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ABSTRACT

This article deals with general formulae of parametric and non parametric bivariate subdivision
schemewith four parameters. By assigning specific valuesto those parameter swe get some special
casesof existing tensor product schemesaswell asanew proposed scheme. Thebehavior of schemes
produced by thegeneral for mulaeisinter polating, approximating and relaxed. Approximating bivariate
subdivision schemesproduce someother surfacesascompared tointer polating bivariate subdivision
schemes. Polynomial reproduction and polynomial gener ation aredesir able propertiesof subdivision
schemes. Capability of polynomial reproduction and polynomial gener ation isstrongly connected with
smoothness, sum rules, convergence and approximation order. We also calculate the polynomial
generation and polynomial reproduction of 9-point bivariate approximating subdivision scheme.
Comparison of polynomial reproduction, polynomial gener ation and continuity of existingand proposed
schemeshasalso been established. Somenumerical examplesarealso presented to show thebehavior
of bivariate schemes.

KeyWords. Parametric Bivariate Schemes, Continuity, Polynomial Reproduction, Polynomial

Generation.

1. INTRODUCTION

bdivision is an efficient tool in geometric

odeling. Recently, alot of work has been done

n subdivision scheme in different fields such
as Computer Graphics, Computer Simulation and
Computer Aided Geometric Design. One can get asmooth
curve/surface after applying the subdivision scheme on
an initial control polygon/mesh. Surface modeling is a
powerful tool for computer graphics and shape
presentation. The common approaches in subdivision
scheme is interpolating and approximating subdivision.
Approximating schemes generate smooth curves/surfaces

without preserving the initial shape of control polygon/
mesh whileinterpol ating schemes are used to smooth the
limit curves/surfaces by preserving the original/initial
shape of control polygon/mesh.

First of all, Rham [1] introduced approximating
subdivision scheme and later on, Chaikin [2] proposed
the corners cutting approximating subdivision scheme.
Initially, approximating schemeswereintroduced. Further,
Dubuc [3] introduced the interpolating 4-point
subdivision scheme. The first parametric interpolating
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4-point binary subdivision scheme which
generatesClcurves is introduced by Dyn et.al.
[4].Zhenget. al. [5] presented a family of binary
subdivision schemes which depends upon several
parameters. Thisfamily of schemes generatesthe curves
with high continuity. Mustafaet. al. [6] proposed the m-
point binary parametric approximating subdivision
scheme.Shen and Huang [ 7] introduced afamily of curve
subdivision schemes with multi-parameters and by
setting appropriate parameters some classical curve
subdivision schemes can be obtained. Mustafa et. al.
[8] presented afamily of binary univariate dua and primal

subdivision schemes.

Subdivision schemes are computationally competent
algorithmsfor representing smooth surfaces by applying
a few steps of a refinement operators. In case of
quadrilateral meshes, the new mesh from the old one is
generated by atopological and geometrical rules. Most
of the well-known surfaces subdivision schemes, which
generalized the tensor product of bicubic and biquadratic
B-splines are introduced by Catmull and Clark [9], Doo
and Sabin [10] respectively. Lane and Riesenfeld [11]
provides a framework to generate the uniform B-spline
curvesand their tensor product extensions by subdivision
process. Dyn [12] introduced anew butterfly interpolating
subdivision scheme for surface modeling with a shape
parameter that providesflexibility of design. Ghaffaret. al.
[13] used a unified technique to design tensor product
scheme. Kobbelt [14] and Zorinet. a. [15] introduced
generalized form of surface modeling of univariate
schemes presented by [4]. Mustafa and Randhawa [16]
presented a 3-point parametric approximating subdivision
scheme and its tensor product version for the generation
of regular surfaceswith its analysis. Mustafa et. al. [17]
introduced generalized and unified families of p-ary (2n)
and (2n-1)-point interpolating subdivision schemes of
lower and higher arity originated from Lagrange

polynomial and also presented tensor product version of
these families of schemes.

In this paper, we are going to generate interpolating,
approximating and rel axed subdivision schemeswith and
without shape parameter for regular surface modeling on
guad meshes. By suitable value of tension parameter, the
shapes of the limit surfaces can easily controlled. By the
general formula, we can also design anew non-symmetric
bivariate subdivision scheme. Section 2 givesthe general
approach of tensor product subdivision schemes. In
Section 3, we have cal culated the polynomial generation
and reproduction of bivariate schemes. In this section,
we al so establish acomparison table based on continuity,
polynomial generation and polynomial reproduction of
existing and proposed schemes. Section 4 is based on
numerical examples of existing and proposed tensor
product schemes. Finally, conclusion is presented in
Section 5.

2. ALGORITMS FOR TENSOR
PRODUCT SCHEMES

We are going to construct the general formulas for
bivariate approximating, interpolating and relaxed
subdivision schemes.

21 Univariate Schemes

General formulaof univariate binary subdivision scheme

[Bis

1+1
k+1 _ k
1:2i - z a2q+1 fi+q
q=0

IR S K @
foa= zan fi+q
q=0
wherei,keZ, and e Z* where i shows the notation of

new points, k isthe subdivision level and | is positive
integer.
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asz
2|+1 + bCZI +
C2| at bC2|+1 + c:C2|+1
= aCZI at bC2|+1 + CC2|+1 + dC2|+1

211 21-2 21-3
CZI +1 + bC2I+1 + CC:2I+1 + dC2I+1

— 21+1 2l-1 21-2
0{2|+1 - aC2I+1 + bC2I+1 + CC2I+1 + dC2I+1 (2)

_ 2I+1 211
a2|+2 - 2|+l + bC2|+l + dC2|+l
Q3= szllﬁ- + dC2|+1
Oy, =d

a,b,c,dareparametersa + b+ c+d=1/d, t=2l wherete Z+,

1=1,23,...and
C @+
@2+ =r)!

forr=0,1,2,...21 +1

2.2 Bivariate Schemes

By changing the notation “i by j, g by p” in Equation (1)
and using the tensor product procedure, we can derive
the general formulaof bivariate schemes

1+1  1+1

k+1
f2| 2j = z za2q+la2p+l i+q,j+p
g=0 p=0
" 1+1  |+2 ‘
+1 _
f2| 2j+1 z Za2q+la2p f|+q j+p
g=0 p=0
" 1+2  1+1 ‘
+1 _
f2|+l 2j z za2qa2 p+l fl+q j+p (3)
=0 p=0
v 1+2  1+2
+1 _
f2|+12H—l z za2qa2p i+q,j+p
=0 p=0

Thedetailsto get the values of the coefficients presented
in Equation (3) can be check by [5] which we used to
solvethe Equation (2).

By substituting | =1, we get general tensor product
schemeasfollows:

1, =(2a+b)’ £ +(2a+b)(2a+2c+d) £, +(2a+b)df’, +(b+2c+d)(2a+b)

£+ (b 2c+d)° £ +(b+2c+d)dfY , +(2a+b) £ +d (b+2c+d) £Y, L +d?E, L,

iy =a(2a+b) £ +a(b+2c+d) £ adf’ , +(b+2c+d)(2a+b) f¥, +(2a+2b+c)(b+2c+d)

¥ a+(a+r20+c)df, |, +(c+2d)(2a+b) £, +(c+2d)(b+2c+d) ¥, ., +(c+2d)df,

35 =a(2a+b) £ +(2a+b)(a+2b+c) 5. (2.:~H-b)(<:+2d)fk ,+(b+2c+d) (4)
af¥, +(a+2b+c)(b+2c+d) ¥, +(b+2c+d)(c+2d) £Y  ,+d(a+2b+c) ¥, +(c+2d)df ), ,

ol =atk va(a+2b+c) £, +a(c+2d) X, +(a+2b+c)af’ +(a+2b+c)

1+ (at2drc)(c+2d) £5 ,+(c+2d)af, +(c+2d)(at2b+c) £, , +(c+2d) df¥,

. 1 1 1 1. .
. Bylettmga=—£,b=;,c=gandd=—;|nEquat|on
(4). We get a newl6-point tensor product

interpolating scheme.

. By substituting a=d=3—12andb=c=3—32 in Equation
(4). We get 16-point relaxed tensor product
approximating scheme of [5].

L4 By taking a=73f32+/1,b=1—77-2/1,c=-3—32+/13ndd=0in
Equation (4). We get 9-point tensor product
approximating scheme of [18].

By adlight variation on the scheme presented in Equation
(1), such that by replacing “1+1 by 1+2" infirst equation
of Equation (1) and adopting the same procedure of tensor
product approach, we get another general formula of
bivariate schemes mentioned bel ow:

1+2 142
k+1 _ k
f25; —Z za2q+la2p+lfi+q,j+p
g=0 p=0
1+2 142
k+1  _ k
f2i,2j+l _Z Za2q+1a2pfi+q,j+p
q=0 p=0
1+2 142
k+1  _ k
faiioj —Z za2qa2p+lfi+q,j+p ©)
g=0 p=0
1+2 142
k+1
2|+121+1 z ZQanZp i+q,j+p
gq=0 p=0
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where the coefficients in Equation (5) can be calcul ated
1

by replacing“l by | +E " in Equation (3), weget asystem

of equations with free parametersa,b,c,dsuch

1
thata+b+c+d=—|,t=2I+1
2

where

te Z*,1=012,...

and

o (20 +2)
2427 (21 4 2-r)

forr=0,1,2,...,21+2.

By substituting 1=0, we get general tensor product
scheme asfollows:

% =(Ba+bf £ +(3a+b)a+30+3c+d)f ; + (Ba+b)c+3d) X, , + (a+3+3c+d)3a+b)

£y +(@+30+3c+d) £Xy |, +(a+30+3c+d)(c+3d) T, |, +(Ba+b)c+3d)fY, | +(c+3d)a+3b)
TR ST

410 =a(Ba+b)f +ala+3+3c+d)f¥ ., +alc+3d)Rk ., +(3a+3b+c)(3a+b)

£, +(Ba+3b+c)fa+30+3c+d)fk; , +(3a+30+c)c+3d)fE, o+ (b+3c+3d)(3a+b)

£, +(b+3b+ca+3b+3c+d)fk, .o +alb+3c+3d)c+3d)fk, o +d(3a+b)

fg; +d(a+30+3c+d)fy a+d(c+3d) Ty 10

f45.1=a(3a+b)f¥ +(3a+b)3a+3+c)f k., +(3a+b)b+3c+3d) . +d(3a+b)

£y +ala+30+3c+d)fYy 1 +(Ba+3b+cfa+B+d)fly ., +(a+3b+3c+d)b+3c+3d)

£ +(a+30+3c+d)di, o +alc+3d)fY, .o+ (c+3d)3a+3b+c)f ks +(b+3c+3d)(c+3d) (6)
fsjatdc+3d)tls),

i =a2f% +a(Ba+30+c)f ) +alb+ 30+ 3d) Y, +daf . +(3a+3b+c)

£+ (Ba+30+cf(3a+30+ )k, +(3a+ 30+ c)b+3c+3d) %, ., +(3a+ 30+ )Yy | olb+3c+d)
af, ; +(b+3c+3d)3a+30+c)f, a(b+3c+3df 14, o +(b+30+3d)df ¥, 5 +dafy | +d(3a+3b+c)

o+ db+3+3d)g o+ d%Hig s

. By wbstitutinga=b=0andc=d=iin Equation (6)
we get 4-point tensor product approximating
schemeof [2].

. By substitutinga=C=%andb=i,d=0in Equation
(6) we get 9-point tensor product approximating
schemeof [5].

. By substituting a-=gb=- ;c- gandd{ in

Equation (6) we get 9-point tensor product

interpolating scheme of [7].

. By substitutinga=d=?16andb=6=1%in Equation
(6) we get 9-point tensor product approximating
schemeof [19].

. By substituting a=d=—3%mdb==§ in Equation
(6) we get 9-point tensor product approximating
schemeof [20].

32
(6) we get 9-point tensor product approximating

;
. By wbstitutinga=d=fiandb=c=;in Equation

schemeof [21].

. By takinga:d=%mdb:ct—:in Equation (6) we
get 9-point tensor product approximating
schemeof [22].

. By takinga=d=-30 mdb=c=§+3winEquation(6)
we get 9-point tensor product approximating

schemeof [23].

By substituting | = 1in Equation (5) we get another general
tensor product scheme and after substituting different
values of parameter, different existing schemes becomes

the special case of general tensor product scheme:

. Ifweseta:c:-l—la,b:%andd:oinEquation(S)we
get 16-point tensor product interpolating
schemeof [4].

. By tekinga=d=->" aib=c =~ in Equation (5)
we get 16-point tensor product approximating
schemeof [6].

. Substitutinga=d=—aub=c=--in Equation (5)

we get 16-point tensor product approximating

schemeof [19].

. FOra=d=%,andb==c=liTwin Equation (5) we get
16-point tensor product approximating scheme
of [19].

. By puttinga=d=-—axb=c=-" in Equation (5)

we get 16-point tensor product approximating

schemeof [21].
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. Bysettinga=d=ﬁandb=c=%inEquation(S)we
get 16-point tensor product approximating
schemeof [24].

. If we substitutea—d-—Oadb—c———0 in

64 64

Equation (5) we get 16-point tensor product
approximating schemeof [25].

3. POLYNOMIAL GENERATIONAND
REPRODUCTION OF BIVARIATE
SCHEMES

In this section, we will investigate the capability of the
tensor product approximating subdivision scheme by
polynomial generation and polynomial reproduction.

The Laurent polynomial of the scheme Equation (6)

1 3. .
a=d=— b=c=— .
for 16 and 16 'sgiven by:

1
L(Zli Z, ) = 256 (1+ 21)5 (1+ 22)5

1 3
Theorem-1: If a=d =16 and b:C:E , then the
subdivision scheme Equation (6) generates polynomial
of degree4.

Proof: Let®,=(1,-1),9,=(-1,1),9,=(~1,-1), andlet

Di with je N2, denote adirectional
derivative. SinceL(1,1) =4 and
DUOL(9,) =0, DAIL(9,) =0, DLOL(9,) =0,
DODL(9,) =0, DOL(9,) =0, DOIL(D,) =0,

then scheme (6) generates polynomial of degree 1. Again
since

DEL(9,) =0, DEIL(D,) =0, DAL (,) =0,
DeIL(9,) =0, DRIL(9,) =0, DCAL(8,) =0,

DC2L(9,) =0, DAL (9,) =0, DAL (,) =0,

then the scheme (6) generates polynomial of degree 2.
Further

DEDL(9,) =0, DEIL(D,) =0, DEIL(9,) =0,
DU2L(8,) =0, DAAL(1,) = 0, "L (8,) =0,
DEOL(9,) =0, DEIL(8,) =0, DEOL(9,) =0,
DO3L(9,) =0, DOIL(D,) =0, DCIL(9,) =0,

so the scheme (6) generates polynomial of degree 3.
Further more

D@AL(9,) =0, DEAL(9,) =0, DAL (9,) =0,
DEDL(9,) =0, DEIL(D,) =0, DEVL(9,) =0,
DUAL(9,) =0, DAIL(D,) =0, DUIL(9,) =0,
DGOL(8,) =0, DEOL(9,) =0, DO L) =0
DOIL(9,) =0, DOAL(D,) =0, DHOL (9,) =0,

so the scheme Equation (6) generates polynomial of
degree 4.

Which completes the proof.

Theorem-2: For the parameter shift (71’72)=(L5'Lf] the
subdivision scheme Equation (6) for a=d=1—l6 and
= 1—36 , reproduces polynomial of degree 1 with respect

to the parameterization defined in [26].

b=c

Proof: Let Diwith je N?, denote adirectional derivative.
Since the symbol L(z,,z,) satisfies the conditions in
Theorem-1. SinceL(1,1) =4 and

D91 (1,1)-4t,=0,D) L(1,1)-4t,=0

then the scheme Equation (6) produced polynomial of
degree 1.

Which completes the proof.
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4. NUMERICAL EXAMPLES AND
COMPARISON

In Fig. 1, we show the performance of bicubic 9-point
bivariate subdivision scheme Equation (6). Fig. 1(a) is
the initial control mesh. Fig. 1(b-c) showing the
subdivision at first and second iteration. In Fig. 1(d), we
get the limit surface after successive number of
refinements.In Fig. 2, we show the performance of
proposed 16-point bivariate scheme Equation (4). InFig.
2(a), we design an initial control mesh. Fig. 2(b-c)
showing the subdivision at first and second iteration.
In Fig. 2(d), we get the limit surface after successive
number of refinements.

5. CONCLUSION

This paper contributes towards the general bivariate
parametric subdivision schemefor the surface modeling
on theregular quad meshes. Some of the properties such
that polynomial generation and polynomial reproduction
of existing schemes are also calcul ated. We can observe
that the approximating schemes have polynomial
generation 6 and continuity 5 but the interpolating
scheme have polynomial generation 3 and continuity 1.
The general formula provides a variety of schemes to
control the shape of initial mesh according to our own

choice. By adjusting suitable value of parameters, we

TABLE 1. SHOWS THE CONTINUITY, POLYNOMIAL GENERATION AND POLYNOMIAL REPRODUCTION OF BIVARIATE

SCHEMES
L Polynomial Polynomial

L Schemes Type Continity Generation Reproduction
1 9-Point Bivariate of [17] 1 2 2
1 9-Point Bivariate of [18] 2 2 1

Approximeting
1 9-Point Bivariate of [5] 2 3 2
1 9-Paint Bivariate of [2] 1 2 1
1 9-Poaint Bivariate of [7] Interpolating 1 2 2
1 9-Point Bivariate of [19] 2 2 1
1 9-Point Bivariate of [20] 2 2 1

Approximeting
2 16-Point Bivariate of [5] 4 5 1
2 9-Poaint Bivariate of [21] 1 2 2
3 16-Point Bivariate of [7] Interpolating 1 3 3
3 16-Point Bivariate of [16] 5 6 3
3 16-Poirt Bivariate of [18] 2 4 3
3 16-Point Bivariateof [22] 4 4 1

Approximeting
3 16-Point Bivariate of [16] 5 4 1
3 16-Point Bivariate of [23] 5 4 1
3 16-Point Bivariate of [6] 4 4 1
2 Proposed 16-Point Bivariate Interpolating 1 2 1
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