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ABSTRACT

In this paper VQ (Vector Quantization) based on information theoretic learning is
investigated for the task of text-independent speaker verification. A novel VQ method
based on the IT (Information Theoretic) principles is used for the task of speaker
verification and compared with two classical VQ approaches: the K-means algorithm
and the LBG (Linde Buzo Gray) algorithm. The paper provides a theoretical background
of the vector quantization techniques, which is followed by experimental results
illustrating their performance. The results demonstrated that the ITVQ (Information
Theoretic Vector Quantization) provided the best performance in terms of classification
rates, EER (Equal Error Rates) and the MSE (Mean Squared Error) compare to K-
means and the LBG algorithms. The outstanding performance of the ITVQ algorithm
can be attributed to the fact that the IT criteria used by this algorithm provide superior
matching between distribution of the original data vectors and the codewords.
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1. INTRODUCTION

The VQ method is a classical signal processing
technique which models the probability density
functions by the distributions of prototype

vectors. A typical VQ algorithm divides a large set of
vectors into clusters having number of points. Each cluster
is represented by its central point. According to the
Shannon's rate distortion theory [1], the central points for
each cluster should be calculated as centers of gravity (or
centroids); and the cluster members should be ideally
selected such that, for each cluster member, the cluster
centroid is the nearest centroid. The VQ techniques have

been widely adapted as speaker modeling techniques in
speaker recognition or verification tasks [2-3]. A VQ
technique encompasses two fundamental tasks:

(1) An encoding process which involves a NN
(Nearest Neighbor) search, assigning the closed
codeword to a given vector.

(2) A codebook generation process which finds an
optimal, small set of vectors (codebook)
representing a given large set of vectors. The
elements of codebook are called the codewords.
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The best known and very efficient VQ codebook
generation algorithm used in speaker verification task
includes: the K-means algorithm [4], the LBG algorithm
[5], and the KSOM (Kohonen's Self Organizing Map) [6].
In these algorithms the process of finding an optimal
codebook is guided by minimization of the average
distortion function (objective or cost function)
representing an average total sum of distances between
the original vectors and the codewords. It is also called
the quantization error. Different types of distance
measures for the quantization error have been proposed
in literature [1]. The VQ codebook generation is a large
scale global optimization problem, however the vast
complexity of this problem means that in reality only sub-
optimal solutions can be found. Codebook generation
algorithms are distinguished on the bases of finding
acceptable local minima of the objective function. An ideal
codebook should contain a set of uncorrelated (linearly
independent) centroid vectors. In reality there is always
remaining a certain amount of correlation between
centroids.

VQ may be used as a classification process in a number of
ways [3]. The most often used approach is to generate a
separate codebook for each speaker using speech
recordings that belong to that speaker. During the testing
phase the set XID of observed feature vectors from the
unknown speaker are compared with codebooks
representing the reference speakers. This process is
graphically illustrated in Fig. 1 [7]. The quantization errors
for the observed feature vectors of the unknown speaker
are used as a measure of how close the observed feature
vectors are to codewords representing each speaker. The
speaker whose codebook is the closest to the observed
feature vectors is then taken as the identified speaker. In
speaker verification task, an arbitrary threshold is often
applied to the quantization error to determine if the
observed feature vectors are close enough to the codebook
for the claimant speaker to accept the claim. In [8] we
evaluated ITVQ for TIMIT speech corpus; in [9] we used
ITVQ with GMM to improve the classification rates. This
paper is further organized as follows: In Section 2 and 3
we describe the conventional K-means and LBG
algorithms, Section 4 describes the ITVQ procedure to
compute speaker models, it is followed by various
evaluation tests conducted in Section 5, and in Section 6
we conclude our work.

2. K-MEANS CLUSTERING

The K-means [4,10] clusters data based on attributes or
features into K groups where, K is a positive integer. The
clustering is achieved by minimizing the squared Euclidean
distance between vectors xi and the corresponding cluster
centroid vector θj. The centroid vector represents each
cluster as a mean vector of the cluster. Let us assume that
a set of T vectors X={x1,x2,x3,…,xT} is to be divided into K
clusters represented by their mean vectors θ={θ1,θ2,θ3,…,
θK}. The objective of the K-means algorithm is to minimize
the total distortion (or quantization error) given by:
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K-means is an iterative approach, in each successive
iteration; it redistributes the vectors in order to minimize
the distortion D (quantization error). It takes place in
following steps:

Step-1 Choose arbitrary initial estimates θj(0) for the
centroid vectors θj' s, j=1,2,….,K. Calculate the
initial value of the distortion D(0).

Step 2: For i=1 to T

For a vector xi., determine the nearest centroid ,
say θj, Set centroid(i)=j (centroid or cluster for
the jth vector)

End

For i=1 to K

Calculate new centroids θj as the mean of the
vectors xiεX with centroid(i)=j.

Calculate the distortion value D(i).

End

Step 3: Repeat Step 2 until either a maximum number of
iterations is reached or the distortion value D(i)
falls below a preset threshold or until no change
in θ j's occurs between a few successive
iterations.

The above algorithm iteratively moves the cluster
boundaries. When the distortion D is minimized,
subsequent iterations do not result in any movement of
vectors between clusters and the cluster boundaries
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become stabilized. This could be used as one of possible
indicators to terminate the algorithm. The total distortion
can also be used as an indicator of convergence of the
algorithm. Upon convergence, the total distortion does
not change as a result of redistribution. A great advantage
of this algorithm is its computational simplicity.

In case of speaker recognition the speech files are
preprocessed and a set of feature vectors is calculated. The
K-means clustering can be then used to group feature
vectors for each speaker into K sets (clusters) which
efficiently describe the acoustic attributes of a given speaker.
Thus, each speaker is modeled by a set of K clusters of
feature vectors. An example of K-means procedure is
illustrated in Fig. 2. K-means encounters the problem of
overfitting [11]. The drawback of overfitting can be largely

eliminated by using the ITVQ which works on the principle
of physical interpretation of the data clusters.

3. LINDE BUZO GRAY CLUSTERING
The LBG algorithm [5] consists of a sequence of iterative
steps minimizing the distortion measure. It consists of
two phases, which are codebook initialization and
codebook optimization.

The codebook optimization process is guided by
minimization of the average distortion of the MQE
(Maximum Quantization Error) given as:
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FIG. 1.  STRUCTURE OF THE VQ BASED SPEAKER VERIFICATION SYSTEM.. COURTESY OF TOMI K
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where Y is a given codebook, X={x1, x2, ..., xN} is the set of
observation data vectors, N is the total number of
observation data vectors, d is a vector distance measure,
and q is the vector quantizer function, defined such that
q(xi) is the codeword assigned to vector xi based on the
nearest neighbor criterion.

The LBG algorithm requires the user to provide an initial
estimate of the codebook and to specify the desired number
of clusters. Due to the nature of the classical LBG algorithm,
which usually generates the initial codebook by randomly
splitting codewords into two new codewords, the desired
number of clusters needs to be a power of 2. The following
sections describe the subsequent phases of the LBG
algorithm.

3.1 Codebook Initialization
The choice of initial codebook can be critical for the quality
of the final solution. The poor choice of the initial codebook
will lead to a final quantizer with a relatively large value of
the quantization error. A number of methods such as
random initialization [12], initialization by splitting [5] and
maximum distance initialization [13] have been proposed
to perform codebook initialization. One of the most often
used approaches is based on random splitting codewords
until a desired codebook size is reached. As illustrated in

Fig. 3, the process of generating an initial codebook starts
with a single random initial codeword. The single codeword
is then randomly split into two codewords by a small
random perturbation. The procedure proceeds until a pre-
set number of codewords is reached. This type of
codebook initialization results in a codebook size which is
of power 2.

3.2 Codebook Optimization
The initialization step is followed by the iterative codebook
optimization procedure which gradually improves the
codebook estimate by minimization of the total distortion
(quantization error) D. The optimization phase of the LBG
algorithm proceeds as follows [14]:

FIG. 2. K-MEANS CLUSTERING: THE SMALL DOTS REPRESENT DATA VECTORS, I IS THE ITERATION NUMBER AND  J DENOTE
CENTROID VECTORS (LARGE DOTS). THE LINES REPRESENT BOUNDARIES BETWEEN CLUSTERS

FIG. 3. INITIAL CODEBOOK GENERATION BY RANDOMLY
SPLITTING THE CODEWORDS
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Step-1 Assign the initial codebook as the current
codebook Yk and the current iteration number
k=1.

Step-2 Using the current vector quantizer qk, divide the
training data into a set of NN clusters (also called
the Voronoi clusters [14]). Then calculate the
average distortion D(Yk,qk) using Equation (2).

If  abs(D(Yk,qk) - D(Yk-p,qk-p)) is less than a preset
threshold ζ, then terminate the algorithm.

else, go to Step-3. The p value is a control step
denoting small number of iterations.

Step-3 Set k=k+1, and update the codebook Yk by
calculating the centroids of the new clusters,
update the nearest neighbour quantizer qk and
go to Step-2.

The cycle of iterations usually continues until the
decrement in average distortion value calculated over a
specific small number of iterations falls below a pre-set
threshold  ζ. Alternatively the algorithm can be terminated
when a pre-set maximum of iterations is reached.

The LBG algorithm offers a constructive solution to a very
complex problem of generating an optimal VQ codebook.
The advantage of the LBG is that it does not require
knowledge about the underlying statistics of the
observation data. However, the quality of the final solutions
depends on the quality of the initial codebook. The
procedure has a gradient descent character and has no
mechanisms allowing escaping from local minima, therefore
the algorithm has a tendency to end up in low quality local
minima.

4. INFORMATION THEORETIC
VECTOR QUANTIZATION

In K-means and LBG algorithms, data points are associated
with the nearest code vector reducing the size of the
original data. The challenge is to find the set of code
vectors (the codebook) that reduces the data to a smaller
set preserving the distribution of the original data vectors.

Unlike the K-means or LBG, ITVQ [15] has a clear physical
interpretation and relies on minimization of a well defined
cost function. The ITVQ uses descriptors from information
theory (entropy and divergences) estimated directly from
the data to substitute the conventional statistical
descriptors of variance and covariance. The ITVQ is based
on a number of core concepts of the information theory
such as Parzen density estimator, Kullback Leibler
divergence, Cauchy Schwartz Inequality and Renyi's
Quadratic Entropy [15]. In information theory minimization,
the free distance between the codeword's distribution and
the original data distribution is equivalent to the
minimization of the divergence measure between these
two distributions. The divergence measure is calculated
directly from the data using the Parzen density estimator.
The divergence minimization algorithm can be also seen
as a probability density matching method, where the
distance between the Parzen density estimator for the
codewords and the Parzen density estimator for the original
data is minimized. The potential field created by a single
vector (particle) can be described by a kernel of the form
K(·). Placing a kernel on each particle, the potential energy
at a point in space x is given by:
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where xi are the data vectors. Equation (3) is known as the
Parzen density estimator [16].

In order to match the distribution of the codewords with
the distribution of the original data, Equation (5) can be
used to estimate their densities and then minimize the
divergence between the densities. The distribution of the
data points (xi) can be written as:

( )∑ −=
i fiGf σ,)( xxx (4)

Similarly, the distribution over codewords (wi) can be
written as:

( )∑ −=
i giGg σ,)( wxx (5)
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Where, G(.) represents the Gaussian kernel given as:
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Numerous divergence measures exist, of which the KL
(Kullback Leibler) divergence is the most commonly used
[17]. The integrated square error and the CS (Cauchy
Schwartz) inequality are both linear approximations to the
KL divergence

The KL divergence represents a measure of the difference
between two probability distributions: from a true
probability distribution X to an arbitrary probability
distribution Y. Typically X represents data, observations,
or a precise calculated probability distribution. The
measure Y typically represents a theory, a model, a
description or an approximation of X. For probability
distributions X and Y of a discrete random variable the KL
divergence of Y from X is defined as:
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The CS inequality is a linear approximation of the KL
divergence. For vectors x and y, the inequality is written
as:

yxyx ⋅≤, (8)

Substituting G from Equation (6) to Equations (4-5), the
distribution f(x) of the data points xi is given as:
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and the distribution g(x) of the codevectors cj. is given as:
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Applying the CS inequality of Equation (8) to f(x) and g(x),
we have:

)()()(),( xxxx gfgf ⋅≤ (11)

Equation (11) becomes equality only when f(x) and g(x)
are collinear. Hence, maximizing the ratio between the
numerator )(),( xx gf  and the denominator

)()( xx gf ⋅  is equivalent to minimizing the divergence
between f(x) and g(x).

To avoid the division, the logarithm can be maximized
instead. This is valid since the logarithm is a monotonically
increasing function. In order to minimize the divergence
between the distributions f(x) and g(x) the following
expression is minimized:
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In Equation (12) the first term contains the information
about the interactions between the data points. The second
term addresses the interaction between the data points xi

and code vectors cj. However, the third term is containing
the information about the interactions between the code
vectors itself. The interaction between the data points will
not lead to an improvement, however the interactions
between the data points and code vectors and between
the code vectors will lead to improvement. This is because
the position of data points is fixed and the only random
position selection and change is associated with code
vectors. Therefore, first term in Equation (12) can be
ignored. The cost function with respect to code vectors
can therefore be written as:
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∫ ∫+−= dxgdxgfJ )(2)()(log2)( xxxc (13)

The cost function J(c) is minimized with respect to the
location of the code vectors cj. When the codevectors are
located such that the local minima is achieved, no effective
force acts on the code vectors. Moving the code vectors
in the opposite direction of the gradient will bring them to
such a potential minimum. This is also known as the
gradient descent method. The gradient descent method
states that the derivative of Equation (13) with respect to
the location of the codevectors must be calculated. For
the sake of simplicity the Eqution (13) is divided into two
parts. The first part is denoted by C and the second part is
denoted by V.

Considering first term of Equation (13):
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where the covariance of the Gaussian after integration is
σa

2=σf
2+σg

2. M is the number of code vector kernels and N
is the number of data point kernels.

The gradient update for the code vectors cj from the above
term then becomes:
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where ΔC denotes the derivative of C wrt code vectors, it
is calculated as:
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Similarly for the second term V we have:

( )∑ −∑=

∫=

M

k gkjG
M

jM

dxg

σ2,2
1

)(2

cc

xV

(17)

The gradient update for the code vectors cj from the
second term then becomes:
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where ΔV denotes the derivative of V wrt code vectors,
and it is calculated as:
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where k denotes the current centroid for which the update
is obtained. By substituting the simplification of the above
two terms obtained in Equation (16) and Equation (19) to
Equation (13), the update formula for the ITVQ can be
established as:
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where η is the step size, the ITVQ consists of n updates
for each of the codevector ck.

5. EXPERIMENTS COMPARING
SPEAKER VERIFICATION BASED
ON K-MEANS, LBG AND ITVQ
METHODS

5.1 Overview of Speaker Verification
System

The overview of the speaker verification system including
training and testing phases [18] is given in Fig. 4. The
speaker verification system shown in in Fig. 4 can operate
in one of the two possible modes:

The target speaker enrollment (training), and

The testing mode.

For both of the system modes identical speech detection
and feature extraction methods are used. The pre-
processing method followed the SAD (Speech Activity
Detection) procedure introduced by Reynolds in [19].
The voiced/silence interval were detected using an
energy threshold. Previous research [20] have shown
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that MFCC (Mel Frequency Cepstral Coefficients) based
system is relatively robust to the changes in frame size
(in the range of 20-50ms) and frame step (in the range of
1/6 to 1/3 of the frame size). Thus we employed MFCC to
characterize the speaker information. The feature vector
representing a given frame is a 36 dimensional vector
including: 12 MFCC parameters, 12 delta parameters
ΔMFCC (first derivative of MFCC), and 12 double delta
parameters ΔΔMFCC (second derivative of MFCC). As
illustrated in Fig. 5, the MFCC parameters were calculated
by mapping the voiced speech spectrum into Mel
frequency scale. This Mel frequency mapping was done
by multiplying the magnitude of speech spectrum for a
preprocessed frame by magnitude of triangular filters in
Mel filterbank followed by log-compression of sub-band
energies of the Mel-scale filters and finally DCT (Discrete
Cosine Transform).

5.2 Speech Corpora
The speaker verification experiments were performed using
two speech corpora: TIMIT and NIST 2004.

The TIMIT corpus was used to obtain speech samples of
630 speakers (438 male and 192 female). The recordings
were made in a sound booth using fixed-text sentences
read by speakers and recorded over a fixed wideband
channel. The speakers used American English. The TIMIT
corpora had a low environmental value since the clean
wideband speech has an ideal character and does not
simulate the real world conditions [21].

In order to provide a speech corpora that provides a better
representation of the real life conditions, NIST 2004 was
used with 616 speakers (248 male and 368 female) recorded
in different environmental conditions. The recordings
include conversational speech which is recorded mostly
over a telephone line. For each speaker approximately 5

Input
Speech

x(n)
Mel

Spectrum Log (.) DCTPre-processing MFCC
Subband
Energy

FIG.. 4. BLOCK DIAGRAM OF THE SPEAKER VERIFICATION SYSTEM

FIG. 5. CALCULATION OF THE MFCC COEFFICIENTS
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minutes of speech was available for training as well as for
testing. Most of the training data is in American English
[22].

Table 1 shows a summary of TIMIT and NIST 2004 corpora
used to perform the experiments.

 5.3 Speaker Verification Results
The performance of the VQ methods is evaluated using
speaker recognition rates, EER values and MSE with respect
to codebooks. The speaker recognition rate was the most
widely used measure to evaluate the performance of a
speaker verification system. However EER measure gives
a more suitable tool for the evaluation of the performance
of detection systems in general and speaker verification
systems in particular [22-23].

The speaker recognition rates based on different VQ
methods are summarized in Fig. 6(a-b). Fig. 6(a) shows the
results based on the TIMIT corpora and Fig. 6(b) shows
the results based on the NIST 2004 corpora.

The recognition rates in Fig. 6 indicate that the ITVQ
outperforms the conventional Kmeans and LBG methods.
It also indicates that for all three algorithms, an increase of
the number of clusters generally leads to a noticeable
increase of recognition rates when the number of cluster
increases from 32-128, further increase from 128-512
clusters shows a small degradation in performance leading
to slightly lower recognition rates. The reason for the
performance degradation is observed due to the increase
in number of codewords which can be attributed to thinner
distribution of data. With the increasing number of
codewords the data is highly distributed and the
codewords are therefore not capable of modeling a

particular speaker accurately, which ultimately deteriorates
the performance. The relatively high recognition rates for
the ITVQ indicate that Parzen density estimation provides
better representation of the data distribution than the mean
values used in K-means and LBG algorithms. The C-S
divergence minimizes the free distance between the data
points and the code vectors more efficiently than the K-
means and LBG methods.

EER is used to compare the performance of speaker
verification based on different VQ algorithms, since
recently it has turned out to be the most widely used
technique for evaluating performance of speaker
recognition systems. Since the EER can only be calculated
for a fixed number of codewords, a codebook containing
512 codewords was used to illustrate the performance
comparison between K-means, LBG and ITVQ algorithms.
Fig. 7(a-b) illustrate the percentage miss probability versus
the percentage of false alarm probability and the EER
values for the Kmeans, LBG and ITVQ methods using
codebook size of 512. Fig. 7(a) shows the results for the
TIMIT corpora and Fig. 7(b) shows the results for the
NIST 2004 corpora. The miss probability measures the
percent of invalid matches and the false alarm probability
measures the percent of valid inputs being rejected. The
EER parameter represents the rate at which both the miss
and false alarm probabilities are equal. The lower the EER,
the more accurate the system is considered. As illustrated
in Fig. 7(a-b), both corpora show the same trend with ITVQ
outperforming both K-means and LBG algorithm. The K-
means algorithm provided the highest EER (34.9% for
TIMIT and 21% for NIST 2004), LBG gave better
performance than Kmeans (27.8% for TIMIT and 19.1%
for NIST 2004). The ITVQ provided the lowest EER (15.8%
for TIMIT and 11.8% for NIST 2004). The average
improvement of EER value for ITVQ method is about 19.1%
over K-means and 7.1% over LBG for TIMIT corpus and
9.2% over K-means and 7.3% over LBG for NIST 2004
corpus.

The MSE is calculated using the objective function for
each of the evaluated procedures. Fig. 8(a) shows the
MSE values based on the TIMIT corpora and  Fig. 8(b)
shows the MSE based on the NIST 2004 corpora. Fig.8(a-
b) show the same trends as previously indicated by

TABLE 1 PROPERTIES OF THE SPEECH CORPORA

Description TIMIT NIST 2004

Language English English

Client Speakers 630 616

Speech Type Read Conversational

Record Condition Lab Telephone

Handset Mismatch No. No.

Sampling Rate 8KHz 8KHz

Quantization 16 Bit 8 Bit μ-Law

Train Speech 45 Second 5 Minute

Test Speech 12 Second 50 Sec
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FIG. 6(A). RECOGNITION SCORES FOR K-MEANS, LBG AND ITVQ CLASSIFIERS FOR TIMIT SPEECH CORPORA.

FIG. 6(B). RECOGNITION SCORES FOR K-MEANS, LBG AND ITVQ CLASSIFIERS FOR NIST'04 SPEECH CORPORA

classification rates and EER. The ITVQ provides the lowest
MSE values and the fastest convergence rates. The LBG
algorithm gives the medium performance and the K-means
algorithm shows the largest MSE values and the slowest
algorithm convergence rates.

6. CONCLUSIONS
In this paper we evaluated and compared the performance
of mean based and information theoretic learning based
vector quantization modelling techniques for the speaker
verification system. The performance was compared using
a feature set containing 12 MFCC with its delta and double

coefficients. The evaluation was based on two speech
corpora: TIMIT and NIST 2004. The results were evaluated
in terms of three different performance measures:
classification rates, EER and MSE.

The results based on these different classifiers and speech
corpora were consistent indicating that the vector
quantization based on IT learning established better
recognition rates. The better performance of the ITVQ
algorithm can be attributed to the fact that the IT criteria
used by this algorithm provide better matching between
distribution of the original data vectors and the codewords.
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FIG. 7(A). EER FOR K-MEANS, LBG AND ITVQ CLASSIFIERS
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TEXT-INDEPENDENT SPEAKER VERIFICATION BASED ON INFORMATION THEORETIC LEARNING

468 MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING & TECHNOLOGY, VOLUME 30, NO. 3, JULY, 2011 [ISSN 0254-7821]

ACKNOWLEDGEMENT
This work would not have been possible without the
encouragement and support of  Prof. Dr. Abdul Qadir Khan
Rajput, Vice-Chancellor, Prof. Dr. Bhawani Shankar
Chowdhry, Dean, Faculty of Electrical, Electronic &
Computer System Engineering, and Prof. Dr. Mukhtiar Ali
Unar, Director, Institute of Information & Communication
Technologies, Mehran University of Engineering &
Technology, Jamshoro, Pakistan.

 REFERENCES
[1] Gray, R., "Vector Quantization", IEEE Magazine on

Acoustics Speech and Signal Processing, Volume 1,
pp. 4-29, April, 1984.

[2] Matsui, T., and Furui, S., "Comparison of Text-
Independent Speaker Recognition Methods Using VQ-
Distortion and Discrete/Continuous HMMs", IEEE
Transactions on Speech Audio Processing, Volume 2,
No. 3, pp. 456-9, July, 1994.

[3] Furui, S., "Vector Quantization Based Speech Recognition
and Speaker Recognition Techniques", 25th Asilmor
Conference Signals, Systems and Computers, 1991.

[4] MacQueen, J., "Some Methods for Classification and
Analysis of Multivariate Observations", Fifth Berkeley
Symposium on Mathematical Statistics and Probability
Volume 1, pp. 281-297, 1967.

[5] Linde, Y., Buzo, A., and Gray, R.M., "An Algorithm for
Vector Quantizer Design", IEEE Transactions on
Communications, Volume 28, No. 1, pp. 84-95, 1980.

[6] Inal, M., and Fatihoglu, Y.S., "Self Organizing Map and
Associative Memory Model Hybrid Classifier for Speaker
Recognition", Seminar on Application of Neural
Netwroks in Electrical Engineering, pp. 71-4, Belgrade,
Yugoslavia, September, 2002.

[7] Kinnunen, T., Kilpeläinen, T., and Fränti, P.,
"Comparison of Clustering Algorithms in Speaker
Identification", Proceedings of the IASTED
International Conference on Signal Processing and
Communications, pp. 222-227, Marbella, Spain,
Septmber, 2000.

[8] Memon, S., Lech, M., "Speaker Verification Based on
Information Theoretic Vector Quantization",
Communications in Computer and Information Science,
Wireless Networks, Information Processing and Systems,
Springer Berlin Heidelberg 2009, pp. 391-399. Vol. 56,
No. 7, pp. 2797-2811, July 2008.

[9] Memon, S., and Lech, M., "Using Information Theoretic
Vector Quantization for GMM Based Speaker
Verification", 16th European Signal Processing
Conference, Lausanne, Switzerland, August 25-29, 2008.

[10] Furui, S., “Digital Speech Processing, Synthesis and
Recognition”, Marcel Dekker Inc., New York, 1989.

[11] Gresho, A., "Vector Quantization and Signal
Compression", Kulwer Academic Publishers, 1992.

[12] Pal, N., Bezdek, J., and Tsao, E., "Generalized Clustering
Networks on Kohonen's Self Organizing Scheme",  IEEE
Transactions on Neural Networks Volume 4,
pp. 549-557, 1993.

[13] Katsavounidis, I., Kuo, C.C., and Zhang, Z., "A New
Initialization Technique for Generalized Lloyd Iteration",
IEEE Signal Processing Letters, Volume 1, pp. 144-146,
1994.

[14] Lech, M., "Algorithms for the Vector Quantization of
Images", Ph.D. Thesis, The University of Melbourne,
1993.

[15] Tue, L.S., Anant, H., Deniz, E., and Jose, C.P., "Vector
Quantization Using Information Theoretic Concepts",
Natural Computing, Volume 4, pp. 39-51, Springer, 2005.

[16] Parzen, E., “On Estimation of a Probability Density
Function and Mode”, The Annals of Mathematical
Statistics, Volume 27, pp. 1065-1076, 1962.

[17] Kullback, S., and Leibler, R.A., “On Information and
Sufficiency”, The Annals of Mathematical Statistics,
Volume 22, pp. 79-86, 1951.

[18] Ganchev, T.D., "Speaker Recognition", Ph.D.
Dissertation, University of Patras, Greece, 2005.

[19] Reynolds, D.A., Rose, R.C., and Smith, M.J.T., "PC-
Based TMS320C30 Implementation of the Gaussian
Mixture Model Text-Independent Speaker Recognition
System", Proceedings of the International Conference
on Signal Processing Applications and Technology,
pp. 967-973, November, 1992.

[20] Reynolds, D.A., "Experimental Evaluation of
Features for Robust Speaker Identification", IEEE
Transactions on Speech Audio Process, Volume 2,
No. 4, pp. 639-643, October,. 1994.

[21] John, S.G., Lori, F.L., William, M.F., Jonathan, G.F.,
David, S.P., Nancy, I.D., and Victor, Z., "TIMIT Acoustic-
Phonetic Continuous Speech Corpus", Linguistic Data
Consortium, 1993.

[22] NIST “Speaker Recognition Evaluation”, 2004. http://
www.itl.nist.gov/iad/mig/tests/spk/2004/.

[23] Martin, A., Doddington, G., Kamm, T., Ordowski, M.,
and Przybock, M., "The DET Curve  in Assessment of
Detection Task Performance", EUROSPEECH,
pp.1895-1898, 1997.


	Chap-11 Sheerz Memon-Tariq Jameel-Sania Bhatt1.pdf
	Chap-11 Sheerz Memon-Tariq Jameel-Sania Bhatt2.pdf
	Chap-11 Sheerz Memon-Tariq Jameel-Sania Bhatt3.pdf

