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ABSTRACT

This article deals with general formulae of parametric and non parametric bivariate subdivision

scheme with four parameters. By assigning specific values to those parameters we get some special

cases of existing tensor product schemes as well as a new proposed scheme. The behavior of schemes

produced by the general formulae is interpolating, approximating and relaxed. Approximating bivariate

subdivision schemes produce some other surfaces as compared to interpolating bivariate subdivision

schemes. Polynomial reproduction and polynomial generation are desirable properties of subdivision

schemes. Capability of polynomial reproduction and polynomial generation is strongly connected with

smoothness, sum rules, convergence and approximation order. We also calculate the polynomial

generation and polynomial reproduction of 9-point bivariate approximating subdivision scheme.

Comparison of polynomial reproduction, polynomial generation and continuity of existing and proposed

schemes has also been established. Some numerical examples are also presented to show the behavior

of bivariate schemes.

Key Words: Parametric Bivariate Schemes, Continuity, Polynomial Reproduction, Polynomial

Generation.
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1. INTRODUCTION

without preserving the initial shape of control polygon/

mesh while interpolating schemes are used to smooth the

limit curves/surfaces by preserving the original/initial

shape of control polygon/mesh.

First of all, Rham [1] introduced approximating

subdivision scheme and later on, Chaikin [2] proposed

the corners cutting approximating subdivision scheme.

Initially, approximating schemes were introduced. Further,

Dubuc [3] introduced the interpolating 4-point

subdivision scheme. The first parametric interpolating

Subdivision is an efficient tool in geometric

modeling. Recently, a lot of work has been done

on subdivision scheme in different fields such

as Computer Graphics, Computer Simulation and

Computer Aided Geometric Design. One can get a smooth

curve/surface after applying the subdivision scheme on

an initial control polygon/mesh. Surface modeling is a

powerful tool for computer graphics and shape

presentation. The common approaches in subdivision

scheme is interpolating and approximating subdivision.

Approximating schemes generate smooth curves/surfaces
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4-point binary subdivision scheme which

generatesC1curves is introduced by Dyn et.al.

[4].Zhenget. al. [5] presented a family of binary

subdivision schemes which depends upon several

parameters. This family of schemes generates the curves

with high continuity. Mustafa et. al. [6] proposed the m-

point binary parametric approximating subdivision

scheme.Shen and Huang [7] introduced a family of curve

subdivision schemes with multi-parameters and by

setting appropriate parameters some classical curve

subdivision schemes can be obtained. Mustafa et. al.

[8] presented a family of binary univariate dual and primal

subdivision schemes.

Subdivision schemes are computationally competent

algorithms for representing smooth surfaces by applying

a few steps of a refinement operators. In case of

quadrilateral meshes, the new mesh from the old one is

generated by a topological and geometrical rules. Most

of the well-known surfaces subdivision schemes, which

generalized the tensor product of bicubic and biquadratic

B-splines are introduced by Catmull and Clark [9], Doo

and Sabin [10] respectively. Lane and Riesenfeld [11]

provides a framework to generate the uniform B-spline

curves and their tensor product extensions by subdivision

process. Dyn [12] introduced a new butterfly interpolating

subdivision scheme for surface modeling with a shape

parameter that provides flexibility of design. Ghaffaret. al.

[13] used a unified technique to design tensor product

scheme. Kobbelt [14] and Zorinet. al. [15] introduced

generalized form of surface modeling of univariate

schemes presented by [4]. Mustafa and Randhawa [16]

presented a 3-point parametric approximating subdivision

scheme and its tensor product version for the generation

of regular surfaces with its analysis. Mustafa et. al. [17]

introduced generalized and unified families of p-ary (2n)

and (2n-1)-point interpolating subdivision schemes of

lower and higher arity originated from Lagrange

polynomial and also presented tensor product version of

these families of schemes.

In this paper, we are going to generate interpolating,

approximating and relaxed subdivision schemes with and

without shape parameter for regular surface modeling on

quad meshes. By suitable value of tension parameter, the

shapes of the limit surfaces can easily controlled. By the

general formula, we can also design a new non-symmetric

bivariate subdivision scheme. Section 2 gives the general

approach of tensor product subdivision schemes. In

Section 3, we have calculated the polynomial generation

and reproduction of bivariate schemes. In this section,

we also establish a comparison table based on continuity,

polynomial generation and polynomial reproduction of

existing and proposed schemes. Section 4 is based on

numerical examples of existing and proposed tensor

product schemes. Finally, conclusion is presented in

Section 5.

2. ALGORITMS FOR TENSOR
PRODUCT SCHEMES

We are going to construct the general formulas for

bivariate approximating, interpolating and relaxed

subdivision schemes.

2.1 Univariate Schemes

General formula of univariate binary subdivision scheme

[5] is:
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where i,k∈Z, and l∈Z+  where i shows the notation of

new points, k is the subdivision level and l is positive

integer.
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a,b,c,dare parameters,a + b + c + d = 1/dt, t=2l where t∈Z+,

l = 1,2,3,… and

)!2(!

)!12(
12 rllr

l
C r

l −+
+=+

forr = 0,1,2,…2l  + 1

2.2 Bivariate Schemes

By changing the notation “i by j, q by p” in Equation (1)

and using the tensor product procedure, we can derive

the general formula of bivariate schemes
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The details to get the values of the coefficients presented

in Equation (3) can be check by [5] which we used to

solve the Equation (2).

By substituting l =1, we get general tensor product

scheme as follows:
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• By letting 
 1 1 1 1
a , b c and d

12 4 8 24
, = − = = = −  in Equation

(4). We get a new16-point tensor product

interpolating scheme.

• By substituting 
32

3
b and

32

1
 a ==== cd  in Equation

(4). We get 16-point relaxed tensor product

approximating scheme of [5].

• By taking 
 3 7 3
a , b -2 , c -  and d 0

17 3232
μ μ μ= − + = = =+ in

Equation (4). We get 9-point tensor product

approximating scheme of [18].

By a slight variation on the scheme presented in Equation

(1), such that by replacing “l+1 by l+2” in first equation

of Equation (1) and adopting the same procedure of tensor

product approach, we get another general formula of

bivariate schemes mentioned below:
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where the coefficients in Equation (5) can be calculated

by replacing “l by 
2

1
+l ” in Equation (3), weget a system

of equations with free parametersa,b,c,dsuch

that  12,
2

1
+==+++ lt
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dcba
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,...2,1,0,Zt =∈ + l
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for r = 0,1,2,…,2l+2.

By substituting l=0 we get general tensor product
scheme as follows:
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• By substituting
4

1
dc and 0b a ==== in Equation (6)

we get 4-point tensor product approximating

scheme of [2].

• By substituting 0,
4

1
 and 

8

1
c a ==== db in Equation

(6) we get 9-point tensor product approximating

scheme of [5].

• By substituting 
 11 1 3
a  b   C   and 

8 4 8 4
d= = = =  in

Equation (6) we get 9-point tensor product

interpolating scheme of [7].

• By substituting
16

3
 and 

16

1
d a ==== cb in Equation

(6) we get 9-point tensor product approximating

scheme of [19].

• By substituting
32

11
 and 

32

3
d a ==−== b in Equation

(6) we get 9-point tensor product approximating

scheme of [20].

• By substituting
32

7
 and 

32

1
d a ==−== cb in Equation

(6) we get 9-point tensor product approximating

scheme of [21].

• By taking
16

-4
 and 

16
d a

μμ
cb === in Equation (6) we

get 9-point tensor product approximating

scheme of [22].

• By taking ωω 3
4

1
 and  3 a +==−== cbd in Equation (6)

we get 9-point tensor product approximating

scheme of [23].

By substituting l = 1 in Equation (5) we get another general

tensor product scheme and after substituting different

values of parameter, different existing schemes becomes

the special case of general tensor product scheme:

• If we set 0 and 
4

1
  b ,

16

1
c a ==−== d in Equation (5) we

get 16-point tensor product  interpolating

scheme of [4].

• By taking
96

6-5
  b and 

96

61
d a

ωω
==

+
== c in Equation (5)

we get 16-point tensor product approximating

scheme of [6].

• Substituting
64

3
 and

64

1
d a ==== cb in Equation (5)

we get 16-point tensor product approximating

scheme of [19].

• For
16

-1
  b and ,

16
d a

ωω
===== c in Equation (5) we get

16-point tensor product approximating scheme

of [19].

• By putting
128

13
  b and 

128

5
d a ==−== c in Equation (5)

we get 16-point tensor product approximating

scheme of [21].
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• By setting
384

23
  b and 

384

1
d a ==== c in Equation (5) we

get 16-point tensor product approximating

scheme of [24].

• If we substitute
64

o
u-4

  b and 
64
o

u
d a ==== c in

Equation (5) we get 16-point tensor product

approximating scheme of [25].

3. POLYNOMIAL GENERATION AND
REPRODUCTION OF BIVARIATE
SCHEMES

In this section, we will investigate the capability of the

tensor product approximating subdivision scheme by

polynomial generation and polynomial reproduction.

The Laurent polynomial of the scheme Equation (6)

for
16

1== da  and 
16

3== cb  is given by:

( ) ( ) ( )52
5

121 11
256

1
, ZZZZL ++=

Theorem-1: If  
 

16

1== da  and 
 

16

3== cb , then the

subdivision scheme Equation (6) generates polynomial

of degree 4.

Proof: Let ϑ
1
 = (1, -1), ϑ2 = (−1,1), ϑ3 = (−1,−1),  and let

Dj with j∈N2, denote a directional

derivative. Since L(1,1) = 4 and
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1
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2
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since
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Further
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so the scheme (6) generates polynomial of degree 3.

Further more
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so the scheme Equation (6) generates polynomial of

degree 4.

Which completes the proof.

Theorem-2: For the parameter shift 
 ( ) 








=
4

10
,

4

10
, 21 ττ  the

subdivision scheme Equation (6) for  
16

1== da  and
 

16

3== cb , reproduces polynomial of degree 1 with respect

to the parameterization defined in [26].

Proof: Let Dj with j∈N2, denote a directional derivative.

Since the symbol L(z
1
,z

2
) satisfies the conditions in

Theorem-1. Since L(1,1) = 4 and

D(1,0) L(1,1) - 4τ
1
 = 0, D(0,1) L(1,1) -4τ

2
 = 0

then the scheme Equation (6) produced polynomial of

degree 1.

Which completes the proof.
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4. NUMERICAL EXAMPLES AND
COMPARISON

In Fig. 1, we show the performance of bicubic 9-point

bivariate subdivision scheme Equation (6). Fig. 1(a) is

the initial control mesh. Fig. 1(b-c) showing the

subdivision at first and second iteration. In Fig. 1(d), we

get the limit surface after successive number of

refinements.In Fig. 2, we show the performance of

proposed 16-point bivariate scheme Equation (4). In Fig.

2(a), we design an initial control mesh. Fig. 2(b-c)

showing the subdivision at first and second iteration.

In Fig. 2(d), we get the limit surface after successive

number of refinements.

5. CONCLUSION

This paper contributes towards the general bivariate

parametric subdivision scheme for the surface modeling

on the regular quad meshes. Some of the properties such

that polynomial generation and polynomial reproduction

of existing schemes are also calculated. We can observe

that the approximating schemes have polynomial

generation 6 and continuity 5 but the interpolating

scheme have polynomial generation 3 and continuity 1.

The general formula provides a variety of schemes to

control the shape of initial mesh according to our own

choice. By adjusting suitable value of parameters, we
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1 ]5[foetairaviBtnioP-9 2 3 2

1 ]2[foetairaviBtnioP-9 1 2 1

1 ]7[foetairaviBtnioP-9 gnitalopretnI 1 2 2

1 ]91[foetairaviBtnioP-9

gnitamixorppA

2 2 1

1 ]02[foetairaviBtnioP-9 2 2 1

2 ]5[foetairaviBtnioP-61 4 5 1

2 ]12[foetairaviBtnioP-9 1 2 2

3 ]7[foetairaviBtnioP-61 gnitalopretnI 1 3 3

3 ]61[foetairaviBtnioP-61

gnitamixorppA

5 6 3

3 ]81[foetairaviBtnioP-61 2 4 3

3 ]22[foetairaviBtnioP-61 4 4 1

3 ]61[foetairaviBtnioP-61 5 4 1

3 ]32[foetairaviBtnioP-61 5 4 1

3 ]6[foetairaviBtnioP-61 4 4 1

2 etairaviBtnioP-61desoporP gnitalopretnI 1 2 1

TABLE 1. SHOWS THE CONTINUITY, POLYNOMIAL GENERATION AND POLYNOMIAL REPRODUCTION OF  BIVARIATE
SCHEMES
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can get suitable schemes to handle the initial mesh. Most

of the existing tensor product schemes are the special

case of proposed general bivariate schemes. Different

snapshots show the geometrical appearance of initial

meshes after the subdivision approach of bivariate

schemes.
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