
𝑥3 − 3𝑥𝑦2 + 𝑎1(2𝑥

2 + 𝑥𝑦) + 𝑏1𝑦
2 + 𝑐1𝑥 + 𝑎2𝑦 = 0

3𝑥2𝑦 − 𝑦3 − 𝑎1(4𝑥𝑦 − 𝑦
2) + 𝑏2𝑥

2 + 𝑐2 = 0
 

Where, a1=25, b1=1, c1=2, a2=3, b2=4, c2=5. Taking the 

initial guesses x0=[2, 12]T to find the required solutions 

of form:  x=[1.6359717996. . . , 13.8476653258. . .]. 

Example 3. The nonlinear system is taken from [5]: 

{

𝑥2𝑥3 + 𝑥4(𝑥2 + 𝑥3) = 0

𝑥1𝑥3 + 𝑥4(𝑥1 + 𝑥3) = 0

𝑥1𝑥2 + 𝑥4(𝑥1 + 𝑥2) = 0
𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 − 1 = 0

 

The initial approximations are x0=[0.5,0.5,0.5, -0.2]T 

and the solutions using numerical processes to attain are: 

x=[0.5773502692…, 0.5773502692…, 

 0.5773502692…, -0.2886751346…]. 

Example 4. A nonlinear system representing non-

adiabatic stirred tank reactors taken from [2] is. 

{
 
 
 

 
 
 

(1 − 𝑅) [
𝐷

10(1 + 𝛽1)
− 𝜙1] 𝑒

(
10𝜙1

1+
10𝜙1
𝛾

)

− 𝜙1

𝜙1 − (1 + 𝛽1)𝜙2 + (1 − 𝑅) [

𝐷

10
− 𝛽1𝜙1

−(1 + 𝛽2)𝜙2

] 𝑒

(
10𝜙2

1+
10𝜙2
𝛾

)

 

in two unknowns 𝜙1 and 𝜙2. Where, the parameters R, 

γ, D, β1, β2 are 0.94, 1000, 22, 2, and 2, respectively.  

The initial guesses are x0=[5, 5]T and the solution set is 

x=[0.7206169356…, 0.2454153706…]. 

Example 5. The sixth order nonlinear system related to 

Neurophysiology application is taken from [1]. 

𝑥1
2 + 𝑥3

2 = 1

𝑥2
2 + 𝑥4

2 = 1

𝑥5𝑥3
3 + 𝑥6𝑥4

3 = 𝑐1
𝑥5𝑥1

3 + 𝑥6𝑥2
3 = 𝑐2

𝑥5𝑥1𝑥3
2 + 𝑥6𝑥4

2𝑥2 = 𝑐3
𝑥5𝑥1

2𝑥3 + 𝑥6𝑥2
2𝑥4 = 𝑐4

 

Here, ci = 0, i = 1,2,3,4.  

The initial values of unknowns are taken as x0=[0.1, 0.2, 

0.3, 0.4, 0.5, 0.6]T and the solutions obtained are 

x=[0.3162277660…, 0.4472135955…, 

0.9486832980…, 0.8944271909…, 1.42E-12225, 

5.42E-19336]. 

Example 6. A 10 × 10 system is related to combustion 

for a temperature of 30000C considered in [28]: 

{
 
 
 
 
 

 
 
 
 
 
𝑥2 + 2𝑥6 + 𝑥9 + 2𝑥10 − 10

−5 = 0,

𝑥3 + 𝑥8 − 3.10
−5 = 0,

𝑥1 + 𝑥3 + 2𝑥5 + 2𝑥8 + 𝑥9 + 𝑥10 − 5.10
−5 = 0,

𝑥4 + 2𝑥7 − 10
−5 = 0,

𝑥1
2 − 0.5140437.10−7𝑥5 = 0,

2𝑥2
2 − 0.1006932.10−6𝑥6 = 0,

𝑥4
2 − 0.7816278.10−15𝑥7 = 0,

𝑥1𝑥3 − 0.1496236.10
−6𝑥8 = 0,

𝑥1𝑥2 − 0.6914411.10
−7𝑥9 = 0,

𝑥1𝑥2
2 − 0.2089296.10−14𝑥10 = 0,

 

x0=[0.1, 0.4, 0.2, 0.3, 0.1, 0.6, 0.7, 0.5, 0.1, 0.4]T are the 

initial guesses, and the solutions to first few  digits are  

x=[0.00000014709013277155…, 

0.00000022619636102493…, 

0.00001512807633833404…, 

0.00000000006251491477…, 

0.00000042088848007963…, 

0.00000101625122135197…, 

0.00000499996874254262…, 

0.00001487192366166596…, 

0.00000053711729453530…, 

0.00000360209195086792...]T. 

Example 7. The nonlinear system considered is an 

application of kinematic synthesis mechanism given in 

[8] for i= 1, 2, 3. 

[𝐸𝑖(𝑥2sin𝜓𝑖 − 𝑥3) − 𝐹𝑖(𝑥2sin𝜙𝑖 − 𝑥3)]
2 

+[𝐹𝑖(1 + 𝑥2cos𝜙𝑖) − 𝐸𝑖(𝑥2cos𝜓𝑖 − 1)]
2

−[
(1 + 𝑥2cos𝜙𝑖)(𝑥2sin𝜓𝑖 − 𝑥3)𝑥1
−(𝑥2sin𝜙𝑖 − 𝑥3)(𝑥2cos𝜓𝑖 − 𝑥3)𝑥1

]
2

= 0
 

Where, 𝐸𝑖 = 𝑥2(cos𝜙𝑖 − cos𝜙0) − 𝑥2𝑥3(sin𝜙𝑖 − sin𝜙0) 

−(𝑥2sin𝜙𝑖 − 𝑥3)𝑥1 
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and, 𝐹𝑖 = −𝑥2cos𝜓𝑖 − 𝑥2𝑥3sin𝜓𝑖 + 𝑥2cos𝜓0 

+𝑥1𝑥3 + (𝑥3 − 𝑥1)𝑥2sin𝜓0 

The values of angles in radians are displayed in Table 1.  

Table 1 

Angular values of 𝜓𝑖and 𝜙𝑖 for Example 7 

i 𝜓𝑖  𝜙𝑖 

0 1.3954170041747090114 1.7461756494150842271 

1 1.7444828545735749268 2.0364691127919609051 

2 2.0656234369405315689 2.2390977868265978920 

3 2.4600678478912500533 2.4600678409809344550 

We use x0=[0.7, 0.7, 0.7]T as initial values and the 

solutions found are x=[0.9051567633…, 

0.6977417789…, 0.6508335928…]. 

Example 8. As an application, we have solved one 

boundary value problem of the form of nonlinear 

ordinary differential equation taken from [4] written as 

𝑦′′ + 𝑦3 = 0, 𝑦(0) = 0, 𝑦(1) = 1, 

The domain [0,1] is divided as follows: 

𝑎0 = 0 < 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑚−1 < 𝑎𝑚 = 1, 

𝑎𝑗+1 = 𝑎𝑗 + 𝑖, 𝑖 = 1/𝑚. Let:  

𝑦0 = 𝑦(𝑎0) = 0, 𝑦1 = 𝑦(𝑎1), . . . , 𝑦𝑚−1 = 𝑦(𝑎𝑚−1),  

𝑦𝑚 = 𝑦(𝑎𝑚) = 1. 

Now applying finite difference discretization on 

problem by using the following approximation 

𝑦′′𝑘 ≅
𝑦𝑘−1 − 2𝑦𝑘 + 𝑦𝑘+1

𝑖2
, 𝑘 = 1,2,3, . . . , 𝑚 − 1, 

We get m-1 nonlinear equations in m-1 unknowns: 

𝑦𝑘−1 − 2𝑦𝑘 + 𝑦𝑘+1 + 𝑖
2𝑦𝑘

3, 𝑘 = 1,2,3, . . . , 𝑚 − 1. 

Particularly, we use 𝑚 = 5 and solve 4 nonlinear 

equations. The solution is x= 

[0.21026611204934614470…, 

0.42049503909366502639…, 

0.62774995479438586769…, 

0.82510977336343305744…]T. 

The numerical results by proposed A1, A2 and A3 

methods are compared with NM and M15. All the 

numerical calculations are carried out by MATLAB 

R2013a installed in Intel(R) Core (TM) i3 hp laptop with 

RAM of 4GB and operating at a processing speed of 

2.4GHz up to 12000 digits. We use the following 

stopping criterion to note all the results: 

‖e𝑖‖∞ ≤ 10
−299        (35) 

where, 𝒆i is absolute error [29-30] obtained as: 

𝐞𝑖 = |𝐱𝑖+1 − 𝐱𝑖| 𝑖 = 1,2,3, . . .      (36) 

The computational order of convergence (p) is 

computed to verify theoretical one by using formula [8]: 

𝑝 ≈
ln(

‖𝐞𝑖+1‖∞
‖𝐞𝑖‖∞

)

ln(
‖𝐞𝑖‖∞
‖𝐞𝑖−1‖∞

)

, 𝑖 = 2,3, …        (37) 

where, ‖. ‖∞ is the L-infinity norm which means that we 

have displayed the maximum error among all variables 

at the end of iteration when pre-specified tolerance is 

achieved. The total computational cost (COC) taken by 

a method in each problem to reach at the pre-specified 

stopping criterion (35) can be found by multiplying the 

number of iterations ‘I’ with the total number of new 

functions and derivative used, say ‘m’, by that method. 

The formula for COC is defined in (38). 

𝐶𝑂𝐶 = 𝐼 × 𝑚          (38) 

4. Results and Discussion 

We use the notations like x0 for initial approximations 

and div if the solution cannot be found or a method 

diverges. In Fig. 2, the required number of iterations to 

achieve the pre-specified error tolerance (35) is shown 

for examples 1-7 by all methods. All methods converged 

to the expected solutions in all cases, except M15 

method which diverged in Examples 5 and 6. It appears 

from Fig. 2 that the number of iterations for the proposed 

methods is fewer than those by NM in all cases. All 

proposed methods use fewer number of iterations than 

the M15 method in example 3 and equal number of 

iterations in example 2. For examples 5 and 6, where 

M15 method diverges, the number of iterations required 

for the proposed methods are smallest of all. Due to 

different coefficients of error terms in equations (32)-

(34) of the proposed methods A1-A3, as discussed 

before, the number of iterations and other indicators for 

the proposed methods are warranted to be same always, 

except the order of convergence. One or more of the 

proposed methods are best of all in cases where all 

discussed methods are applicable. For instance, in 

example 1 and 4, A2 is best of all, whereas in examples 

6 and 7 A1 is best of all.  

The observed computational orders of convergence, 

using (37), by all methods are displayed in Fig. 3. The 

theoretical orders of convergence are also mentioned 

against names of all methods in Fig. 3 for ready 

reference. In examples 1-5, the theoretical orders of 
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convergence for the NM and the proposed A1-A3 

methods have been verified, and are numerically 

approaching to atleast 2 and 20, respectively. While the 

M15 method diverges in example 5 and 6, it also 

compromises on the order of convergence in examples 2 

and 3 where the observed orders are less than the 

expected – 15. However, the theoretical order of 

convergence for M15 has been verified in examples 1 

and 4. The examples 6 and 7 are complicated ones 

among all other examples. It is know that most of the 

methods, when go outside the asymptotic error regimes, 

which can be  due to initial guess or irregularities in the 

nonlinear functions, tend to compromise the theoretical 

properties and converge linearly or super linearly inspite 

of being higher order accurate in the regular problems. 

This is the case in examples 6 and 7, where all methods 

compromise on the theoretical order of convergence. 

The order of convergence of NM, the proposed A1-A3 

and the M15 are approaching 1 in examples 6 and 7; the 

M15 method in fact diverges in example 6. However, 

even after compromising on order of convergence, the 

proposed methods are better than others on the basis of 

fewer number of iterations, see Fig. 2. 

The normed absolute error distributions for all 

methods in examples 1-7 are shown in Figs. 4-11 versus 

number of iterations. Due to limitations of MATLAB for 

axes marks and display in the range (10-300, 10300), errors 

fewer than 10-300 could not be displayed. It is clear from 

Figs. 4-11 that the proposed twentieth order methods 

exhibit rapid decrease in errors as the number of 

iterations advance. The results concerning the number of 

iterations from Fig. 2 can be verified in detail from Figs. 

4-11. If the error curve for a method disappears earlier 

than others, then it means that the error has decreases 

sufficiently, i.e. had become lower than 10-300. It is 

evident from Fig. 4-11 that one or more of the proposed 

methods achieve the specified error tolerance earlier 

than NM and M15 methods, and in cases where tie for 

number of iterations exists, the errors for the proposed 

methods are lower in magnitude.  

Since higher order iterative methods use more 

information per iteration to find the solution, it is 

important to compare the performance of methods in 

view of computational burden to reach a pre-specified 

error tolerance. There are two ways in which we have 

calculated the computational overhead of the discussed 

methods for examples 1-7. The COC, as defined in (38) 

counts only the total number of evaluations of the 

function and its derivatives – the partial derivatives in 

the case of systems of equations – to achieve specified 

error. However, the complexity due to arithmetic, vector 

and matrix operations in the formula of a method are not 

counted in COC. For this reason, the execution time in 

the form of CPU time (in seconds) required to achieve 

the specified error is preferred. The CPU time, however 

doesn’t show the breakup of total time into operations, 

evaluations etc, but it is considered more comprehensive 

than the traditional COC. We have computed both COC 

and CPU time to compare the performance of discussed 

methods. After the usual theoretical preference due to 

order of convergence of the methods, the next parameter 

can be the COC and CPU times under similar conditions. 

The NM used only one functional and one derivative 

evaluation per iteration, so it’s COC for scalar nonlinear 

equation per iteration is 2, whereas for an nth order 

nonlinear system the COC for NM is n + n2 (n functional 

and n2 first order partial derivatives). Similarly, for the 

M15 method the COC for scalar nonlinear equation is 7, 

whereas for nth order system the COC per iteration for 

M15 method is 4n + 3n2. For the proposed methods A1-

A3, the COC per iteration for an nth order nonlinear 

system is 3n + 4n2, and the COC for scalar nonlinear 

equations is same as that of M15 per iteration. The 

comparison of efficiency indices has been discussed in 

Fig. 1. 

The computational cost, COC, for examples 1-5, 7-8 

and examples 6 are shown in Figs. 12 and 13, 

respectively. The CPU times (in seconds) are shown in 

Figs. 14 for examples 1-8. Fig. 12 shows that the COC 

for the proposed A2 method is smaller than all others in 

examples 1 and 4, whereas the execution time in Fig. 14 

for example 1 and example 4 for M15 and A2 methods 

are closer and lower than all other methods. The COC 

for the NM is smallest of all in example 2 (Fig. 12) and 

the CPU times are methods are almost same (Fig. 14). 

Since the theoretical preference in terms of order of 

convergence of the proposed methods A1-A3 and M15 

over the NM is well developed, the errors at the stopping 

iterations of the A1, A2, A3 and M15 methods, which 

are 5.26E-5469, 2.06E-5634, 6.44E-5582 and 6.99E-

995 are respectively 15.99%, 16.42%, 16.27% and 

2.90% smaller than the same for NM, which is 6.88E-

343. The COC for the M15 method is highest of all and 

for the NM is smallest of all in example 3 (Fig. 12, where 

as in terms of CPU time from Fig. 14 it is clear that all 

proposed methods take lesser time, particularly A2 and 

A3 methods are quicker than others. Fig. 12 further 

show that, for example 5, the NM uses lesser evaluations 

than other applicable methods (M15 diverges here), 

whereas the CPU times of the proposed methods and the 

NM, via Fig. 14, are closer and approaching 43 seconds. 

Similarly, in example 6, the M15 example fails, the NM 
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method is better in COC (Fig. 13), and the proposed 

method A1, via Fig. 14, is best of all applicable methods 

in execution time. Fig. 14 further shows that the CPU 

time of A3 method is also smaller than that of NM 

method. For examples 6 and 7, as the theoretical 

performance of all methods from view-point of order of 

convergence could not be observed, however, all 

methods managed to converge to the solution with order 

of convergence closer to 1 only. This is the reason that 

in the expected performance in form of COC and CPU 

times for higher order methods could not be guaranteed. 

The M15 method in examples 1-4 was applicable and 

resulted comparable performance with other methods 

and in examples 5-6 diverged. Surprisingly, in example 

7, the M15 method takes smallest COC (Fig. 12) and 

CPU time (Fig. 14) as compared to other methods with 

a tie in number of iterations with A1 method (Fig. 2).The 

main advantage of the methods A1-A3 in the proposed 

family is their twentieth order convergence against 

lower order methods. The challenge of developing new, 

efficient and higher-order iterative methods has been 

addressed as some existing methods failed to obtain the 

solutions in complex problems, whereas the proposed 

methods were shown to be applicable in similar 

situations for the complex problems describing 

dynamics of complex systems in Engineering.  

 

Fig. 2. Comparison of number of iterations to achieve 

specified error tolerance in all methods for examples 1-8 

 

Fig. 3. Observed orders of convergence to achieve 

specified error tolerance in all methods for examples 1-8 

 

Fig. 4. Error drops for example 1 

 

Fig. 5. Error drops for example 2 

 

Fig. 6. Error drops for example 3 

 

Fig. 7. Error drops for example 4 

 

Fig. 8. Error drops for example 5 
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Fig. 9. Error drops for Example 6 

 

Fig. 10. Error drops for Example 7 

 

Fig. 11. Error drops for example 8 

 

Fig. 12. COC in examples 1-5 and 7-8 

 

Fig. 13. COC in Example 6 

 

Fig. 14. CPU times in Examples 1-8 

4. Conclusion 

In this research paper, an efficient family of iterative 

methods with twentieth order convergence to solve 

complex models described in terms of nonlinear 

equations and systems. We have proved the order of 

convergence theoretically and verified numerically by 

using the methods to solve a nonlinear scalar equation 

and some complex nonlinear systems from engineering 

applications. The performance of the proposed methods 

in comparison with other methods used in this work 

under similar conditions shows that the convergence of 

proposed methods is faster as compared to other well-

known existing methods. For testing the performance of 

propped family and other existing methods, error 

distributions, number of iterations, computational order 

of convergence, number of evaluations and execution 

times needed to achieve pre-specified tolerance are 

examined on different case study real-world problems. 

The proposed family of methods results in higher degree 

of accuracy in fewer number of iteration than other 

discussed methods. 

 

 

0 5 10 15 20 25 30 35 40 45

10
-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

10
50

number of iterations

e
rr

o
r 

d
ro

p

 

 

A1

A2

A3

NM

0 5 10 15 20 25

10
-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

number of iterations

e
rr

o
r 

d
ro

p

 

 

A1

A2

A3

NM

M15

1 2 3 4 5 6 7 8
10

-200

10
-150

10
-100

10
-50

10
0

number of iterations

e
rr

o
r 

d
ro

p

 

 

A1

A2

A3

NM

M15

A1 A2 A3 NM M15

Example 2
Example 1

Example 8
Example 3

Example 4
Example 7

Example 5

0

100

200

300

400

500

600

700

C
O

C

div

A1 A2 A3 NM M15 diverges
0

1000

2000

3000

4000

5000

6000

C
O

C
 i
n
 E

x
a
m

p
le

 6

A1 A2 A3 NM M15
Example 1

Example 2
Example 3

Example 4
Example 5

Example 8
Example 6

Example 7

0

20

40

60

80

C
P

U
 t

im
e

div



 

© Mehran University of Engineering and Technology 2023                                175 

5. Acknowledgement 

The authors would like to thank Mehran University of 

Engineering and Technology, Jamshoro for providing 

support to perform this research work conveniently. The 

efforts of anonymous reviewers for suggesting several 

improvements in the present version of paper are highly 

appreciated.  

6. References 

[1] C. Grosan, and A. Abraham, "A new approach 

for solving nonlinear equations systems", IEEE 

Transactions on Systems, Man, and 

Cybernetics-Part A: Systems and Humans, Vol. 

38, no. 3, pp. 698-714, 2008. 

[2] F. Awawdeh, "On new iterative method for 

solving systems of nonlinear 

equations", Numerical Algorithms, Vol.  54, no. 

3, pp. 395-409, 2010. 

[3] A. Srivastava, "An iterative method with 

fifteenth-order convergence to solve systems of 

nonlinear equations", Computational 

Mathematics and Modeling, Vol. 27, no. 4, pp. 

497-510, 2016. 

[4] J. R. Sharma, J. R. Rajni, and N. Kalra, "A novel 

family of composite Newton–Traub methods 

for solving systems of nonlinear 

equations", Applied Mathematics and 

Computation, Vol.  269, pp. 520-535, 2015. 

[5] Z. Malik, et al., "Higher order multi-step 

iterative method for computing the numerical 

solution of systems of nonlinear equations: 

Application to nonlinear PDEs and 

ODEs", Applied Mathematics and 

Computation, Vol. 269,  pp. 972-987, 2015. 

[6] A. Cordero, E. Gómez, and J. R. Torregrosa, 

"Efficient high-order iterative methods for 

solving nonlinear systems and their application 

on heat conduction 

problems", Complexity, 2017. 

[7] X. Xiao, and H. Yin, "A simple and efficient 

method with high order convergence for solving 

systems of nonlinear equations", Computers 

and Mathematics with Applications, Vol.  69, 

no. 10, pp. 1220-1231, 2015. 

[8] M. Waseem, M. A. Noor, and K. I. Noor, 

"Efficient method for solving a system of 

nonlinear equations", Applied Mathematics and 

Computation, Vol. 275, no. 2016, pp. 134-146, 

2016.  

[9] D. K. R. Babajee "On the kung-Traub 

conjecture for iterative methods for solving 

quadratic equations", Algorithms, Vol. 9, no. 1, 

2015. 

[10] J. R. Sharma, and P. Gupta. "An efficient fifth 

order method for solving systems of nonlinear 

equations", Computers and Mathematics with 

Applications, Vol. 67, no. 3, pp. 591-601, 2014. 

[11] J. L. Hueso, M. Eulalia, and T. Carles,  

"Derivative free iterative methods for nonlinear 

systems", Applied Mathematics and 

Computation, Vol. 259, pp. 955-966, 2015. 

[12] G-S, Miquel, G. Àngela, and M. Noguera. "On 

the computational efficiency index and some 

iterative methods for solving systems of 

nonlinear equations", Journal of Computational 

and Applied Mathematics, Vol. 236, no. 6, pp. 

1259-1266, 2011. 

[13] J. F. Traub, “Iterative methods for the solution 

of equations”, American Mathematical Soc. 

Vol. 312, 1982. 

[14] M. A. Noor et al., "An iterative method with 

cubic convergence for nonlinear 

equations", Applied Mathematics and 

Computation, Vol.  183, no. 2, pp. 1249-1255, 

2006. 

[15] M. A. Noor et al., "Some new iterative methods 

for nonlinear equations", Mathematical 

Problems in Engineering, 2010. 

[16] H., Zhongyong, L. Guocai, and L. Tian, "An 

iterative method with ninth-order convergence 

for solving nonlinear equations", International 

Journal of Contemporary Mathematical 

Sciences, Vol. 6, no. 1, pp. 17-23, 2011. 

[17] M. Raza, "Eleventh-order convergent iterative 

method for solving nonlinear equations",  Int. J. 

Appl. Math, Vol. 25, pp. 365-371, 2012. 

[18] A. Cordero, M. Eulalia, and J. R. Torregrosa, 

"Iterative methods of order four and five for 

systems of nonlinear equations", Journal of 

Computational and Applied Mathematics, Vol. 

231, no. 2,  pp. 541-551, 2009. 

[19] M. A. Noor, and M. Wasim, "Some iterative 

methods for solving a system of nonlinear 



 

© Mehran University of Engineering and Technology 2023                                176 

equations", Computers and Mathematics with 

Applications, Vol. 57, no. 1, pp. 101-106, 2009. 

[20] M. A. Noor, "New classes of iterative methods 

for nonlinear equations", Applied Mathematics 

and Computation, Vol. 191, no. 1, pp. 128-131, 

2007. 

[21] M. Rafiullah, "A fifth-order iterative method for 

solving nonlinear equations", Numerical 

Analysis and Applications, Vol. 4, no. 3, pp. 

239, 2011. 

[22] M. M. Shaikh, S-u-R. Massan, and A. I. Wagan, 

“A new explicit approximation to Colebrook’s 

friction factor in rough pipes under highly 

turbulent cases”, International Journal of Heat 

and Mass Transfer, Vol. 88, pp. 538-543, 2015. 

[23] M. M. Shaikh, S-u-R. Massan, and A. I. Wagan,  

“A sixteen decimal places’ accurate Darcy 

friction factor database using non-linear 

Colebrook’s equation with a million nodes: a 

way forward to the soft computing techniques”, 

Data in brief, Vol. 27, no. Dec. 2019, 104733, 

2019. 

[24] A. Cordero, J. L. Hueso, E. Martínez, and J. R. 

Torregrosa, “A modified Newton-Jarratt’s 

composition”, Numerical Algorithms, Vol. 55, 

no. 1, pp.87-99, 2010. 

[25] R. Sharma, and B. Ashu, "An optimal fourth 

order iterative method for solving nonlinear 

equations and its dynamics", Journal of 

Complex Analysis, Vol. 2015, 2015, 259167. 

[26] J. M. Ortega, and C. R. Werner, “Iterative 

solution of nonlinear equations in several 

variables”, SIAM, Vol. 30, 1970. 

[27] W. Y. Yang et al., ”Applied numerical methods 

using MATLAB”, John Wiley and Sons, 2020. 

[28] H. A. Abro, M. M. Shaikh, "A new time-efficient 

and convergent nonlinear solver", Applied 

Mathematics and Computation, Vol. 355, no. 

2019, pp. 516-536, 2019. 

[29] A. A. Mastoi, M. M. Shaikh, and A. W. Shaikh,  

“A new third-order derivative-based iterative 

method for nonlinear equations”, J. Mech. Cont. 

and Math. Sci, Vol. 15, no. 10, pp.110-123, 

2020. 

[30] S. Umar, M. M. Shaikh, and A. W. Shaikh, “A 

new quadrature-based iterative method for scalar 

nonlinear equations”, J. Mech. Cont. and Math. 

Sci, Vol. 15, no. 10, pp.79-93, 2020. 


