1.

Frequency Domain Image Filtering Using CUDA

MUHAMMAD AWAIS RA JPUT#*, UMAIR ALI KHAN¥*, AND NISAR AHMED MEMON**

RECEIVED ON 08.04.2014 ACCEPTED ON 16.07.2014

ABSTRACT

In this paper, we investigate the implementation of image filtering in frequency domain
using NVIDIA’s CUDA (Compute Unified Device Architecture). In contrast to signal and
image filtering in spatial domain which uses convolution operations and hence is more
compute-intensive for filters having larger spatial extent, the frequency domain filtering uses
FFT (Fast Fourier Transform) which is much faster and significantly reduces the
computational complexity of the filtering. We implement the frequency domain filtering on
CPU and GPU respectively and analyze the speed-up obtained from the CUDA’s parallel
processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on
CUDA, we implement three frequency domain filters, i.e. Butterworth, low-pass and
Gaussian for processing different sizes of images on CPU and GPU respectively and
perform the GPU vs. CPU benchmarks. The results presented in this paper show that the
frequency domain filtering with CUDA achieves significant speed-up over the CPU processing

in frequency domain with the same level of (output) image quality on both the processing

architectures.

Key Words: Frequency Domain Filtering, Compute Unified Device Architecture, Parallel
Processing.

INTRODUCTION

However, these techniques are complex, expensive

‘ x ’ith the advancements in the field of
computer hardware, more throughput in
terms of higher computations per second is

always desirable. While the requirement of more
processing speed still persists, the processing power of
modern general-purpose processors does not keep up
pace with the advancements in the state-of-the-art
complex algorithms pertaining to different fields of
science. Although, the modern processors comprise
multiple cores for parallel processing, they are still not
sufficient for high-end processing requirements.
Parallel processing is performed by a number of
techniques including multiplicity of functional units in
processors, distributed computing, multi-processing,
vector processing, and grid computing (to name a few).

and/or require large-scale implementation as well as
significant modifications in the processing hardware.
Therefore, a general-purpose, cheaper and more
scalable parallel computing paradigm is required.

NVIDIA introduced CUDA in 2007 for general-
purpose (parallel) processing on graphics processing
units. Although several graphics libraries such as
OpenGL, DirectX and OpenCL are also used for
general-purpose processing on GPUs, they are not as
rich in programming features and flexibility as CUDA
(e.g. profiling, debugging, efficient and convenient
high-level APIs, etc.). CUDA makes use of the
massive data parallelism capabilities of a GPU’s

* Assistant Professor, and ** Professor,
Department of Computer Systems Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah

Mehran University Research Journal of Engineering & Technology, Volume 33, No.4, October, 2014 [ISSN 0254-7821]

423

Frequency Domain Image Filtering Using CUDA

multiple streaming processors for performing general-
purpose (parallel) processing. Additionally, CUDA
provides increased programmer productivity as well as
built-in support for OpenCL and OpenGL. CUDA
finds its applications in various fields like medical
imaging, weather, space, computational finance,
computational flood dynamics, simulation and
modeling, to name a few.

Image processing is one of the fields which have
remained of particular interest for the researchers since
a long time. Since most of the image processing
operations operate on individual image pixels, they are
compute-intensive in terms of computations per
second. However, image processing operations are
inherently parallel and most suitable for SIMD (Single
Instruction Multiple Data) [1] Parallel processing
architecture. A CPU (processor), due to limited number
of cores and a specific architecture, offers limited
capabilities of processing large sets of data in a parallel
fashion. On the other hand, CUDA transfers the
data parallel part of an algorithm to the GPU
where hundreds of GPU cores simultaneously operate
on the data using the GPU’s SIMD architecture.
Many image processing algorithms have been
implemented on CUDA [2][3][4][5] and are under
extensive research for further improvements.

A number of image and video processing operations
have been investigated and analyzed using CUDA
which include motion tracking [6], face tracking [7],
feature extraction and tracking [8], object detection
and classification [9-10], and medical image
segmentation [11-12], to name a few. The relevant
literature demonstrates CUDA’s efficacy and huge
potential for ultra-fast image processing by performing
massively parallel operations with an economically
effective hardware. Apart from this, image and signal
filtering using CUDA has also been extensively
studied in the relevant literature [13-16]. Image
filtering is required for performing a number of tweaks
on images, e.g. blurring, sharpening, de-noising, and
tone mapping of high dynamic range images, etc. Since
image filtering is compute-intensive and presents a
dedicated challenge in real-time operations, the
acceleration using CUDA’s parallel processing
paradigm is highly desirable. However, image filtering
using CUDA is mostly implemented in spatial domain
using convolution operations. Filtering in spatial
domain is more computationally complex and slower
than its counterpart; the filtering in frequency domain.
In frequency domain, convolution takes the form of
multiplication which is much simpler than convolution.
Especially for larger filters, the cost of frequency

domain filtering using FFT becomes relatively small
compared to spatial domain filtering. The complexity
of the filtering in spatial domain is O(N?*). Whereas, in
the frequency domain filtering, FFT is applied in the
form of multiplication which has complexity of O(N).
Another advantage of FFT is that its execution time
does not increase significantly when multiple filters
are used. Whereas, multiple filters have drastic effects
on the performance of convolution operation [17].

In this paper, we investigate the benefit of frequency
domain image filtering using CUDA for low-pass
image filters namely Butterworth, ideal and Gaussian
filters. For this purpose, we first convert the image
from spatial domain to frequency domain by applying
discrete Fourier transform. The low-pass frequency
domain filters are then applied to the image. The
following step transforms the image into spatial
domain by applying IFFT (Inverse Fast Fourier
Transform) to give the output image. These steps are
performed on the CPU-based algorithm and the GPU-
based algorithm respectively and the bench- marks
are performed with respect to execution time, image
quality and speed-up. The benchmark results
obtained after the comparison of our implemented
CUDA code with that of the CPU code shows a
significant speed-up of up to 5x.

The rest of the paper is organized as follows. Section 2
provides an overview of the related work. Section 3
gives an introduction of CUDA framework. Section 4
gives a detailed overview of our proposed method of
frequency domain image filtering using CUDA. In
section 5, we discuss our experimental setup and
results. Section 6 concludes the paper.

2. RELATED WORK

The implementation of FFT and IFFT for frequency
domain image filtering is first performed in [18]. This
work shows how a commodity graphics card can be
used to perform image filtering. However, this work
does not leverage CUDA, but rather makes use of
OpenGL and Cg runtime graphics libraries which are
not as effective as CUDA.

In [17], Fialka et al. compare the GPU implementation
of frequency and spatial domain filtering and identify
the conditions under which the frequency domain
filtering gives better performance than the
corresponding spatial domain filtering. However, this
analysis is based on shader programming which is a
part of DirectX and is not as efficient and flexible as
CUDA [19].

Mehran University Research Journal of Engineering & Technology, Volume 33, No.4, October, 2014 [ISSN 0254-7821]

424

Frequency Domain Image Filtering Using CUDA

Despite of immense potential of image filtering using
CUDA, little attention is paid on frequency domain
image filtering using CUDA. In [20], Eklund, et. al.
use frequency domain image filtering with CUDA in
one of the steps of medical image registration.
However, the GPU vs. CPU speed-up for the
filtering operation is reported to be just 1.7x for
large data. It is also not clear whether this speed-up
includes the overhead time (time to transfer the data
from CPU to GPU and back).

Mohammad Nazmul Haque et. al. [21] implement the
FFT and IFFT image reconstruction algorithm using
CUDA'’s cuFFT library. They emphasize the use of
cuFFT library function to compute the FFT and IFFT
of the image for the various frequency domain
operations including image processing in frequency
domain. Their work focuses on porting the whole
workflow of image processing to the GPU instead of
only FFT and IFFT part.

In a more recent work, Xi Chen et. al. [22] implement
image filtering using CUDA and achieve significant
speed-up. Their implementation is focused on
frequency domain filters using CUDA and they show a
huge speed-up achieved by porting parallel tasks on the
GPU. However their reported execution time for the
CUDA algorithm excludes the overhead time which
has a significant impact on a GPU’s computing
performance.

3. COMPUTE UNIFIED
ARCHITECTURE

NVIDIA’s CUDA programming model allows
programmers to port the compute-intensive tasks to
GPUs where they can be executed in parallel way using
SIMD architecture. =~ A typical CUDA program
basically comprises a heterogeneous computing
paradigm where the serial part of the program is
executed by the CPU and the compute-intensive
part is seamlessly ported to the GPU by the CUDA
compute engine. CUDA framework has following
advantages:

DEVICE

e Massively parallel hardware designed to
utilize a graphics card to run generic (not
essentially graphic) code.

e Ease of programming with a C-like language
(CUDA C), eliminating the need of using
pixel and vertex shaders to emulate general-
purpose computers (OpenGL).

e SIMD based parallel hardware to execute a
significantly larger number of operations per
second than the CPU, at a fairly similar

financial cost, yielding substantial
performance improvements as compared to
CPU.

e CUDA provides an easy way for

programmers to write massively parallel
programs by using an API (Application
Programming Interface) which is a collection
of functions specially built for GPUs.

In CUDA'’s terminology, the CPU is called host which
works in coordination with the GPU (called device). In
SIMD computing architecture used by the GPU, each
function executed by the GPU is called a kernel
which contains multiple threads of an
instruction/program operating on different data. A
CUDA program typically combines parts of the
code which have the margin of data parallelism and
those which have no or less possibility of data
parallelism. The parts having more data parallelism are
executed on the device and the parts having no or less
data parallelism are executed on the host [23].
Therefore, an efficient implementation of a program
on CUDA requires precise identification of the
program’s parts which can be ported to the GPU and
executed in parallel way on its multiple cores using
SIMD architecture.

A kernel comprises several threads executing the
same program. These threads are grouped into blocks
having unique identifiers. The threads in the same
block can cooperate and communicate with each other
[24]. Several blocks are combined to form a grid. The
dimensions of the block and grid depend on the
problem and data size. Fig. 1 shows a grid of thread
blocks and the threads inside a block.

GRID of Thread Blocks
Block (1.0)

ecccemeee

Block (1)

ectceeee

Block (1,1)

Block (2.0)

ececcgeee

Block (2.1)

ecesereee

Thread (2.0)

Thread (0.0) Thread (1.0) Thread (3.0)

Thread (0.1) Thread (1.1) Thread (2.1) Thread (3.1)

Thread (0.2) Thread (1.2) Thread (2.2) Thread (3.2)

FIG. 1. GRID, BLOCKS AND THREADS IN CUDA FRAMEWORK

Mehran University Research Journal of Engineering & Technology, Volume 33, No.4, October, 2014 [ISSN 0254-7821]

425

Frequency Domain Image Filtering Using CUDA

A typical CUDA program has the following work flow:

(1) The CPU allocates memory at the GPU to
store data to be processed on the GPU and
communicated back to the CPU after
processing.

(2) The CPU transfers data from main memory to
the GPU’s (allocated) memory.

(3) The GPU processes the threads of a kernel on
its multiple cores and stores the results in its
memory.

(4) The results from the GPU’s allocated memory
are copied back to the main memory.

(5) The CPU frees the GPU’s allocated memory.

One of the major issues actively researched in CUDA
framework [25-26] is to reduce the memory transfer
overhead to and from the GPU. The latest NVIDIA’s
GPUs which are targeted for higher-performance
computing rather than graphics (e.g., NVIDIA Tesla
C2050) are designed with high memory transfer
bandwidth to cope with this problem.

4. FREQUENCY DOMAIN IMAGE
FILTERING USING CUDA

Frequency domain image filtering focuses on the
frequency spectrum of the image. Typical steps in this
process are:

(i) Transforming the image from spatial
domain to frequency domain using DFFT
(Discrete Fast Fourier Transform).

(i) Creating the filter in frequency domain
using the transfer function specific to the
filter.

(iii)) Multiplying the frequency spectrum of the
image with the filter function.
(iv) Transforming the resultant image spectrum

to spatial domain using IFFT.

Since the above mentioned operations, i.e. DFFT and
IFFT are massively parallel, they are potential
candidates to be implemented on CUDA. Generally,
image filtering is done for various purposes such as
enhancing the visual appearance of an image, removing
the noise from an image, edge detection, to name a
few. Image filtering can be performed in either spatial
domain or frequency domain. Spatial domain methods
use convolution operations that are applied repeatedly
on image pixels. These operations are complex and
computationally expensive. In contrast, the frequency
domain methods involve the Fourier transform of the
image which is then multiplied with a filter function to

obtain the resultant image spectrum. This spectrum is
then transformed back into spatial domain. The base of
frequency domain filtering is the convolution theorem
which is defined as [27]:

f(x’ Y)*h(x’)’) S F(u’V)H(u’V) (1)

and conversely,

f(x’ J’)h(x’ J’)<:> F(M,V)*H(M,V) (2)
Where the symbol “*” represents the convolution of
the two functions. It implies that image/signal filtering
by convolving an image/signal f(x,y) with a
convolution mask h(x,y) in spatial domain is
equivalent to the multiplication of image/signal in
frequency domain F(u,v) by a filter transfer function
H(u,v) [27-28]. Basically the idea in frequency
domain filtering is to select a filter transfer function
that modifies the frequency spectrum F(u,v) in a
specified manner. For example, when the transfer
function of a Butterworth low-pass filter H(u,v) is
multiplied by a centered frequency domain image
F(u,v), it attenuates high frequencies in F(u,v) while
leaving the low frequencies relatively unchanged. The
overall result is image blurring (smoothing) [29]. The
steps involved in the frequency domain image filtering
and its spatial domain counterpart are shown in Fig. 2.

4.1 Frequency Domain Image Filters

We selected three frequency domain image filters, i.e.
Butterworth low-pass filter, ideal low-pass filter, and
Gaussian low-pass filter for implementing their
operation on CUDA. The basic operation of all these
filters is to blur or smoothen an image with the pre-
selected parameters. The transfer function H of a
Butterworth low-pass filter of order n with cut-off
frequency at distance Dy from the origin is defined as:
1
Hyy =—F—35, 3
Dy |
! D, !

- -~

1+

:Spalial Domain Image Filtering

Input Image | Convolution o Spatial [, Output Image
foxy) g(xy)

Frequency Domain Image Filtering

Spatial
Filter

Inverse Fast Fourier Transform
G(u,v)

Filter Function
H(u,v)

Fast Fourier Transform
F(u,v)

FIG. 2. FREQUENCY DOMAIN IMAGE FILTERING AND ITS
SPATIAL DOMAIN COUNTERPART

Mehran University Research Journal of Engineering & Technology, Volume 33, No.4, October, 2014 [ISSN 0254-7821]

426

Frequency Domain Image Filtering Using CUDA

where u and v are the coordinates of the transformed
image (frequency domain). The advantage of using a
Butterworth filter in practice is its low ringing effect.
The transfer function of ideal low-pass function is
given by Equation (4).

1 lf D(u,v) < DO

H(u,v) = 4)

|0 otherwise

The ideal low-pass filter is the simplest of all the three
filters mentioned in this paper. Its operation is to
suppress all the frequencies which are higher than the
cut-off frequency Dy and to leave all other frequencies
un-changed.

The transfer function of the third frequency domain
filter, the Gaussian low-pass filter, which we consider
for CUDA implementation is given by Equation (5).

2,2
u-+v
H =ée— 5
(u, \;) 2 D 02 ()
4.2 Identifying the Compute-Intensive

Parts

In order to accelerate the image filtering process with
CUDA, it is particularly important to identify the
compute-intensive parts of the filtering process which
could be ported to GPU memory and have margin
of parallel processing with SIMD architecture. We
use Matlab’s visual profiler to analyze the image
filtering (CPU-based) code for the compute- intensive
parts. Our investigation for the Butterworth low-pass
filter code using Matlab profiler shows that the part of
FFT is most time-consuming compared to rest of the
program code. Fig. 3 shows the highlighted part of the
code snippet in red identified as most compute-
intensive by Matlab profiler. The time taken by each
part of the code is shown on the left in red values. The
blue values on the left show the number of times a code
snippet has been executed. Based on this analysis, we
select the FFT part to be ported to GPU by creating
different CUDA kernels whose individual threads run
parallel to each other on the GPU.

43 CUDA Work Flow for Frequency

Domain Image Processing

We first load the image into host memory and then
transfer it to the device memory using CUDA’s
library function cudaMemcpy. Our CUDA
programmed kernels then operate on the image. One of

these kernels computes the 2D fast Fourier transform
of the image. In the following step, the filter matrix is
multiplied with the frequency spectrum of the image by
another kernel and the resultant image is temporarily
held in the device memory. Subsequently, the
resultant image spectrum is applied to the third
kernel to transform it back into spatial domain
(inverse Fourier transform). The resultant image
pixels are finally transferred to the host using
cudaMemCpy() function.

Fig. 4 shows the work flow of our frequency domain
image filtering on CUDA. The host (CPU) only
executes those parts of the code which are either not

10 f=imread(filename);

11 f=im2double(f);

12 [M,N]=size(f);

13 tie

14 %FFT of the image after padding values of the same size as image
15 F=single(££t2 (£, 2*M,2*N));

16 %FFT shift

B oRBRRER

0.10 1 17 Fc=single(£ftshift (F));

18 %deleting large matrix to release memory
0.05 1 19 delete F

20 %initializing the filter of the same size as the padded image
0.06 1 21 H=single(zeros(2*M,2*N));

22 %calculating filter values
1 23 for u=1l:2*M;
4096 24 for v=1:2*N;
8.84 16777216 25 radius = ((u-(M+1))42 + (v=(N+1))42)*.5;
10.91 16777216 26 H(u,v)= 1./(1.0 + (radius./ 40).4(2%2));
8.03 16777216 27 end;
4096 28 end;
1 29 filter=H;
30 %multiply the filter with image spectrum
31 G=H.*Fc;
32 %deleting large matrix to release memory
1 33 delete Fc
34 %Inverse FFT shift
35 Gsh=single (ifftshift(G));
36 %deleting large matrix to release memory
1 37 delete G H
38 %Inverse FFT to transform the image in spatial domain
39 Ginv=ifft2(Gsh,2*M,2*N);
40 %deleting large martix to release memory
1 41 delete Gsh
42 %converting to real and unpadding

-

43 Greal=single(real(Ginv(1:M,1:N)));
1 44 resultImage=Greal;

45 % t=toc*1000

46 % disp(”Image “& M & “x” & N);
47 t_total(count)= toc *1000

48 sum=sum+t_total(count);

49 end

50 end

BRRe

0.05

FIG. 3. MATLAB PROFILER RESULT FOR BUTTERWORTH

FILTER
The Host Transferring image The Device
; - from host to device Discrete Fourier
mage in Transf
time domain —_— ranstorm
f(x,y) of the Image using
’ CUDA
a
=]
=4
- >
Applying Low Pass a
filter in parallel g
T) using CUDA threads ||’
ransferring and blocks i
processed image ?
back from device to e,
host H

Processed Image
in time domain

g(xy)

«—

FIG. 4. WORK FLOW FOR FREQUENCY DOMAIN IMAGE

Inverse Discrete
Fourier Transform

using CUDA

FILTERING WITH CUDA

Mehran University Research Journal of Engineering & Technology, Volume 33, No.4, October, 2014 [ISSN 0254-7821]

427

Frequency Domain Image Filtering Using CUDA

parallelizeable or are not related to processing the
image (e.g. loading image pixels into the host memory,
writing the filtered image to disk, etc.). The rest of
the code such as transforming the image into
frequency domain using discrete FFT, applying
transfer function on the frequency spectrum of the
image, and transforming the image back into spatial
domain using inverse FFT are all performed by the
GPU, thus leveraging the massive parallel
processing power of the GPU cores for the compute-
intensive parts of the code.

S. EXPERIMENTAL RESULTS

The dimension of the block size used in our
experiments is selected to be (By,B,,)=(16,16), where
By and B,, represent the height and width of the block
respectively (256 threads per block). It is worth
mentioning that for discrete Fourier transform, the
image needs to be padded with the same number of
zeros as the original size of the image to obtain a
finer sampling of the Fourier transform [30]. These
zeros are unpadded after the inverse discrete Fourier
transform of the image. Therefore, we have two
possible sizes of the block grid, i.e. block grid for
unpadded (original sized) image, and the block grid for
padded image.

The dimensions of the block gird for unpadded and
padded image, represented by D, and D, respectively,
are calculated by the following rule:

I, I,

D, = (- v ©)
B, B,
P, P,

D, = (-, @
Bh Bw

Where I, and I, are the dimensions of the unpadded
image, P, and P, are the dimensions of the padded
image with P, =2x1,,P, =2xI,, and B;, and B,
represent the dimensions of each block.

The execution times of the frequency domain filters
were measured for CPU and GPU implementation
separately for different image sizes. Fig. 5 shows the
graph of the average execution times of the CPU and
the GPU implementations of Butterworth filters with
increasing image sizes. It is clear from Fig. 5 that there
is a significant speed-up achieved by our GPU
implementation of image filtering. However, it is also
interesting to measure the speed-up with and without
the memory transfer overhead. This comparison is

shown in Fig. 6. The memory transfer overhead refers
to the time consumed in allocating memory on the
GPU and transferring the data from CPU to GPU and
then back. It can be noted that as the size of the input
data increases, the overhead also increases
proportionally and the speed-up starts dropping for the
larger image sizes. The execution times of the CUDA
kernels for image filtering and the respective memory
transfer times are shown in Fig. 7.

120001

—O— CPU execution time
—®— CUDA execution time with overhead

10000F

8000F

60001

4000

Average execution time (ms)

2000F

00 L
128x128 512x512 1024x1024 1536x1536

Image Size

L ")
2048x2048 2560x2560 3072x3072

FIG. 5. AVERAGE EXECUTION TIME OF CPU- AND GPU-
BASED BUTTERWORTH FILTER

Speedup (x)
0

2+
1+
—8— Speed up of CPU vs. CUDA with overhead
—®— Speed up of CPU vs. CUDA without overhead
1 ' N N N N '
128x128 512x512 1024x1024 1536x1536 2048x2048 2560x2560 3072x3072
Image Size
FIG. 6. SPEED-UP WITH AND WITHOUT OVERHEAD FOR
BUTTERWORTH FILTER
2688x2688
2560x2560
8 2304x2304
3
o 2048x2048
£
E 1536x1536
1024x1024
@ Overhead time
512x512 @ Average time spent in kernel

0 500 1000 1500 2000 2500 3000
Average execution time (ms)

FIG. 7. KERNEL EXECUTION TIMES AND OVERHEAD TIMES
FOR VARIOUS IMAGE SIZES

Mehran University Research Journal of Engineering & Technology, Volume 33, No.4, October, 2014 [ISSN 0254-7821]

Frequency Domain Image Filtering Using CUDA

Fig. 8 (a-c) shows the image filtering results with
Butterworth, Gaussian and Ideal low-pass filters. For
the sake of simplicity, we present the CPU filtered
image of Butterworth filter only. The CUDA filtered
images for the three filters are shown in Fig. 8(d-f).
Although the image filtering results for GPU
implementation and its CPU counterpart appear to be
same, we also compare the filtered images of both the
implementations by calculating the MSE (Mean
Square Error) for the CPU filtered and the GPU

filtered images of dimensions M XN by the
following rule:

M—-1N=1
Y'[cd, p-6a,) (8)

-

S

i

-
[

i=0 j=

~
o

(a) ORIGINAL IMAGE (b) FREQUENCY SPECTRUM

OF THE IMAGE

(c) CPU BUTTERWORTH (d) CUDA BUTTERWORTH

-

(¢) CUDA GAUSSIAN

(f) CUDA IDEAL LOW-PASS

FIG. 8. FREQUENCY DOMAIN IMAGE FILTERING
FOR VARIOUS FILTERS

where C (i,j) and G (i, j) represent the CPU filtered

image and the GPU filtered image respectively. The
average MSE for all the filter implementations is found
to be 0.00040 which shows a very satisfactory level of
similarity between the CPU filtered and the GPU
filtered images.

We also perform statistical analysis on the speed-up
trend with respect to image sizes. By obtaining the
speed-up statistics from different image sizes and
using appropriate curve fitting techniques, we find
an interesting relationship between the speed-up and
the data size which is shown in Fig. 9. It is evident
that the speed-up follows an exponential trend which
can be defined by the following relation:

where a = 6.221, b =—0.0001475, ¢ =—7.11 and d = —0.001641.

The detailed specifications of the hardware and the
software used in our experiments are given in Tables 1-2.

6. CONCLUSION

In this paper, we have investigated the benefits of
frequency domain image filtering using CUDA. We
implemented three low-pass frequency domain filters,
namely Butterworth, Ideal, and Gaussian filters. The
results presented in this paper show that our
CUDA/GPU implementation of the frequency domain
image filtering achieves a speed-up of up to 5x as
compared to the CPU implementation of the same
filters. Apart from this, we also presented an important
relationship between the speed-up and the data size.

In future, we aim to extend this work by applying the
CUDA based frequency domain image filtering on
real-time video and image processing systems. We

45r | e Speedup L
Fitted curve ° e ° °

260 4(‘)0 6(I)0 860 10.00 12IOO 14IOO 16‘()0 18I00 20.00
Image Sizes
FIG. 9. GPU VS. CPU SPEED-UP TREND

Mehran University Research Journal of Engineering & Technology, Volume 33, No.4, October, 2014 [ISSN 0254-7821]

Frequency Domain Image Filtering Using CUDA

further aim to improve the speed-up by utilizing other

features

of CUDA such as shared memory which

operates much faster than the global memory. We
also aim to transform the spatial domain image filters
in frequency domain and then implement them on

CUDA.

ACKNOWLEDGEMENT

This research is carried out in M.E. Thesis, Department
of Computer Systems Engineering, Quaid-e-Awam
University of Engineering, Science & Technology,
Nawabshah, Pakistan.

REFERENCES

[1]

[2]

[3]

NVIDIA Corporation, “NVIDIA CUDA C Programming
Guide”, 2011.

Park, I.LK., Singhal, N., Lee, M.H., Cho, S., and Kim, C.,
“Design and Performance Evaluation of Image
Processing Algorithms On GPUs”, IEEE Transactions
on Parallel and Distributed Systems, Volume 22, No. 1,
pp. 91-104, 2011.

Palhano, F., Xavier, G., Andrade, P., and Hellier, P.,
“Real Time Ultrasound Image Denoising”, Journal of
Real-Time Image Processing, Volume 6, No. 1, pp. 15-22,
2011.

TABLE 1. HOST SPECIFICATIONS

Feature Specification
CPU Model Intel core i7
CPU clock speed 3.4 GHz
System Main Memory 8 3 GB

GB

Operating System

Windows 7 Home Premium 64-bit

TABLE 2. DEVICE SPECIFICATIONS

Feature Specification
GPU processor NVIDIA GeForce GT
610
CUDA cores 48
810 MHz Memory data rate
Core clock 1000 MHz Memory interface
64-bit

On-chip Memory

1 GB Memory Bandwidth
14.4 GB/sec

CUDA toolkit

version 6.0 [31]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

Wang, K., Huang, C., Y.J., Kao, Chou, C.Y., Oraevsky,
A., and Anastasio, M.A. “Accelerating Image
Reconstruction in Three-Dimensional ~Optoacoustic
Tomography On Graphics Processing Units”, Medical
Physics, Volume 40, No. 2, pp. 23301, 2013.

Brown, J., and Capson, D., “A Framework for 3D Model-
Based Visual Tracking Using A GPU-Accelerated
Particle Filter”, IEEE Transactions on Visualization and
Computer Graphics, Volume 18, No. 1, pp. 68-80,2012.

Huang, J., Ponce, S.P., Park, S.I,, Cao, Y., and Quek, F.,
“GPU-Accelerated Computation for Robust Motion
Tracking Using the CUDA Framework”, Proceedings of
5th International ~Conference on Visual Information
Engineering, pp. 437-442. Xi’an, China, 2008.

Sharma, B., Thota, R., Vydyanathan, N., and Kale, A.,
“Towards a Robust, Real-Time Face Processing System
Using CUDA-Enabled GPUs”, Proceedings of IEEE
International ~ Conference on High Performance
Computing, pp. 368-377, Kochi, India, 2009.

Sinha, S.N., Frahm, J.M., Pollefeys, M., and Genc, Y.,
“Feature Tracking And Matching in Video Using
Programmable Graphics Hardware”, Machine Vision and
Applications, Volume 22, No. 1, pp. 207-217, 2011.

Zhang, L., and Nevatia, R., “Efficient Scan-Window
Based Object Detection Using GPGPU”, Proceedings of
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 1-7, Anchorage, USA, 2008.

Mussi, L., Cagnoni, S., and Daolio, F., “GPU-Based Road
Sign Detection Using Particle Swarm Optimization”,
Proceedings of 9th International Conference on Intelligent
Systems Design and Applications, pp. 152-157, Pisa,
Italy, 2009.

Pan, L., Gu, L., and Xu, J., “Implementation of Medical
Image Segmentation In CUDA”, Proceedings of IEEE
International Conference on Information Technology and
Applications in Biomedicine, pp. 82-85, Shenzhen, China,
2008.

Kauffmann, C., and Pich’e, N., “Seeded ND Medical
Image Segmentation by Cellular Automaton on GPU”,
International Journal of Computer Assisted Radiology and
Surgery, Volume 5, No. 3, pp. 251-262, 2010.

Scherl, S., Keck, B., Kowarschik M., and Hornegger, J.,
“Fast GPU-based CT Reconstruction Using the Common
Unified Device Architecture”, Proceedings of IEEE
Nuclear Science Symposium Conference Record, pp.
4464-4466, Honolulu, HI, 2007.

Ogawa, K., Ito, Y., and Nakano, K., “Efficient Canny
Edge Detection Using a GPU”, Proceedings of IEEE Ist
International Conference on Networking and Computing,
pp- 279-280, Higashi-Hiroshima, Japan, 2010.

Van, W.J., Jalba, A.C., and Roerdink, J.B., “Accelerating
Wavelet Lifting on Graphics Hardware Using CUDA”,
IEEE Transactions on Parallel and Distributed Systems,
Volume 22, No.1, pp. 132-146, 2011.

Mehran University Research Journal of Engineering & Technology, Volume 33, No.4, October, 2014 [ISSN 0254-7821]

430

Frequency Domain Image Filtering Using CUDA

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Wilson, J.A., and Williams, J.C., “Massively Parallel
Signal Processing Using the Graphics Processing Unit for
Real-Time Brain-Computer Interface Feature Extraction”,
Frontiers in Neuro Engineering, Volume 2, No. 11, pp. 1-
13, 2009.

Fialka, O., and Cadik, M., “FFT and Convolution
Performance in Image Filtering on GPU”, Proceedings of
10th International Conference on Information
Visualization, pp. 609-614, London, England, 2006.

Moreland, K., and Angel, E., “The FFT on a GPU”,
Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics
Hardware, pp. 112-119, Aire-la-Ville, Switzerland, 2003.

Guzhva, A., Dolenko, S., and Persiantsev, 1., “Multifold
Acceleration of Neural Network Computations Using
GPU”, Proceedings of International Conference on
Artificial Neural Networks, pp. 373-380, Cyprus, 2009.

Eklund, A., Andersson, M., and Knutsson, H., “Phase
Based Volume Registration Using CUDA”, Proceedings
of IEEE International Conference on Acoustics Speech
and Signal Processing, pp. 658-661, Dallas, TX, 2010.

Haque, M.N., and Uddin M.S., “Accelerating Fast Fourier
Transformation for Image Processing Using Graphics
Processing Unit”, Journal of Emerging Trends in
Computing and Information Sciences, Volume 2, No. 8,
pp. 367-375,2011.

Chen, X., Qiu Y., and Yi, H., “Implementation and
Performance of Image Filtering on GPU”, Proceedings of
IEEE 4th International Conference on Intelligent Control
and Information Processing, pp. 514-517, Beijing, China,
2013.

Kirk, D.B., and Wen-mei, W.H., “Programming

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Massively Parallel Processors: A Hands-On Approach”,
Morgan Kaufmann, USA, 2010.

Garland M., Grand, S., Nickolls, J., Anderson, J.,
Hardwick, J., Morton, S., Phillips, E., Zhang, Y., and
Volkov, V., “Parallel Computing in CUDA”, IEEE Micro,
Volume 28, No. 4, pp. 13-27, 2008.

Ahmed, F., Quirem, S., Shin, B.J., Son, D.J., Woo, Y.C.,
Lee, B.K, and Choi, W., “A Study of CUDA
Acceleration and Impact of Data Transfer Overhead in
Heterogeneous Environment”, Proceedings of Workshop
on Unique Chips and Systems UCAS-7, pp. 22-25,
New Orleans, USA, 2012.

Duato, J., Pena, A., Silla, F., Fernandez J., Mayo R., and
Quintana-Orti, E., “Enabling CUDA Acceleration within
Virtual Machines Using rCUDA”, Proceedings of
International ~ Conference on High Performance
Computing, pp. 1-10, Bangalore, India, 2011.

Brigham, E., and Morrow, R., “The Fast Fourier
Transform", IEEE Spectrum, Volume 4, No.12, pp. 63-
70, 1967.

Smith, S.W., “The Scientist and Engineer’s Guide to
Digital Signal Processing”, California Technical
Publication, San Diego, 1997.

Gonzalez, R.C., Woods, R.C., and Eddins, S.L., “Digital
Image Processing Using MATLAB”, Gatesmark
Publishing, USA, 2009.

Lin, C.Y., Wu, M., Bloom, J.A., Cox, LJ., Miller, M.L.,
and Lui, Y.M., “Rotation, Scale, and Translation Resilient
Watermarking for Images”, IEEE Transactions on Image
Processing, Volume 10, No. 5, pp. 767-782, 2001.

https://developer.nvidia.com/cuda-downloads

Mehran University Research Journal of Engineering & Technology, Volume 33, No.4, October, 2014 [ISSN 0254-7821]

431

