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ABSTRACT

In this paper VQ (Vector Quantization) based on information theoretic learning is
investigated for the task of text-independent speaker verification. A novel VQ method
based on the IT (Information Theoretic) principles is used for the task of speaker
verification and compared with two classical VQ approaches: the K-means algorithm
and the LBG (Linde Buzo Gray) algorithm. The paper provides a theoretical background
of the vector quantization techniques, which is followed by experimental results
illustrating their performance. The results demonstrated that the ITVQ (Information
Theoretic Vector Quantization) provided the best performance in terms of classification
rates, EER (Equal Error Rates) and the MSE (Mean Squared Error) compare to K-
means and the LBG algorithms. The outstanding performance of the ITVQ algorithm
can be attributed to the fact that the IT criteria used by this algorithm provide superior
matching between distribution of the original data vectors and the codewords.
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1. INTRODUCTION

he VQ method is a classical signal processing

technique which models the probability density

functions by the distributions of prototype
vectors. A typical VQ agorithm divides a large set of
vectorsinto clustershaving number of points. Each cluster
is represented by its central point. According to the
Shannon'srate distortion theory [1], the central pointsfor
each cluster should be cal culated as centers of gravity (or
centroids); and the cluster members should be ideally
selected such that, for each cluster member, the cluster
centroid is the nearest centroid. The VQ techniques have

Learning, Vector Quantization.

been widely adapted as speaker modeling techniques in
speaker recognition or verification tasks [2-3]. A VQ
technique encompasses two fundamental tasks:

@ An encoding process which involves a NN
(Nearest Neighbor) search, assigning the closed
codeword to a given vector.

@ A codebook generation process which finds an
optimal, small set of vectors (codebook)
representing a given large set of vectors. The
elements of codebook are called the codewords.
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The best known and very efficient VQ codebook
generation algorithm used in speaker verification task
includes: the K-means algorithm [4], the LBG algorithm
[5], and the KSOM (K ohonen's Self Organizing Map) [6].
In these algorithms the process of finding an optimal
codebook is guided by minimization of the average
distortion function (objective or cost function)
representing an average total sum of distances between
the original vectors and the codewords. It is also called
the quantization error. Different types of distance
measures for the quantization error have been proposed
in literature [1]. The VQ codebook generation is alarge
scale global optimization problem, however the vast
complexity of thisproblem meansthat in reality only sub-
optimal solutions can be found. Codebook generation
algorithms are distinguished on the bases of finding
acceptableloca minimaof the objectivefunction. Anideal
codebook should contain a set of uncorrelated (linearly
independent) centroid vectors. In reality there is always
remaining a certain amount of correlation between
centroids.

VQ may be used asaclassification processin anumber of
ways [3]. The most often used approach is to generate a
separate codebook for each speaker using speech
recordings that belong to that speaker. During the testing
phase the set XID of observed feature vectors from the
unknown speaker are compared with codebooks
representing the reference speakers. This process is
graphicdly illustratedin Fig. 1[7]. The quantization errors
for the observed feature vectors of the unknown speaker
are used as a measure of how close the observed feature
vectors are to codewords representing each speaker. The
speaker whose codebook is the closest to the observed
feature vectors is then taken as the identified speaker. In
speaker verification task, an arbitrary threshold is often
applied to the quantization error to determine if the
observed feature vectors are close enough to the codebook
for the claimant speaker to accept the claim. In [8] we
evaluated ITVQfor TIMIT speech corpus; in[9] we used
ITVQwithGMM toimprovethe classification rates. This
paper is further organized as follows: In Section 2 and 3
we describe the conventional K-means and LBG
algorithms, Section 4 describes the ITVQ procedure to
compute speaker models, it is followed by various
evaluation tests conducted in Section 5, and in Section 6
we conclude our work.

2. K-MEANS CLUSTERING

The K-means [4,10] clusters data based on attributes or
featuresinto K groupswhere, K isapositiveinteger. The
clustering isachieved by minimizing the squared Euclidean
distance between vectorsx, and the corresponding cluster
centroid vector 0, The centroid vector represents each
cluster asamean vector of the cluster. Let us assume that
asetof T vectors X={X ,X,X,....X;} istobedividedinto K
clustersrepresented by their mean vectors0={6,,0,,0,,...,
0,}. Theobjectiveof the K-meansa gorithmisto minimize
thetotal distortion (or quantization error) given by:

D=3 5 Ix -0, I
- X —0;

TR @
K-means is an iterative approach, in each successive
iteration; it redistributes the vectorsin order to minimize
the distortion D (quantization error). It takes place in
following steps:

Step-1  Choose arbitrary initial estimates ej(O) for the
centroid vectors 6's, i=1,2,....,K. Caculate the
initial value of thedistortion D(0).

Step2: Fori=1toT

For avector x;, determine the nearest centroid ,
say 6, Set centroid(i)=j (centroid or cluster for
the j vector)

End
Fori=1toK

Calculate new centroids ej as the mean of the
vectorsx.eX with centroid(i)=j.

Calculatethedistortion value D(i).
End

Step3:  Repeat Step 2 until either amaximum number of
iterationsisreached or the distortion value D(i)
fallsbelow apreset threshold or until no change
in ej's occurs between a few successive
iterations.

The above algorithm iteratively moves the cluster
boundaries. When the distortion D is minimized,
subsequent iterations do not result in any movement of
vectors between clusters and the cluster boundaries
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become stahilized. This could be used as one of possible
indicatorsto terminate the algorithm. Thetotal distortion
can aso be used as an indicator of convergence of the
algorithm. Upon convergence, the total distortion does
not change asaresult of redistribution. A great advantage
of thisalgorithmisits computational simplicity.

In case of speaker recognition the speech files are
preprocessed and aset of feature vectorsis calculated. The
K-means clustering can be then used to group feature
vectors for each speaker into K sets (clusters) which
efficiently describethe acoustic attributes of agiven speaker.

eliminated by using thel TV Qwhichworksontheprinciple
of physical interpretation of the data clusters.

3. LINDE BUZO GRAY CLUSTERING

The LBG algorithm [5] consists of asequenceof iterative
steps minimizing the distortion measure. It consists of
two phases, which are codebook initialization and
codebook optimization.

The codebook optimization process is guided by
minimization of the average distortion of the MQE

Thus, each speaker is modeled by a set of K clusters of (Maximum Quantization Error) givenas:

feature vectors. An example of K-means procedure is

. - 1N
illustrated in Fig. 2. K-means encounters the problem of MQE = D(X, Y, q) == d(xi , q("i )) @
overfitting[11]. Thedrawback of overfitting can belargely Ni=1
s,
SId
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FIG 1. STRUCTURE OF THE VQ BASED SPEAKER VERIFICATION SYSTEM.. COURTESY OF TOMI K
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whereY isagiven codebook, X={x,, X,, ..., X, } istheset of
observation data vectors, N is the total number of
observation data vectors, d is a vector distance measure,
and q is the vector quantizer function, defined such that
q(x,) is the codeword assigned to vector x; based on the
nearest neighbor criterion.

The LBG agorithm requiresthe user to provide an initial
estimate of the codebook and to specify the desired number
of clusters. Dueto the nature of the classical LBG agorithm,
which usually generatestheinitial codebook by randomly
splitting codewords into two new codewords, the desired
number of clusters needsto beapower of 2. Thefollowing
sections describe the subsequent phases of the LBG
algorithm.

3.1 Codebook Initialization

Thechoiceof initial codebook can becritical for the quality
of thefinal solution. The poor choice of theinitial codebook
will leadto afinal quantizer with arelatively largevalue of
the quantization error. A number of methods such as
randominitialization[12], initialization by splitting [5] and
maximum distanceinitialization [ 13] have been proposed
to perform codebook initialization. One of the most often
used approaches is based on random splitting codewords
until adesired codebook sizeisreached. Asillustrated in

Fig. 3, the process of generating aninitial codebook starts
withasinglerandominitial codeword. Thesingle codeword
is then randomly split into two codewords by a small
random perturbation. The procedure proceeds until apre-
set number of codewords is reached. This type of
codebook initialization resultsin acodebook sizewhichis
of power 2.

3.2 Codebook Optimization

Theinitialization step isfollowed by theiterative codebook
optimization procedure which gradually improves the
codebook estimate by minimization of thetotal distortion
(quantization error) D. The optimization phase of theLBG
algorithm proceedsasfollows[14]:

FIG 3. INITIAL CODEBOOK GENERATION BY RANDOMLY
SPLITTING THE CODEWORDS

Cluster Boundaries(i)

FIG 2. K-MEANS CLUSTERING: THE SMALL DOTS REPRESENT DATA VECTORS, | IS THE ITERATION NUMBER AND J DENOTE
CENTROID VECTORS (LARGE DOTS). THE LINES REPRESENT BOUNDARIES BETWEEN CLUSTERS
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Step-1  Assign the initial codebook as the current
codebook Yk and the current iteration number
k=1

Step-2  Using the current vector quantizer g, divide the
training datainto aset of NN clusters (also called
the Voronoi clusters [14]). Then calculate the
averagedistortion D(Y*,g¥) using Equation (2).

If abs(D(Y*,g") - D(Y*P,g<P)) islessthan apreset
threshold ¢, then terminate the algorithm.

else, go to Step-3. The p value is a control step
denoting small number of iterations.

Step-3  Set k=k+1, and update the codebook Y* by
calculating the centroids of the new clusters,
update the nearest neighbour quantizer g¢ and
go to Step-2.

The cycle of iterations usually continues until the
decrement in average distortion value calculated over a
specific small number of iterations falls below a pre-set
threshold C. Alternatively the algorithm can beterminated
when apre-set maximum of iterationsisreached.

TheLBG algorithm offersaconstructive solutionto avery
complex problem of generating an optimal V Q codebook.
The advantage of the LBG is that it does not require
knowledge about the underlying statistics of the
observation data. However, the quality of thefina solutions
depends on the quality of the initial codebook. The
procedure has a gradient descent character and has no
mechanismsallowing escaping fromlocal minima, therefore
thealgorithm hasatendency toend upinlow quality local
minima

4. INFORMATION THEORETIC
VECTOR QUANTIZATION

In K-meansand L BG algorithms, data pointsare associated
with the nearest code vector reducing the size of the
original data. The challenge is to find the set of code
vectors (the codebook) that reduces the datato a smaller
set preserving the distribution of the original datavectors.

UnliketheK-meansor LBG ITVQ[15] hasaclear physica
interpretation and relies on minimization of awell defined
cost function. Thel TV Q usesdescriptorsfrominformation
theory (entropy and divergences) estimated directly from
the data to substitute the conventional statistical
descriptorsof variance and covariance. Thel TVQisbased
on a number of core concepts of the information theory
such as Parzen density estimator, Kullback Leibler
divergence, Cauchy Schwartz Inequality and Renyi's
Quadratic Entropy [15]. Ininformation theory minimization,
the free distance between the codeword's distribution and
the original data distribution is equivalent to the
minimization of the divergence measure between these
two distributions. The divergence measure is cal cul ated
directly from the data using the Parzen density estimator.
The divergence minimization algorithm can be al so seen
as a probability density matching method, where the
distance between the Parzen density estimator for the
codewordsand the Parzen density estimator for the original
datais minimized. The potential field created by asingle
vector (particle) can be described by akernel of theform
K(+). Placing akernel on each particle, the potential energy
at apoint in space x isgiven by:

@+ Vk(x-x)
px-Ni:l X — X ©)

wherex; arethe datavectors. Equation (3) isknown asthe
Parzen density estimator [16].

In order to match the distribution of the codewords with
the distribution of the original data, Equation (5) can be
used to estimate their densities and then minimize the
divergence between the densities. The distribution of the
data points (x,) can be written as:

f(x)ZIZG(x—xi,O'f) )

Similarly, the distribution over codewords (w,) can be
written as:

g(x)=|ZG(x—wi,0'g) )
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Where, G(.) represents the Gaussian kernel given as:

G(x,0) = e ©)

Numerous divergence measures exist, of which the KL
(Kullback Leibler) divergenceisthe most commonly used
[17]. The integrated square error and the CS (Cauchy
Schwartz) inequality are both linear approximationsto the
KL divergence

TheKL divergence representsameasure of the difference
between two probability distributions: from a true
probability distribution X to an arbitrary probability
distribution Y. Typically X represents data, observations,
or a precise calculated probability distribution. The
measure Y typically represents a theory, a model, a
description or an approximation of X. For probability
distributions X and Y of adiscreterandom variablethe KL
divergenceof Y from X isdefined as:

Dyt (X[Y)= T X(i)|og§T(i')) @

The CS inequality is a linear approximation of the KL
divergence. For vectors x and y, the inequality is written
as:

[x.3)] <l-s1 ®

Substituting G from Equation (6) to Equations (4-5), the
distribution f(x) of the data points x; is given as.

2

1 20¢2 (g

2
f(x):ZiG(x—Xi,O'f ): N €
\/57[0']:

and the distribution g(x) of the codevectorscj. isgivenas:

X—C;

N
1 2042 (10)
e

a(x) ZZjG(X—Cj ,ng)ZW
7Z'O'g

Applying the CSinequality of Equation (8) tof(x) and g(x),
we have:

(7). 900 <[ o] w

Equation (11) becomes equality only when f(x) and g(x)
are collinear. Hence, maximizing the ratio between the
numerator K f (x), g(x)>‘ and the denominator
|| f (x)” . ||g(x)|| isequivalent to minimizing the divergence
between f(x) and g(x).

To avoid the division, the logarithm can be maximized
instead. Thisisvalid sincethelogarithmisamonotonically
increasing function. In order to minimize the divergence
between the distributions f(x) and g(x) the following
expression isminimized:

2
J(f(x)g(x))d
Dcfs(f (x),9(x)) = —|og%
[£7(x)dx] g~ (x)dx (12)

=log ] fz(x)dx—ZIogI f(x)g(x)dx+Igz(x)dx

In Equation (12) the first term contains the information
about theinteractions between the data points. The second
term addresses the interaction between the data points X,
and code vectors c. However, thethird termiscontaining
the information about the interactions between the code
vectorsitself. Theinteraction between the datapointswill
not lead to an improvement, however the interactions
between the data points and code vectors and between
the code vectorswill lead toimprovement. Thisisbecause
the position of data pointsis fixed and the only random
position selection and change is associated with code
vectors. Therefore, first term in Equation (12) can be
ignored. The cost function with respect to code vectors
can therefore be written as:
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3(c) = —2log] f (x)g(x)dx+ | g2 (x)dx (13)

The cost function J(c) is minimized with respect to the
location of the code vectors c When the codevectors are
located such that thelocal minimaisachieved, no effective
force acts on the code vectors. Moving the code vectors
inthe oppositedirection of the gradient will bring themto
such a potential minimum. This is also known as the
gradient descent method. The gradient descent method
states that the derivative of Equation (13) with respect to
the location of the codevectors must be calculated. For
the sake of simplicity the Eqution (13) isdivided into two
parts. Thefirst part is denoted by C and the second partis
denoted by V.

Considering first term of Equation (13):
C =] f(x)g(x)dx
1 N 2 M 2
=—jZGf (x—X.0¢ )ZG(X—CJ- og )dx
MN 1 J
14

where the covariance of the Gaussian after integration is
Gf:ﬁfzﬂ’gz- M isthe number of code vector kernelsand N
isthe number of data point kernels.

Thegradient update for the code vectorsc, fromtheabove
term then becomes:

d AC
—2logC = -2—
de C

(15

where AC denotes the derivative of C wrt code vectors, it
iscalculated as:

MN 1
(16)
Similarly for the second term V we have:
V = [ g2 (x)dx
1 MM ( ) a
=W% %GCJ —Ck,\/EGg

The gradient update for the code vectors C from the
second term then becomes:
d AV

—IlogV =—
; A%

de i (18)

where AV denotes the derivative of V wrt code vectors,
and it is calculated as:

ol _ﬁl\%ﬂG(ck —¢ '&Ub)“t;l(ck ~¢ ) (19)

where k denotesthe current centroid for which the update
isobtained. By substituting the simplification of the above
two terms obtained in Equation (16) and Equation (19) to
Equation (13), the update formula for the ITVQ can be
established as:

(D) = e () [AV 2ch

cin+l)=c /| B 20
k k - C (20
where 1| is the step size, the ITVQ consists of n updates

for each of the codevector c,.

S. EXPERIMENTS COMPARING
SPEAKER VERIFICATION BASED
ON K-MEANS, LBG AND ITVQ
METHODS

5.1 Overview of Speaker Verification
System

Theoverview of the speaker verification systemincluding
training and testing phases [18] is given in Fig. 4. The
speaker verification system showninin Fig. 4 can operate
in one of the two possible modes:

[ ] Thetarget speaker enrollment (training), and
| The testing mode.

For both of the system modesidentical speech detection
and feature extraction methods are used. The pre-
processing method followed the SAD (Speech Activity
Detection) procedure introduced by Reynolds in [19].
The voiced/silence interval were detected using an
energy threshold. Previous research [20] have shown
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that MFCC (Mel Frequency Cepstral Coefficients) based
system is relatively robust to the changes in frame size
(intherange of 20-50ms) and frame step (in the range of
1/6to /3 of theframe size). Thuswe employed MFCC to
characterize the speaker information. The feature vector
representing a given frame is a 36 dimensional vector
including: 12 MFCC parameters, 12 delta parameters
AMFCC (first derivative of MFCC), and 12 double delta
parameters AAMFCC (second derivative of MFCC). As
illustratedin Fig. 5, the MFCC parameterswere calcul ated
by mapping the voiced speech spectrum into Mel
frequency scale. ThisMel frequency mapping was done
by multiplying the magnitude of speech spectrum for a
preprocessed frame by magnitude of triangular filtersin
Mél filterbank followed by log-compression of sub-band
energiesof theMel-scalefiltersand finally DCT (Discrete
Cosine Transform).

5.2 Speech Corpora

The speaker verification experimentswere performed using
two speech corpora: TIMIT and NIST 2004.

The TIMIT corpus was used to obtain speech samples of
630 speakers (438 male and 192 female). Therecordings
were made in a sound booth using fixed-text sentences
read by speakers and recorded over a fixed wideband
channel. The speakersused American English. The TIMIT
corpora had a low environmental value since the clean
wideband speech has an ideal character and does not
simulatethereal world conditions[21].

In order to provide aspeech corporathat provides a better
representation of thereal life conditions, NIST 2004 was
used with 616 speakers (248 maleand 368 female) recorded
in different environmental conditions. The recordings
include conversational speech which is recorded mostly
over atelephone line. For each speaker approximately 5

Training
data

» Pre-Processing

N Feature \
Extraction

Speaker
Claims

Target
Speaker
Codebook

L~ ]
Target Speaker 1

Testing
data

Pre-Processing—}

Feature
Extraction

FIG. 4. BLOCK DIAGRAM OF THE SPEAKER VERIFICATION SYSTEM

Target
Speaker
Codebook

Accept/
Reject

Input
. Mel Subband
S;))(?r?)ch —{ Pre-processing —» Spectrum —>| Energy —> Log ()= DCT —» MFCC

FIG. 5. CALCULATION OF THE MFCC COEFFICIENTS
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minutes of speech wasavailablefor training aswell asfor
testing. Most of the training datais in American English
[22.

Table1 showsasummary of TIMIT and NIST 2004 corpora
used to perform the experiments.

5.3  Speaker Verification Results

The performance of the VQ methods is evaluated using
speaker recognition rates, EER va uesand M SE with respect
to codebooks. The speaker recognition rate was the most
widely used measure to evaluate the performance of a
speaker verification system. However EER measure gives
amore suitabletool for the eval uation of the performance
of detection systemsin general and speaker verification
systemsin particular [22-23].

The speaker recognition rates based on different VQ
methods are summarized in Fig. 6(a-b). Fig. 6(a) showsthe
results based on the TIMIT corpora and Fig. 6(b) shows
the results based on the NIST 2004 corpora.

The recognition rates in Fig. 6 indicate that the ITVQ
outperformsthe conventional Kmeansand LBG methods.
It alsoindicatesthat for al three a gorithms, anincrease of
the number of clusters generally leads to a noticeable
increase of recognition rates when the number of cluster
increases from 32-128, further increase from 128-512
clustersshowsasmall degradation in performanceleading
to dlightly lower recognition rates. The reason for the
performance degradation is observed due to the increase
in number of codewordswhich can be attributed to thinner
distribution of data. With the increasing number of
codewords the data is highly distributed and the
codewords are therefore not capable of modeling a

TABLE 1 PROPERTIES OF THE SPEECH CORPORA

Description TIMIT NIST 2004
Language English English
Client Speakers 630 616
Speech Type Read Conversational
Record Condition Lab Telephone
Handset Mismatch No. No.
Sampling Rate 8KHz 8KHz
Quantization 16 Bit 8 Bit p-Law
Train Speech 45 Second 5 Minute
Test Speech 12 Second 50 Sec

particular speaker accurately, which ultimately deteriorates
the performance. Therelatively high recognition ratesfor
thel TVQ indicatethat Parzen density estimation provides
better representation of the data distribution than the mean
values used in K-means and LBG agorithms. The C-S
divergence minimizes the free distance between the data
points and the code vectors more efficiently than the K-
meansand L BG methods.

EER is used to compare the performance of speaker
verification based on different VQ algorithms, since
recently it has turned out to be the most widely used
technique for evaluating performance of speaker
recognition systems. Sincethe EER can only becalculated
for afixed number of codewords, acodebook containing
512 codewords was used to illustrate the performance
comparison between K-means, LBG and ITVQ a gorithms.
Fig. 7(a-b) illustrate the percentage miss probability versus
the percentage of false alarm probability and the EER
values for the Kmeans, LBG and ITVQ methods using
codebook size of 512. Fig. 7(a) shows the results for the
TIMIT corpora and Fig. 7(b) shows the results for the
NIST 2004 corpora. The miss probability measures the
percent of invalid matches and the fal se alarm probability
measures the percent of valid inputs being rejected. The
EER parameter representstherate at which both the miss
and falsealarm probabilitiesareequal. Thelower the EER,
the more accurate the system is considered. Asillustrated
inFig. 7(a-b), both corporashow the sametrend with I TVQ
outperforming both K-meansand LBG algorithm. The K-
means algorithm provided the highest EER (34.9% for
TIMIT and 21% for NIST 2004), LBG gave better
performance than Kmeans (27.8% for TIMIT and 19.1%
for NIST 2004). Thel TV Q provided thelowest EER (15.8%
for TIMIT and 11.8% for NIST 2004). The average
improvement of EER valuefor ITVQ methodisabout 19.1%
over K-meansand 7.1% over LBG for TIMIT corpusand
9.2% over K-means and 7.3% over LBG for NIST 2004
corpus.

The MSE is calculated using the objective function for
each of the evaluated procedures. Fig. 8(a) shows the
MSE values based on the TIMIT corporaand Fig. 8(b)
showsthe M SE based on the NIST 2004 corpora. Fig.8(a-
b) show the same trends as previously indicated by
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classificationratesand EER. Thel TV Q providesthelowest
M SE values and the fastest convergencerates. The LBG
algorithm givesthe medium performance and the K-means
algorithm shows the largest M SE values and the slowest
algorithm convergence rates.

6. CONCLUSIONS

Inthis paper we evaluated and compared the performance
of mean based and information theoretic learning based
vector quantization modelling techniquesfor the speaker
verification system. The performance was compared using
afeature set containing 12 MFCC withitsdeltaand double

coefficients. The evaluation was based on two speech
corpora: TIMIT and NIST 2004. Theresultswereeval uated
in terms of three different performance measures:
classification rates, EER and M SE.

Theresults based on these different classifiersand speech
corpora were consistent indicating that the vector
guantization based on IT learning established better
recognition rates. The better performance of the ITVQ
algorithm can be attributed to the fact that the I T criteria
used by this algorithm provide better matching between
distribution of theoriginal datavectorsand the codewords.

32 64 128
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90% - 74.60%
—~ ano/ 79.20%
X 80% 65.80%
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FIG. 6(A). RECOGNITION SCORES FOR K-MEANS, LBG AND ITVQ CLASSIFIERS FOR TIMIT SPEECH CORPORA.
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