
Automated Generation of OCL Constraints: NL based
Approach vs Pattern Based Approach

IMRAN SARWAR BAJWA*, AND MUHAMMAD ANWAR SHAHZADA**

RECEIVED ON 02.09.2015 ACCEPTED ON 11.05.2016

ABSTRACT

This paper presents an approach used for automated generations of software constraints. In this model,

the SBVR (Semantics of Business Vocabulary and Rules) based semi-formal representation is obtained

from the syntactic and semantic analysis of a NL (Natural Language) (such as English) sentence. A

SBVR representation is easy to translate to other formal languages as SBVR is based on higher-order

logic like other formal languages such as OCL (Object Constraint Language). The proposed model

endows with a systematic and powerful system of incorporating NL knowledge on the formal languages.

A prototype is constructed in Java (an Eclipse plug-in) as a proof of the concept. The performance was

tested for a few sample texts taken from existing research thesis reports and books.

Key Words: Object Constraint Language, Constraints, Natural Language Processing.

* Department of Computer Science, The Islamia University of Bahawalpur, Bahawalpur.
** Department of Computer Science, National College of Business Administration & Economics, Lahore.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
243

1. INTRODUCTION

We have identified three major factors contributing to

usability problems in OCL. The primary factor is the hard

syntax of OCL [4]. Wahler [3] addressed this problem by

introducing a template based language. His approach,

which is implemented to be used with IBM Rational, allows

the user to pick a template, from a wide range of OCL

template, assign the parameters and use them. This would

greatly help the user; however, the key challenge is to

learn which template to pick. Second aspect of OCL’s

usability problem is the ambiguous nature of OCL

constraint as several equivalent implementations for a

constraint are possible in OCL [5-6]. Cabot proposed an

approach for automatic disambiguation of the constraints

by means of providing a default interpretation for each

kind of ambiguous expression. But a designer has to be

The UML (Unified Modeling Language) [1] is now

widely considered as a de facto standard family

of languages for specifying, modelling,

constructing and documenting object-oriented software

and systems. Popularity of UML is often attributed to its

semi-formal nature. It is argued that UML is not formal

enough to demand deep knowledge of formal methods

that inhibits practically minded software engineers from

using it. As a result, usability is seen as a major feature of

the UML. However, OCL [2], which is one of the

languages in UML, is a clear exception to this argument.

OCL plays a key role in UML modelling for expressing

essential constraints to make UML models well-defined.

But it is also a common knowledge that OCL is the least

adopted amongst all languages in UML [3].

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
244

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

aware of all the possible states while writing an OCL

constraint to avoid the identified ambiguities. Third aspect

of OCL’s usability problem is understandability of overly

complex OCL expressions commonly used in large

software models [7]. The refactoring techniques are used

to improve the understandability of OCL specifications

but the employment of refactoring technique can be an

overhead in the process of software modelling.

To contribute to OCL’s usability a tool has to be able to

deal with English. In practice, an English expression of a

constraint is manually mapped to an OCL constraint on a

given UML model. We have identified a set of tasks that

are involved in typical English to OCL mapping. Firstly,

since OCL is side-effect free [2], the English statement

must be about the system, i.e. the terms and vocabulary

used must be already existence in the model. Secondly,

English language is inherently ambiguous. It is important

to start from a correct understanding of the meaning of

the expression. Thirdly, we believe that if the English

sentence is clear and well-understood, the creation of

OCL can be automated. On the basis of the above three

points, this paper presents a framework for automated

creation of OCL statements from the English language

expressions.

Our approach allows the user to write various constraints

and pre/post conditions on a UML model in English. First

input the English is mapped with input UML model. Then

the English constraints are automatically transformed to

the equivalent OCL expressions via SBVR [8]. SBVR is an

OMG’s recent standard that and we have used SBVR to

overcome the inherent ambiguity of English language.

SBVR not only provides English a semantically formal

representation but also closed to OCL syntax as both

languages are based on formal logic. To create an OCL

expression, the SBVR rules are transformed to OCL using

MDA model transformations. As a proof of concept, the

proposed approach is implemented as an Eclipse plugin

called NL2OCLviaSBVR. The NL2OCLviaSBVR

automatically transforms English to OCL via SBVR. The

automated transformation not only hides the complexity

involved in the manual production of OCL constraints

from English language but also results in producing OCL

constraints in a seamless and non-intrusive manner.

The rest of the paper is structured as follows: section 2

describes the NL-based software tool NL2OCL via SBVR;

section 3 discuses a case study; section 4 presents

evaluation followed by the related work section. The paper

ends with a conclusion section.

2. RELATED WORK

In the last couple of decades, various research efforts are

introduced in the domain of machine interpretation of

English language description of software details to formal

textual and graphical notations. A few examples of such

works are given in Table 1.

.oN kroW ecruoS

.1]29egaugnaLgniledoMdeifinUotegaugnallarutaN]4,2,1[

.2]01[egaugnaLtniartsnoCtcejbOotegaugnallarutaN]3[

.3 edocavaJotegaugnallarutaN]7,5[

.4 egaugnaLyreuQderutcurtSotegaugnallarutaN]11,8[

.5 seigolotnootegaugnallarutaN]21[

.6 sledomssecorpssenisubotegaugnallarutaN]31[

.7 seitreporpnoitacifireverawdrahlamrofotegaugnallarutaN]41[

TABLE 1. EXISTING WORK ON SOFTWARE REQUIREMENTS INTERPRETATION

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
245

Additionally, different contributions are finished to

automate various processes an phases of software

modelling with the help of automated transformations.

MDD (Model Driven Development) [8] is one of the recent

developments in model transformation technology and

MDD has permitted creation of a model from another in

an automatic manner. Examples of such work are

transformations example OCL/UML to Alloy [15], SBVR

to OCL [16], SBVR to UML [17], UML/OCL to SBVR [18],

OCL to B [19], SBVR to SQL [20], etc. Such automated

transformations has made easy and simple to reuse the

existing information.

3. THE NL TO OCL TOOL

The NL2OCLviaSBVR is a modular NL-based software

tool that generates OCL constraints with respect to a

target UML model. It takes two inputs: a single English

statement and a UML model. To process the input English

text first it is linguistically analyzed. In linguistic analysis

of the English text, the English text is POS (Parts-Of-

Speech) tagged. Then a rule-based parser is used to

further process the POS tagged information to extract

basic SBVR elements e.g. noun concept, fact type, etc.

Here, the SBVR vocabulary is mapped to a SBVR rule.

Finally, to generate an OCL expression, the SBVR

vocabulary is mapped to OCL syntax using the model

transformation approach. The working of these steps has

been stated in detail in the following section:

3.1 The Input Documents

NL2OCLviaSBVR takes two input documents: an English

text document and a UML model document. The English

text is taken as a plain text file containing only English

constraint. Current version of the NL2OCLviaSBVR

handles only one English constraint at a time. The given

English text should be grammatically correct. UML model

is taken as XMI 1.0 format. We used Enterprise Architect

to create a UML model and export it in XMI 1.0 format.

3.2 NL to SBVR Transformation

The core of NL2OCLviaSBVR is a NLP module that

consists of a number of processing units organized in a

pipelined architecture. This NLP module is highly robust

and is able to process complex English statements. The

NLP system is used to lexically and syntactically process

the English text and then perform semantic analysis to

identify basic SBVR elements. The core system processes

a text into three main processing stages.

3.2.1 Preprocessing

In the preprocessing phase, the input text containing the

natural language specification of an OCL constraint for a

UML class model is preprocessed for deep processing.

Major steps involved in preprocessing phase are splitting

the sentences, tokenization, and lemmatization. The

preprocessing sub-phases are discussed below:

Sentence Splitting: In first step, the input English text is

read and broken into sentences. During sentence splitting,

the margins of a sentence are identified and each sentence

is separately stored. Sentence splitting is performed using

the Stanford parser.

Tokenization: After sentence splitting, each sentence is

processed to identify tokens. Again Stanford parser is

employed for efficient tokenization. An example is shown

in Fig. 1.

.redroenoecalpnacremotsucA:hsilgnE

].[]redro[eno[]ecalp[]nac[]remotsuc[]A[:snekoT

FIG. 1. TOKENIZED TEXT USING STANFORD PARSER

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
246

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

Lemmatization: Here, the morphological analysis of

words is performed to remove the inflectional endings

and to return the base or dictionary form of a word, which

is known as the lemma. We identify lemma (base form) in

the POS tagged tokens by removing various suffixes

attached to the nouns and verbs.

3.2.2 Syntactic Analysis

The output of a typical syntax analysis phase is a tree

diagram or other textual representation. Our syntactic

analyzer parses the preprocessed text by POS-tagging

information and defining the syntactic units also called

chunks. In syntax analysis phase, four steps are performed

as following:

POS Tagging: In this step, parts of speech are identified

for each token in the input text. In POS tagging, each

token is classified to its respective parts-of-speech

category by assigning a specific tag to teach token such

as NN, VB, RB, MD, DT, etc. The Stanford POS tagger

version 3.0.3 has been used to identify 44 various parts

of speech. An example of a POS tagged sentence is shown

in Fig. 2.

Generating Syntax Tree: We have used Stanford Parser

to generate parse tree. The Stanford parser is a lexically

driven probabilistic parser based on PCFG (Probabilistic

Context-Free Grammars) (Fig. 3).

3.2.3 Semantic Analysis

A typical semantic analysis yields in a logical form of a

sentence. Logical form is used to capture semantic

meaning and depict this meaning independent of a

particular context. The goal of semantic analysis is to

understand the exact meanings of the input text and

identify that relationship in various chunks.

Shallow Semantic Parsing: In shallow semantic parsing,

the semantic or thematic roles are typically assigned to

easy syntactic structure in a NL sentence. This process

is also called SRL (Semantic Role Labeling). Semantic

labeling on a substring (semantic predicate or a semantic

argument) in a constraint (NL sentence) ‘S’ can be applied.

Every substring ‘s’ can be represented by a set of words

indices as following:

S †” {1, 2, 3, …., n}

Formally, the process of semantic role labeling is mapping

from a set of substrings from c to the label set ‘L’. Where

L is a set of all argument semantic labels,

L = {a
1
, a

2
, a

3
,…., m}

The semantic roles can act as an intermediate

representation in NL to SBVR translation. In the context

of the targeted representation (SBVR rule representation),

we have incorporated the following semantic roles. These

semantic roles are typically used in semantic role labeling.

.redroenoecalpnacremotsucA:hsilgnE

]./.[]NN/redro[DC/eno[]BV/ecalp[]DM/nac[]NN/remotsuc[]TD/A[:snekoT

.redroenoecalpnacremotsucA:hsilgnE

TOOR(:snekoT
S(

))remotsucNN()ATD(PN(
)nacDM(PV(
)ecalpBV(PV(

))))redroNN()enoDC(PN(
)))..(

)1-A,2-remotsuc(ted:seicnednepeD
)2-remotsuc,4-ecalp(jbusn

)3-nac,4-ecalp(xua
)4-ecalp,0-TOOR(toor

)5-eno,6-redro(mun
)6-redro,4-ecalp(jbod

FIG. 2. PARTS-OF-SPEECH TAGGED TEXT

FIG. 3. PARSE REPRESENTATION AND DEPENDENCIES

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
247

(a) Object Type → Common nouns

(b) Individual Concept → Proper nouns

(c) Verb Concepts → Main Verb

(d) Characteristics → Generative Phrases

A sequence of steps was performed for labeling semantic

roles to respective semantic predicates. Following are the

three main steps involved in the phase of semantic role

labeling:

Extracting Semantic Predicates: In this phase, we extract

the possible semantic predicates. This module relies

mainly on the external resources, thus the elements in

target UML Class models (class names, attributes,

methods) are likely to be semantic predicates. The chunks

not matching the elements of target UML Class model are

not semantic predicates or semantic arguments. For

extracting semantic predicates we check if the verb is a

simple verb, a phrasal verb or a verbal collocation and

locate the verb in (Fig. 4).

In English sentences, verb concepts are typically

represented in combination of auxiliary verb and main

verb (possibly following participle). However

sometimes, there are only auxiliary verbs and no main

verbs (Fig. 5).

Extracting Semantic Arguments: In English sentences,

object type can be represented with pre-modifiers such

as articles (determiners) and with post-modifiers:

prepositional phrases, relative (finite and non-finite)

clauses, and adjective phrases.

Semantic Interpretation: In lexical semantics, the frame

is also considered a useful tool in text semantics and the

semantics of grammar. The interpreter of a text invokes a

frame when assigning an interpretation to a piece of text

by placing its contents in a pattern known independently

of the text. A text evokes a frame when a linguistic form or

pattern is conventionally associated with that particular

frame. Fig. 6 shows an example of the semantic

interpretation we have used in the presented approach

for NL to OCL transformation.

The output of the NLP module is an xml file that contains

the parsed English text with all the extracted information.

Deep Semantic Parsing: In natural languages,

quantifications are typically expressed with NPs (Noun

Phrases). However, in FOL (First-Order Logic), the

variables are quantified at the start of the logical

expressions. Generally, the NL quantifiers are much more

vague and varied. This vagueness makes translation of

NL to FOL complex. However, we have set of heuristic

rules to identify the quantifications:

(i) Universal Quantification (∀X): The universal

quantification is mapped to Universal Quantification in

SBVR. The NL quantification structures ‘each’, ‘all’, and

FIG. 4. IDENTIFYING VERB CONCEPTS (PREDICATE)

FIG. 5. IDENTIFYING SEMANTIC ARGUMENTS

.redroenoecalpnacremotsucA:hsilgnE

ecalp(:lacigoL
))x?remotsuc(~eht(=epyt_tcejbo(

))x?remotsuc(~eht(=epyt_tcejbo(

FIG. 6. SEMANTIC ROLES ASSIGNED TO INPUT ENGLISH
SENTENCE.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
248

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

‘every’ are mapped to universal quantificational

structures. Similarly, the determiners ‘a’ and ‘an’ used

with the subject part of the sentence are treated as

universal quantification (Fig. 6).

(ii) Existential Quantification (∃X): The existential

quantification is mapped to Existential Quantification in

SBVR. The keywords like many, little, bit, a bit, few, a few,

several, lot, many, much, more, some, etc. are mapped to

existential quantification.

(iii) Uniqueness Quantification (∃
=1

X): The uniqueness

quantification is mapped to Exactly-One Quantification

in SBVR. The determiners ‘a’ and ‘an’ used with object

part of the sentence are treated as uniqueness

quantification.

(iv) Solution Quantification (§X): The solution

quantification is mapped to Exactly-n Quantification in

SBVR. If the keywords like more than or greater than are

used with n then solution quantifier is mapped to At-

most Quantification. Here, if the terms “less than” or

“smaller than” are used with n then solution quantifier is

mapped to At-least Quantification.

The SBVR produces a SBVR rule in the form of text string

that is further formatted using the SBVR notation i.e.

Structured English. The output SBVR module is saved

and exported in two separate files: an xml file contains the

SBVR vocabulary and respective details; a text file

contains the formatted SBVR rule.

3.3 The SBVR to OCL Transformation

The OCL module maps a SBVR rule to an OCL expression

by using model transformation that incorporates the

mapping rules between SBVR and OCL metamodels. SBVR

to OCL mapping rules typically define the conversion of

element(s) of the SBVR metamodel to equivalent element(s)

of the OCL metamodel. In OCL module, SiTra [21] library

is used to implement model transformation. OCL module

uses the output of the SBVR module i.e. the SBVR

vocabulary to generate an OCL expression. A set of

mapping rules were defined to map the SBVR vocabulary

to different type of OCL expressions e.g. invariant,

precondition and post condition. OCL queries have not

been supported by the current version of the

NL2OCLviaSBVR. A brief description of the mapping rules

is provided in the following section:

3.3.1 OCL Package and Context

For any type of OCL expression, two elements are basic

requirements: package and context. The UML package is

mapped to the OCL package. While, the context of an

OCL expression defines the scope of the given invariant

or pre/post condition. To specify the context of an OCL

invariant, the major actor in the SBVR rule is extracted to

specify the context. To specify the context of an OCL pre/

post condition, the action performed by the actor in a

SBVR rule is considered as the context.

3.3.2 Mapping OCL Constraints

Transformation rules for mapping of UML-SBVR

specification to OCL constraints are defined in this

section. There are two basic types of an OCL constraints;

invariant of a class, and pre/post condition of an operation.

Constraint on a class is a restriction or limitation on a

particular attribute, operation or association of that class

with any other class in a model [16].

3.3.3 Mapping OCL Invariants

The OCL invariant specifies a condition on a class’s

attribute or association. Typically, an invariant is a

predicate that should be TRUE in all possible worlds in

UML class model’s domain. The OCL context is specified

in the invariants by using self keyword in place of the

local variables.

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
249

3.3.4 Mapping OCL Pre/Post Conditions

Similar to the OCL invariant, the OCL preconditions and

the OCL post condition are used specify conditions on

operations of a class. Typically, a precondition is a

predicate that should be TRUE before an operation starts

its execution, while a post condition is a predicate that

should be TRUE after an operation completes its

execution [22].

3.3.5 Mapping OCL Expressions

The OCL expressions express basic operations that can

be performed on available attributes of a class. An OCL

expression in the OCL invariant can be used to represent

arithmetic, and logical operations. OCL arithmetic

expressions are based on arithmetic operators e.g. ‘+’, ‘–

’, ‘/’, etc., while, logical expressions use relational

operators e.g. ‘<’, ‘>’, ‘=’, ‘<>’, etc. and logical operators

e.g. ‘AND’, ‘implies’, etc.

3.3.6 Mapping OCL Operations

The OCL collections represent a set of attributes of a

class. A number of operations can be performed on the

OCL collections e.g. sum, size, forAll(), count, isEmpty,

etc.

All the defined transformation rules defined in [23-25]

were implemented in a java based library SiTra (Simple

Transformation). The output of the OCL module is a

complete OCL expression. The output OCL is saved and

exported in a separate text file.

4. A CASE STUDY

In this section, we apply the qualitative evaluation criteria

defined in Section 7.1and summarize the validation of our

approach.

4.1 Experiment Details

This section discusses a used case study on the “Royal

& Loyal” model. The Royal & Loyal model was originally

presented for introducing OCL By Example in [26]. This

case study is chosen as this case study is also done by

Wahler [27] by his template based approach for automated

generation of OCL constraints. The details of the case

study are shown in Fig. 7 and Table 2.

4.2 Results of Evaluation

To evaluate the results of NL2OCLviaSBVR [16] tool, each

result (OCL constraints) of the tool was compared with

the sample results N
sample

 (opinion of the expert) and we

have depicted opinion of the expert as OtherOCL. All the

results were categorized as correct that was matched to

the sample results and counted as correct result and

denoted as N
correct

. Similarly, the results of the tool not

matched with the sample results were classified as

incorrect results and denoted N
incorrect

. In addition to this,

the input that was missed by our tool and it was classified

as the missing result and denoted by N
missing

. Table 3

shows the results of the experiments:

The transformation accuracy of each OCL constraint

generated by our tool was tested by USE [28] by

generating object diagrams of bot h OCL: OCL and Other

OCL. If Object diagrams of both OCL are same the

transformation is correct. Similarly, syntactic accuracy of

each OCL constraint generated by our tool was verified

by OClarity [29] tool. The achieved results were computed

to overall recall 92.30% and precision is 96.15%. Such

results are very much encouraging for future research

and development a tool that can translate English

constraints to formal representations.

A major focus of this paper is to compare the NL based

approach (the NL2OCLviaSBVR [30] tool) for generating

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
250

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

OCL constraints with the template based approach (the

Copacabana [27] tool). The results of the Royal and Loyal

model were achieved by both types of the tools. The

Copacabana tool can translate 18 English constraints to

OCL that covers the 69.23% of the total specification. We

have compared Recall value of Copacabana tool for the

Royal & Loyal model constraints with NL2OCLviaSBVR

in Table 4.

Here, it is obvious that the competency of the

Copacabana tools is less than the NL2OCLviaSBVR tool.

Moreover, the Copacabana tool is not fully automated.

The user has to manually analyze the English software

constraints, manually extract the information and then

feed to the patterns that can generate OCL syntax. A

comparison of the supported functionalities by the

Copacabana tool and the NL2OCLviaSBVR tool is shown

in Table 5.

It is shown in Table 5 that only NL2OCLviaSBVR

supports all basic types of constraints such as invariants,

pre-conditions and post-conditions. Moreover, The

Copacabana tool does not support navigation via

association classes. Moreover, the Copacabana tool

does not support comparing the cardinality of sets. Here,

the results shown in this paper are promising and

envisages not only the framework discussed in this

article but also the prospective of such work in general

viewpoint.

FIG, 7. THE ROYAL & LOYAL MODEL

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
251

Example-I

English: The owner of a customer card must participate in at least one loyalty program.

SBVR: It is necessary that the owner of a customer card must participate in at least one loyalty program.

OCL:
package: royal_and_loyal context CustomerCard inv self.owner.programs -> Size()>= 1

Other OCL: context CustomerCard

 inv programParticipation: self .owner.programs ->size() > 0

Example-II

English: There must be at least one transaction for a customer card with at least 100 points.

SBVR: It is necessary that there must be at least one transaction for a customercard with at least 100 points.

OCL:
package: royal_and_loyal
context CustomerCard
inv self.transaction->select(point >= 100)->Size() >= 1

Other OCL: context CustomerCard
 inv transactionPoints : self .transactions->

 select(points>100) -> notEmpty()

Example-III

English: The service level of each membership must be a service level known to the loyalty program.

SBVR: It is necessary that servicelevel of each membership must be a servicelevel known to loyaltyprogram.

OCL:
package: royal_and_loyal
context Membership
inv self.currentLevel.levels -> includes(programs)

Other OCL: context Membership
 inv knownServiceLevel: programs.levels -> includes(currentLevel)

TABLE 2. SOLVED EXAMPLE OF ROYAL AND LOYAL MODEL

elpmaxE N
elpmas

N
tcerroc

N
tcerrocni

N
gnissim

%ceR %cerP %eulaV-F

stluseR 62 42 1 1 03.29 51.69 21.49

 TABLE 3. EVALUATION RESULTS OF THE NL2OCLVIASBVR

noitareneGLCOrofslooT)%(llaceR'stnemirepxE)%(noisicerP'stnemirepxE

]42[RVBSaivLCO2LN 03.29 51.69

]12[anabacapoC 32.96 -

TABLE 4. COMPARING NL2OCLVIASBVR TOOL AND COPACABANA TOOL

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
252

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

4.3 Limitations of the Tool

The designed system NL2OCLviaSBVR is always capable

of producing the wrong analysis but that in such

circumstances the produced formal representation is

correct for a particular, valid and potentially correct

interpretation and can be corrected by manual

intervention. In particular, we have identified a few cases

where the designed system has tendency to not generate

the incorrect interpretation due to the following

limitations.

• The NL2OCL approach works for a restricted

domain. i.e., UML Class Model. Hence, the NL

constraints should not contain the vocabulary

outside the UML class model.

• The vocabulary names used in the NL

constraints should be consistent with the

vocabulary names used in the UML class model.

• NL constraints should be complete such as a

NL constraint should have at least one valid

context.

• Incomplete (if one side of the relation is missing)

and invalid (wrong direction of the relation)

relations such as associations, aggregations are

not supported

• NL constraints should not have discrepancies

neither among the used elements nor between

the UML class models.

• NL constraints should not involve UML

enumerations.

• NL constraint should not involve parameterized

function calls.

• XOR relations in NL constraints are not

supported.

• The OCL operationsoclTypeof(),

oclIsKindOf(T), oclIsTypeOf(T), oclAsType(T),

oclInState(s), sortBy(), count(), collect(), reject(),

and append()are not supported in the tool.

• NL sentences should be declarative or

imperative. The question based sentences are

not processed.

• There are some limitations of the tool due to the

use of the Stanford parser as a library. Major

limitations of the Stanford parser in a role of

NLP plugin are below:

ytilanoitcnuF anabacapoC RVBSaivLCO2LN

stnairavnI seY seY

snoitidnoc-erP oN seY

noitidnoC-tsoP oN seY

snoitcelloC imeS imeS

snoisserpxElacigoL seY seY

snoisserpxElanoitaleR seY seY

snoisserpxElanoitidnoC seY seY

.sllaCnoitcnuFdeziretemaraP oN oN

noitagivaN imeS seY

seireuQ oN oN

TABLE 5. COMPARISON OF NL2OCLVIASBVR WITH OTHER TOOLS

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
253

• A few times, the Stanford parser does not

produce the right output after POS tagging due

to lexical ambiguity in NL sentences. Since, the

Stanford parser does handle lexical ambiguity

by making a decision. However, this decision

might be incorrect as it is not according to the

interpretation the author intended.

• The NL2OCL approach is based on

dependencies generated by the Stanford parser

but the wrong typed dependencies are

generated by the Stanford parser possibly due

to semantic ambiguities. In such particular cases,

due to wrong dependencies, wrong labeling of

semantic roles can happen that result in

irresolution of NL quantifiers, etc., in NL

sentences.

• Since, the Stanford parser is not typically

designed for the task we need, it does not

generate correct output in case of some other

ambiguities in NL sentences such as homonymy.

In this thesis, we have presented a novel approach to

handle such ambiguities for which the Stanford parser

does not produce the right output by using the

information in the UML class model. However, there is a

possibility that UML model does not contain the

information to resolve a NL ambiguity and produce

incorrect interpretation, and in such cases the user is

involved to correct the output manually.

5. CONCLUSIONS

This research paper presents a framework for dynamic

generation of the OCL constraints from the NL

specification provided by the user. Here, the user is

supposed to write simple and grammatically correct

English. The designed system can find out the noun

concepts, individual concepts, verbs and adjectives from

the NL text and generate a structural or behavioral rule

according to the nature of the input text. This extracted

information is further incorporated to constitute a

complete SBVR rule. The SBVR rules are finally translated

to OCL expressions. SBVR to OCL translation involves

the extraction of OCL syntax related information i.e. OCL

context, OCL invariant, OCL collection, OCL types, etc.

and then the extracted information is composed to

generate a complete OCL constraint, or pre/post-

condition.

As this paper aims to address a major challenge related to

usability of OCL, we have presented a method of applying

model transformations to create OCL statement from NL

expressions. The presented transformation makes use of

SBVR as an intermediate step to highlight the syntactic

elements of NLs and make NL controlled and domain

Specific. The use of automated model transformations

ensures seamless creation of OCL statements and deemed

to be non-intrusive. As a next step, we are hoping to

investigate usability aspects of the tool directly via

empirical methods involving teams of developers.

ACKNOWLEDGEMENTS

Authors acknowledge the support by OC Larity team and

USE tool team for providing the assistance in using their

tools for syntax accuracy and transformation evaluation.

We are also thankful to the developers of Copacabana

tool for providing the details for comparing the results of

our tool Nl2OClviaSBVR.

REFERENCES

[1] OMG, “Unified Modeling Language (UML)”, OMG

Standard, Volume 2, No. 1, 2007.

[2] OMG, “Object Constraint Language (OCL)”, OMG

Standard, Volume 2, 2006.

[3] Wahler, M., “Patterns to Develop Consistent Design

Constraints”, Ph.D. Thesis, ETH Zurich, Switzerland,

2007.

[4] Gogolla, M., Büttner, F., and Richters, M., “USE: A

UML-Based Specification Environment for Validating

UML and OCL”, Science of Computer Programming,

Volume 69, No. 1, pp. 27-34, 2007.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 2, April, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
254

Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

[5] Cabot, J., “Ambiguity Issues in OCL Postconditions”,

Proceedings of 6th Conference OCL Workshop at the

UML/MoDELS, pp. 194-204, 2006.

[6] Kristofer, J., “Disambiguation Implicit Constructions in

OCL”, Conference on OCL and Model Driven

Engineering, Lisbon, Portugal, pp. 30-44, October 12,

2004.

[7] Correa A., Werner, C., and Barros, M., “An Empirical

Study of the Impact of OCL Smells and Refactorings on

the Understandability of OCL Specifications”, MODELS,

LNCS 4735, pp. 76-90, 2007.

[8] OMG, “Semantics of Business Vocabulary and Rules

(SBVR)”, OMG Standard, Volume 1. 2008.

[9] Linehan, M., “Ontologies and Rules in Business Models”,

11th Conference Workshop in IEEE EDOC,

pp. 149-156, 2008.

[10] Linehan, M., “SBVR Use Cases”, Interntaional

Symposium on Rule Representation, Interchange and

Reasoning on the web, RuleML, LNCS, Volume 5321,

pp. 182-196, 2008.

[11] OMG, “UML Superstructure Specification Document”,

OMG Standard, Volume 2, No. 3, 2007.

[12] Campbell, S., “Translation into the Second Language”,

Routledge, 2014.

[13] Harris, C.B., and Harris, I.G., “Generating Formal

Hardware Verification Properties from Natural Language

Documentation”, IEEE International Conference on

Semantic Computing, pp. 49-56, 2015.

[14] Whittle, J., and Jayaraman P., “MATA: A Unified

Approach for Composing UML Aspect Models on Graph

Transformation”, Springer LNCS, Volume 5560,

pp. 191-237, 2009.

[15] Kuhn, T., “A Survey and Classification of Controlled

Natural Languages”, Computational Linguistics, Volume

40, No. 1, pp. 121-170, 2014.

[16] Clark, T., Sammut, P., and Willans, J., “Applied

Metamodelling: A Foundation for Language Driven

Development”, arXiv Preprint arXiv:1505.00149, 2015.

[17] Hirschberg, J., and Manning, C.D., “Advances in Natural

Language Processing”, Science, Volume 349, No. 6245,

pp. 261-266, 2015.

[18] Soeken, M., Harris, C.B., Abdessaied, N., Harris, I.G.,

and Drechsler, R., “Automating the Translation of

Assertions using Natural Language Processing

Techniques”, Forum on Specification & Design

Languages, 2014.

[19] Gulwani, S., and Marron, M., “NLyze: Interactive

Programming by Natural Language for Spreadsheet Data

Analysis and Manipulation”, Proceedings of ACM

SIGMOD International Conference on Management of

Data, pp. 803-814, 2014.

[20] Bryant, B., “From Natural Language Requirements to

Executable Models of Software Components”, Workshop

on SE for Embedded Systems, pp. 51, 2008.

[21] Akehurst, D.H., Boardbar, B., Evans, M., Howells,

W.G.J., and McDonald-Maier, K.D., “SiTra: Simple

Transformations in Java”, ACM/IEEE 9th International

Conference on Model Driven Engineering Languages

and Systems, LNCS, Volume 4199, pp. 351-364, 2006.

[22] Cabot, J., Pau, R., and Raventós, R., “From UML/OCL

to SBVR Specifications: A Challenging Transformation”,

Information Systems, Volume 35, No. 4, pp. 417-440,

2010.

[23] Bajwa, I.S., and Lee, M.G., “Transformation Rules for

Translating Business Rules to OCL Constraints”, 7th

European Conference on Modelling Foundations and

Applications, pp.158-163, Birmingham, UK, 2011.

[24] Bajwa, I.S., Bordbar, B., and Lee, M.G., ”OCL Usability:

A Major Challenge in Adopting UML”, 2014 ICSE

Workshop - RAISE, pp. 32-37, Hyderabad, India, 2014.

[25] Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A.,

and Chanona-Hernández, L., “Syntactic n-Grams as

Machine Learning Features for Natural Language

Processing”, Expert Systems with Applications,

Volume 41, No. 3, pp. 853-860, 2014.

[26] Gogolla, M., Büttner, F., and Richters, M., “USE: A

UML-Based Specification Environment for Validating

UML and OCL”, Science of Computer

Programming, Volume 69, No. 1, pp. 27-34, 2007.

[27] Raj, A., Prabharkar, T., and Hendryx, S., “Transformation

of SBVR Business Design to UML Models”, ACM

Conference on India Software Engineering, pp. 29-38,

2008.

[28] Demuth, B., and Wilke, C., “Model and Object

Verification by Using Dresden OCL”, RG Workshop on

Innovation Information Technologies: Theory and

Practice, pp. 81-89, 2009.

[29] IBM OCL Parser, http://www-01.ibm.com/ software/

awdtools/library/standards/ocl-download.htm, 2009.

[30] Burke, D., and Kristofer, J., “Translating Formal

Software Specifications to Natural Language”, Springer

LNCS, Volume 3492, pp. 51-66, 2005.

