
Translating Activity Diagram from Duration Calculus for
Modeling of Real-Time Systems and its Formal

Verification using UPPAAL and DiVinE
MUHAMMAD ABDUL BASIT UR RAHIM*, AND FAHIM ARIF**

RECEIVED ON 09.02.2015 ACCEPTED ON 14.12.2015

ABSTRACT

The RTS (Real-Time Systems) are widely used in industry, home appliances, life saving systems, aircrafts,
and automatic weapons. These systems need more accuracy, safety, and reliability. An accurate graphical
modeling and verification of such systems is really challenging. The formal methods made it possible to
model such systems with more accuracy. In this paper, we envision a strategy to overcome the inadequacy
of SysML (System Modeling Language) for modeling and verification of RTS, and illustrate the framework
by applying it on a case study of fuel filling machine. We have defined DC (Duration Calculus) implementaion
based formal semantics to specify the functionality of RTS. The activity diagram in then generated from
these semantics. Finally, the graphical model is verified using UPPAAL and DiVinE model checkers for
validation of timed and untimed properties with accelerated verification speed. Our results suggest the
use of methodology for modeling and verification of large scale real-time systems with reduced verification
cost.

Key Words: Formal Semantics, Formal Modeling, Real-Time System, Verification, UPPAAL, DiVinE.

* Military College of Signals, National University of Science and Technology, Islamabad/National Institute of Electronics, Islamabad.
** National Institute of Electronics, Islamabad.

1. INTRODUCTION

must be formally specified and analyzed in the earlier phase
of system development cycle in order to avoid such loss.

SysML is a graphical modeling language that is used to
model the industrial applications [1]. The software
engineers graphically model the industrial applications
as per gathered user’s requirements. These user
requirements must be validated and verified in earlier
design phase otherwise the errors found in later phases
will cause failure of software or it will increase software’s
cost. Moreover, the errors in industrial applications can
also cause loss of precious human lives. The SysML

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
139

The software engineers graphically model the
functional requirements of large scale real-time
system during analysis and design phases of

software development life cycle. For this purpose, they
use the graphical modeling languages those are SysML
and UML (Unified Modeling Language). However these
modeling languages are not very suitable for modeling
of critical systems due to their limited support. The
graphical modeling of large scale embedded and real-time
systems are really challenging due to system’s complex
nature. An error in its model can cause loss of money or
even loss of precious lives. Therefore, these systems

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
140

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

consists of different behavioral and interactive diagrams.
The activity diagram is one of the behavioral diagram of
SysML however it is not rich enough to model the RTS
and concurrent systems. It is difficult to define the type
of flows, controls and other elements w.r.t. RTS.

The industry uses RTS to provide services and
manufacture high-quality products with optimized
production processes [2]. These are also used in home
appliances, automatic vehicles, trains, and signaling
system. Such systems require high degree of precision
which is possible through formal methods.

Duration Calculus is used to formally model the
functionality of real-time systems and many authors have

generated graphical models (automata or state chart

diagram) from these formal models for verification of
functionality of RTS [3]. Such formal models are more

reliable and useful to model the functionality of discrete

time based RTS. The activity diagram is used to describe
the functionality in a more prescribed way that is why it is

more suitable to model the functionality of concurrent

and component based application. However, the activity
diagram has more elements as compared to automata or

state chart diagram that is why it is typical to generate the

activity diagram from DC implementable based formal
model. Therefore, it is desirable to update the formal

semantics that may be more useful to generate more

SysML based diagrams with more accuracy.

The verification and validation is an important phase of

software development life cycle. Before the modern tools

and techniques, the verification and validation of
requirements were only possible after the development

of the software. Now different model checking tools are

available which are useful to validate and verify the user
requirements in earlier design phase that reduce the

chances of software failure rate and also save from loss

of precious human lives [4].

1.1 Motivation

The real motivation of this paper is an accurate modeling
of industrial application and its verification in earlier
design phase to prevent the application from later hazards.
For this purpose, we have adopted a methodology to
formally specify the user requirements using Duration
Calculus implementables and generate the activity
diagram from these formal semantics. The generated
activity diagram is further verified using a discrete time
based model checker (UPPAAL) and a parallel model
checker (DiVinE) to verify the timed and untimed
properties of real-time system. The DiVinE model checker
is used to verify the case study with an accelerated speed
of verification [5].

1.2 Framework

The proposed methodology is more useful for modeling
and verification of real-time systems. The methodology
is also helpful to formally define the functionality of the
system and generated more accurate graphical model from
formal specification. The activity diagram is more
important diagram as it is capable to model the complete
functionality of individual devices and also the interaction
among the devices. DC is more useful for RTs, for that
reason, the patterns of DC implementables (initialization,
bounded stability, unbounded stability, synchronization,
progress) are used to describe the functionality of RTS
application. The UPPAAL model checking tool is used to
verify the generated activity diagram against the
functional and non-functional requirements specified in
ECTL temporal format. The selected tool is more useful to
show the step-by-step functionality of the system where
the temporal property is satisfied and a counter example
to describe the state where the temporal property does
not satisfy. Our results prove that the formal methods
show more accurate results then graphical modeling as
there is still issues of understanding [4], concurrency
and specifying the behavior of RTS w.r.t. time.

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
141

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

1.3 Paper organization

The remainder of the paper contains following: Section 2
presents the related work. Section 3 describes the DC
implementables. Section 4 demonstrates the proposed
formal semantics for elements of activity diagram. Section
5 shows the case study and Section 6 presents the
analysis of result and finally Section 7 is the conclusion
round trip of the paper.

2. RELATED WORK

Hansen, et. al. [6] have introduced the formal syntax and
semantics for DC and proved its correctness and
completeness. The methodology is still considered more
useful due to its rich formal semantics; however, it is only
useful for generating automata or state chart diagram.
The other diagrams of SysML cannot be generated from
these formal semantics. Pandya, et. al. [7] has proposed

an extension of DC which is named as QDDC (Quantified
Discrete-Time Duration Calculus) which is more useful to
specify the functionality of RTS using automata only.
The methodology is not useful to generate the other
diagram of SysML. Hansen, et. al. [8] have proposed an
algorithm for model checking of DC based formal model.
A very complex mathematical modeling is involved for
modeling and verifying the functionality of RTS. Guelev,
et. al. [9], have proposed semantics to capture the
probabilistic requirement of RTS. The authors only focus
on reasoning about requirements that can be done in an
infinite-interval-based system of probabilistic duration
calculus. Rahim, et. al. [3], authors have proposed a
methodology to formally model the functionality of RTS
using DC implementables. Authors have further generated
state chart diagram from formal specification and validated
the functionality of the system using UPPAAL and DiVinE
model checkers to reduce the verification time. However,
the defined semantics are not suitable for activity diagram.

Ouchani, et. al. [10-13], authors have verified the activity
diagram using PRISM model checking tool. The authors
have defined semantics using NuCalculus for all elements
of activity diagram. The functionality of the system is
verified against PCTL temporal properties using PRISM
model checker. The authors have mainly focused
probability aspect for modeling the real-time system and
performed the validation using sequential model checkers.

In our previous research [4-5,14-17], , we proposed
methodologies for verification of SysML by accelerating
the verification speed and reducing the verification cost
using parallel model checker. The authors have classified
the timed and untimed properties and validated the
functionality against these requirements using UPPAAL
and DiVinE model checkers. However, the SysML
diagrams are not formally specified in our earlier work
that is why we have initially specified only the activity
diagram.FIG 1. PROPOSED METHODOLOGY

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
142

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

We have defined DC formal semantics for all elements of
activity diagram. These semantics define the type of flow
among the activities that can be synchronization,
progress, stability, bounded stability, unbounded
stability, bounded initial stability, or unbounded initial
stability. The activity diagram translated from DC
implementables is more illustrative, comprehensive and
reliable. The software engineers can easily model a critical
large scale system. In related work, authors performed
the validation using sequential model checkers that take
more time for verification of large scale system and
increase the verification cost. However, the proposed
framework accurately models the RTS and verify the
requirements in less time.

3. DC IMPLEMENTABLES

DC implementables are the subset of DC formula and these
are certain patterns of DC formula that are more suitable
for specifying the behavior [15]. We have used these
patterns for generating activity diagram of real-time
system.

In the following definitions of implementables, the x,...,xn

are considered as phases where n > 0, α is considered as
assertion and ε denotes as rigid.

(i) Definition (Initialization)

⎡ ⎤ v ⎡ x⎤; true (1)

Equation (1) describes that each control automaton is
either empty or in phase x.

(ii) Definition (Bounded Stability)

(2)

Equation (2) illustrates that when the control changes its
phase to x with the condition á being true and the time
since this change not exceeding ε seconds, it stays in x or
it moves to one of phases x,....,xn. .

(iii) Definition (Unbounded Stability)

(3)

Equation (3) illustrates that when the control changes its
phase to x with the condition α being true, it stays in x or
it moves to one of phases .

(iv) Definition (Synchronization)

Equation (4) expresses that the control stayed for ε time
units in phase x and with true condition.

(v) Definition (Progress)

Equation (5) demonstrates that the control stayed for ε
seconds in phase x, it leaves this phase and progress
accordingly.

4. PROPOSED FORMAL SEMANTICS
FOR ELEMENTS OF ACTIVITY
DIAGRAM

In this section, we have proposed the formal semantics
for activity diagram which are based on duration calculus
implementables and it is the main contribution of this
paper.. As the DC Implementable are used to define the
functionality of individual modules and its type of
interaction among other modules that is why it is more
efficiently utilized with activity diagram.

The formal semantics for an action is defined using ceiling
brackets ⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤ that contains the name of action e.g. ⎡ ⎡ ⎡ ⎡ ⎡Ready⎤⎤⎤⎤⎤.
In the proposed formal semantics, the flow of control
from an action to another action is also depicted as an
arrow, moreover, this arrow is also used in different
capacity for real-time perspective. All the patterns of
activities are tagged on left side of pattern and a coloun
(:) is marked at the end of each tag (Init: ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ∨ ⎡ ⎡ ⎡ ⎡ ⎡x⎤⎤⎤⎤⎤; true,).
The initial node of activity diagram is defined as Init.,
however, an action node which is the final action
node of the activity is tagged as fin e.g.

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
143

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

(: .m nCn Flow Fin x x− − ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥) where Cn-Flow presents the
flow or node type and Fin describes it as a final activity
(end of activity diagram). The control flow node is
described in detail in next section. The flow final tag is
described as FFin e.g. (: .m nCn Flow Fin x x− − ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥) The
action constraint node supports most of the DC
implementables as this node may contain the timed or
untimed constraints. There are two ways to describe the
patterns for decision, merge, and fork nodes. If the time
interval is not involved then the formal pattern can
described on a single line, however, if time interval is
involved then the patterns are defined on multiple lines.
The conjunction (^) and disjunction (V) are used to define
the patterns for merge, join and fork nodes. The exception
handler and interruptible region along with its actions are
described using tags. However, partition and their
respective actions are described by mentioning both name
in ceiling brackets (. Card Read Read Data⎡ ⎤⎢ ⎥). For sending
signal, the channel (!) is used to define the formal semantic
e.g ! . . .Card Read Send Data Card Read Send Dataε⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ DC
implemenable based formal semantics for individual node
are defined in detail in next section.

4.1 Initial Node

An initial node is depicted by round cornered-rectangle
that is preceded by a black spot. The system starts its
functionality through this action.

Formal Semantic for Initial Node.

 ; , x true∨⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ (6)

Equation (6) expresses that, initially, each control is either
empty or in phase x.

Example: As the initial node is depicted by a filled black
circle and an action node is depicted by a round-cornered
rectangle, however in formal semantics, the action node
connecting with initial node is considered as initial
activity. In Fig 2, the initial activity “ready” is graphically

presented and its formal semantics is defined in Table 1
which states that either the control is initially in ready
state or it is not staying in any state.

4.2 Action Constraint Node

In activity diagram, an action constraint is depicted as
dotted arrow that contains the timed or untimed constraint.
It provides support for following DC implementables:
progress, bounded stability, unbounded stability and
synchronization.

Formal Semantic for Action Constraint: The following
patterns from Equations (7-10) express the possible
functionality of action constraints.

: . Prog x xε⎯⎯→ ¬⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ (7)

or

1 : ; nBd Stab x x x x xεα ≤− ¬ ∧ ⎯⎯→ ∨ ∨⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ (8)

or

1: ; nUb Stab x x x x xα− ¬ ∧ ⎯⎯→ ∨ ∨⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ (9)

or

: . Sync x xα∧ ⎯⎯→ ¬⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ (10)

Example-1: Table 2 shows the implantation of action
constraint node along with progress DC implementable
where the control flows from Ready to Switch On Valve
after staying 10 time units in Ready action node. Fig. 3
is graphical presentation of defined formal semantics in
Table2.

FIG. 2. INITIAL NODE

TABLE 1. FORMAL SEMANTIC FOR INITIAL NODE

 : ; ,Init Ready true∨⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
144

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

Example-2: Table 3 shows the implantation of action
constraint node along with bounded stability DC
implementable where the control flows from Prompt for
Amount to Insert Amount. The action node Prompt for
Amount also contains a constraint and on satisfaction of
this constraint, the control stays maximum up to 10 time
units in Ready action node and . Fig. 4 is graphical
presentation of defined formal semantics in Table 3.

Example-3: Table 4 shows the implantation of action
constraint node along with unbounded stability DC
implementable where the control flows from Prompt for

Amount to Insert Amount on satisfaction of constraint.
Fig. 5 is graphical presentation of defined formal semantics
in Table 4.

Example-4: Table 5 shows the implantation of action
constraint node along with synchronous stability DC
implementable where the control flows from Prompt for
Amount to Insert Amount. The action node Prompt for
Amount also contains a constraint and when this
constraint satisfies then control stays for a fix time (10
time units) in Ready action node. Fig. 6 is graphical
presentation of defined formal semantics in Table 5.

FIG. 3. PROGRESS BASED ACTION CONSTRAINT NODE.

 10: .Prog Ready Switch On Valve⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

TABLE 2. FORMAL SEMANTIC FOR PROGRESS BASED
ACTION CONSTRAINT NODE

TABLE 3. FORMAL SEMANTIC FOR BOUNDED
STABILITY BASED ACTION CONSTRAINT NODE

 10: Re 10000 .Bd Stab ady amount SwitchOnValve≤− ∧ < ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

FIG. 4. BOUNDED STABILITY BASED ACTION CONSTRAINT
NODE

 : Re 10000 .Ub Stab ady mount SwitchOnValva e− ∧ < ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

TABLE 4. FORMAL SEMANTIC FOR UNSTABILITY
BASED ACTION CONSTRAINT NODE

FIG. 5. UNSTABILITY BASED ACTION CONSTRAINT NODE

 10: Re 10000 .Sync ady mount SwitchOnValvea∧ < ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

FIG. 6. SYNCHRONIZE BASED ACTION CONSTRAINT
NODE

TABLE 5. FORMAL SEMANTIC FOR SYNCHRONIZE
BASED ACTION CONSTRAINT NODE

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
145

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

5. CONTROL FLOW NODE

It simply shows the flow of control from one action to
subsequent action and it is depicted as an arrow in activity
diagram.

Formal Semantic for Action Constraint.

 x x⎯⎯→ ¬⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ (11)

Equation (11) expresses that if the control is in phase x
then it subsequently stays in x or moves to one of the
other phase.

Example: The following example simply presents the flow
of control from one action node (Prompt for Pin Code) to
other action node (Pin Code Inserted). The Table 6 shows
the formal semantics for given example and Fig. 7 is its
graphical presentation.

5.1 Decision Node

The control flows coming away from a decision node
contain conditions which allow control to flow if the
condition is satisfied. The decision node is depicted as
diamond.

Formal Semantic for Action Constraint.

1 . m mx x xα +∧ ⎯⎯⎯→ ∨⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ (12)

 Equation (12) expresses that if the condition á is satisfied
then control will flow to phase xm otherwise control will
flow to xm+1 where m is a discrete number and m < n. The
decision node can also be used for verification of time
intervals, for that reason, the pattern will be expressed
explicitly which is as under:

1

 ,

 .
m

m

x x

x x

ε

ε
+

>

<

⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

(13)

The described pattern in Equation (13) is the time based
decision node that also looks like the same pattern for
constraint flow. The only difference between patterns of
constraint flow node and decision node is the difference
of number of flows coming away from their respective
node as the decision node provides support for more
than one flow coming away from decision node, however,
there is always one constraint flow coming away from
action node.

Example: The following example presents the conditional
flow of control from an action node Pin Code Inserted. In
the following example if control stays more than ten time
units then control flows to Eject Card otherwise it flows
to Validate Pin. Table 7 describes the formal semantics
for decision node and Fig. 8 is the graphical presentation
of described formal semantics.

5.2 Merge Node

Merge node is also graphically presented as a diamond.
The control flows from merge node as it receives control
from one or all connected nodes.

Formal Semantic for Action Constraint.

1 2 . m m mx x x+ +⎯⎯→⎡ ⎤ ⎡∨⎡ ⎤⎢ ⎥ ⎢ ⎥⎤⎢ ⎥ (14)

 : .Cn Flow Prompt for Pin Code Pin Code Inserted− ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

TABLE 6. FORMAL SEMANTIC FOR CONTROL FLOW
NODE

FIG 7. CONTROL FLOW NODE

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
146

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

The Equation (14) expresses that the control moves to
phase xm+2 when control comes away from xm or xm+1 where
m is a discrete number and m < n. The merge pattern can
also be explicitly mentioned which is expressed using
Equation (15):

2

1 2

,

.
m m

m m

x x

x x
+

+ +

⎯⎯→⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥
⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

(15)

 Example: The following example presents the
unconditional flow of control to action node Prompt for
Pin Code as merge node receive flow from one or both
of action nodes Read Data and Invalid Pin Code. Table
8 describes the formal semantics for merge node and
Fig. 9 is the graphical presentation of described formal
semantics.

5.3 Join Node

Join node is depicted as a thick black bar which is connect
with more than one incoming flows and one coming away
flow. The join synchronizes two incoming flows and
generate a single outflow and this outgoing flow cannot
execute until all inflows have been received.

Formal Semantic for Action Constraint.

1 2 . m m mx x x+ +∧ ⎯⎯→⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ (16)

The Equation (16) expresses that the control moves to
phase xm+2 when control comes away from both xm and
xm+1 where m is a discrete number and m < n.

Example: An example is presented in Fig. 10 where control
stays for ten time units in action node Switch On Valve 1
and twenty time units in second in action node Switch
On Valve 2. The control flows from Switch On Valve 1 to
join node and the join node waits for other incoming before
executing the flow toward action node Mix Both
Chemical. Table 9 describes the formal semantics for join
node and Fig 10 is the graphical presentation of described
formal semantics.

5.4 Fork Node

It looks like a join node however there is a difference of
incoming and outgoing flows. The fork node is used for
concurrent processing for that reason it has one incoming
flow and multiple outgoing flows.

Formal Semantic for Action Constraint.

1 2 . m m mx x x+ +⎯⎯→ ∧⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ (17)

 10

10

: ,

: .

Bd Stab Dec Pin Code Inserted Validate Pin

Bd Stab Dec Pin Code Inserted Eject Card

<

>

− − ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
− − ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

TABLE 7. FORMAL SEMANTIC FOR DECISION NODE

FIG. 8. DECISION NODE

TABLE 8. FORMAL SEMANTIC FOR MERGE NODE

FIG. 9. MERGE NODE

 : .Mrg Read Data Invalid Pin Code Prompt for Pin Code∨ ⎯⎯→⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

 : ,

: .

Mrg Read Data Prompt for Pin Code

Mrg Invalid Pin Code Prompt for Pin Code

⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

OR

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
147

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

 This Equation (17) describes the concurrency that the
control moves to phase xm+1 and xm+2 when control comes
away from xm where m is a discrete number and m < n. If
time factor is involved then fork pattern can also be
explicitly mentioned which is as under in Equation (18):

(18)

 Example: The following example describes the formal
semantics and graphical presentation of fork node. In
this example, the fork node has one inflow Mixing Both
Chemical and two outflows which are Filling Bottle 1
(Switch On Valve 3) and Filling Bottle 2 (Switch On
Valve 4). The control stays for ten time units in inflow of
fork and both outflows are the concurrent activities which
starts at the time. Table 10 describes the formal semantics
for fork node and Fig. 11 is the graphical presentation of
described formal semantics.

5.5 Exception Handler Node

It is used to attach with an activity where the exception
handling is required. It is depicted as an angled arrow.

Formal Semantic for Action Constraint.

(19)

The pattern of Equation (19) expresses that the control
flows to exception handler as an exception occurs in
phase x.

Example: The example presents exception handling for
an action node Pin Code Validation where an action
node Error State is plays a role as an exception handler.
Table.11 describes the formal semantics for fork node and
Fig. 12 is the graphical presentation of described formal
semantics.

5.6 Interruptible Active Region

A region that contains multiple activities can be
interrupted at any time. It is depicted with dotted or dashed
boundaries.

Formal Semantic for Action Constraint.

(20)

The Equation (20) illustrates that the control moves to
interruptible region as an interrupt occurs in phase x.

FIG 10. PROGRESS BASED JOIN NODE

TABLE 9. FORMAL SEMANTIC FOR PROGRESS BASED
JOIN NODE TABLE 10. FORMAL SEMANTIC FOR FORK NODE

FIG. 11. PROGRESS BASED FORK NODE

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
148

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

Example: The example shows that the plant will mix two
chemicals till and then it will close mixing. An interrupter
Cancel Mixing Request can interrupt the mixing process
during mixing and control can not stay for more then five
time units in Cancel Mixing Request. Table 12 describes
the formal semantics for fork node and Fig. 13 is the
graphical presentation of described formal semantics.

5.7 Partition Node

Partition is a swim line that differentiates the working of
individual parts a module.

Formal Semantic for Action Constraint.

 . . . y x z x⎯⎯→ ¬⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ (21)

 The Equation (21) describes that the control moves from
phase x of y partition to some other phase of z partition.

Example: In the following example, the functionality of
an input device (Card Reader) and a controller (Control
Unit) is presented. Initially, the card reader reads the data
available on card and then control unit prompts for enter
amount. The activity of individual part is defined by
conncating it with parts name e.g. Card Reader. Read
Data where Card Reader is the device name and Read
Data is the name of its activity. Table 13 describes the
formal semantics for fork node and Fig. 14 is the graphical
presentation of described formal semantics.

5.8 Send Signal Node

It is an action that is used to send data from one activity
to other activity.

Formal Semantic for Action Constraint.

 ! .x x⎯⎯→ ¬⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ (22)

The Equation (22) shows that the control moves from
phase x to some other phase by sending a signal.

TABLE 11. FORMAL SEMANTIC FOR EXCEPTION
HANDLER NODE

FIG. 12. EXCEPTION HANDLER NODE

 : ; ,

: ,

:

Init I Reg Request for Mixing Both Chemicals true

Cn Flow I Reg Mixing Both Chemicals Mixing Both Chemicals

Intr I Reg Cancel Mixing Request

− − ∨⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
− − − ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
− − ⎡ 5 ,

: ,

: .

Cancel Mixing Both Chemicals

Bd Stab Fin Cancel Mixing Both Chemicals Fin

Fin Mixing Both Chemicals

<⎯⎯→⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
− − ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

⎡ ⎤⎢ ⎥

TABLE 12. FORMAL SEMANTIC FOR INTERRUPTIBLE ACTIVE REGION NODE

FIG. 13. INTERRUPTIBLE ACTIVE REGION NODE

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
149

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

Example: The example presented in previous section is
extended to describe the functionality of send signal, as
shown in Fig. 15. Initially, the card reader reads the data
and sends it to the control units. The control unit receives
the data and further prompts for amount. In this example,
the channel (!) used to present communication among
the devices that contains a message (data) as well, as
shown in Table 14 and graphically in Fig 15.

6. CASE STUDY

The fuel filling machine contains following devices:
keypad, card reader, display screen, control unit, and filler.
When the customer inserts card in card reader then the
card reader takes ten time units to read information
available on card. The display screen prompts to insert
pin code using keypad and then prompts for amount if
pin code is valid otherwise prompts for incorrect pin code.
On validation of pin code, the display screen prompts to
insert amount using keypad. The control unit takes ten
time units for validation of pin code. The control unit
keeps record of invalid attempts and ejects the card on
three consecutive invalid attempts. The control unit again
validates the amount in maximum ten time units. After
successful validation of amount, the control unit switches
on the filler for desired amount otherwise prompts again
to insert the amount. If user has inserted the card and he
is unable to insert pin or amount within ten time units, in

either case, the control unit will eject the card. Fig. 16
shows the functionality of fuel filling machine that
contains two inputs, two outputs and a controller. The
input devices communicate with controller by sending
respective data and then controller controls the output
devices accordingly.

Table 15 shows the formal semantics to describe the
functionality of the fuel filling machine. The semantics
define the initial and final actions of fuel filling machine.
Moreover, the flow of control is also shown that is either
bounded stable or unbounded stable. The label on left
side of semantics also shows the use of node to represent
the functionality.

Fig. 16 is the activity diagram generated from semantics
defined in Table 15 under the rules defined in section 5.
The dotted line shows the time of flow of control from
one node to other node. The DC implementable based
activity diagram more precisely represents the
functionality of real-time systems.

TABLE 13. FORMAL SEMANTIC FOR PARTITION NODE

!

: . ; ,

: . . ,

: . .data

Init Card Reader Read Data true

Cn Flow Card Reader Read Data Control Unit Send Data

Sgnl Card Reader Send Data Control Unit

∨⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
− ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

⎯⎯⎯→⎡ ⎤⎢ ⎥ ,

: . . .

Receive Data

Cn Flow Control Unit Receive Data Control Unit Prompt for Amount

⎡ ⎤⎢ ⎥
− ⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

TABLE 14. FORMAL SEMANTIC FOR SEND SIGNAL NODE

FIG. 14. PARTITION NODE FIG 15. SEND SIGNAL NODE

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
150

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

10

: _ . ; ,

. : _ . _ _ . _ ,

:

 Init Card Reader Ready true

Bd Stab Cn Flow Card Reader Card Inserted Card Reader Read Data

Cn Flow Mrg Car

<

∨

− −

− −

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

_ . _ _ . _ _ ,

: . . ,

:

d Reader Read Data Control Unit Prompt for Pin

Cn Flow Control nit Prompt or in Display creen Prompt or in

Cn Flo

U

w Dis

P

p

f P

la

S F−

−

⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

.

. . ,

: . ,

:

Keypad Pin ode nserted alidateC pinI V

y creen Prompt or in Keypad Pin ode nserted

Dec Display creen Prompt or mount

Dec Dec Mrg

S f P C I

S f A∧

− −

⎡ ⎤⎢ ⎥
⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥

⎯⎯→⎡ ⎤⎢ ⎥

 . . 3 . ,

: . . 3 .

!

!

Keypad Pin ode nserted validateC I N o a U f P

C I

pin o f tt Control nit Prompt or in

Dec Dec Keypad Pin ode nserted validatepin o f tt Control nit Card jectedN o a U E

<

− >

∧

∧

⎡ ⎤ ⎯⎯→⎡ ⎤⎢ ⎥⎢ ⎥
⎡ ⎤ ⎯⎯→⎡ ⎤⎢⎢ ⎥

10

,

: . . ,

. : . .

Cn Flow Display creen Prompt or mount Keypad Amount nserted

Dec Bd Stab Dec Keypad Amount nserted alidateamount Control nit Card jecte

S f A I

I v U dE>

−

− − ∧

⎯⎯→⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎡ ⎤ ⎯⎯→⎢ ⎥

⎥

10

,

. : . . .Dec Bd Stab Dec Fin Keypad Amount nserted alidateamount Filler Filv lI ing<− ∧− −

⎡ ⎤⎢ ⎥

⎡ ⎤ ⎯⎯→⎡ ⎤⎢ ⎥⎢ ⎥

TABLE 15. FORMAL SEMANTIC FOR FUEL FILLING MACHINE

FIG. 16. ACTIVITY DIAGRAM OF FUEL FILLING MACHINE

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
151

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

6.1 Properties

This section present the properties using duration calculus
and its equivalent temporal logic format (extended
computational tree logic) that is used by model checker
for validation of properties. These properties are verified
against the functionality of the system and model checker
is used for this purpose which analyzes the functionality
at individual transaction level. This individual transaction
can also be seen using simulator of model checkers. The
model checker also shows the counter example if a
property is not satisfied against the system’s functionality.
The following are the properties which are formally
specified and verified against the functionality of the
system.

P1 The card reader can take maximum ten time units
to read the card’s data.

P2 The control unit takes maximum ten time units to
validate entered amount.

P3 If user enters the amount in ten time units then
start filling.

P4 If user is unable to enter the amount in ten time
units then eject the card.

The functionality of the case study is formally specified
using DC implementables and the properties are specified
using DC formulas. The previous section shows the
properties which are verified against the functionality of
the case study. Table16 presents the both formats of
requirement specification which are DC formula and its
ECTL (Equivalent Temporal Logic Format). Table 16 also
illustrates the status of property that either the property
is satisfied or not. All the properties specified are satisfied
except the last one.

7. ANALYSIS OF RESULTS

The proposed framework is more useful in the field of
software and system engineering. The software engineers
mostly rely on graphical models while computational
engineers depend on complex mathematical models. The
graphical models are easy to understand, however, it
provides limited support for modeling of RTS; therefore,
we have defined the formal semantics to overcome the
limitations of graphical model. Furthermore, these
semantics are used to generate an activity diagram with
more accuracy.

As the activity diagram is unable to describe the type of
flow among the actions and also lacks in specifying the

TABLE 16. REAL-TIME PROPERTIES FOR FUEL FILLING MACHINE

Property
No Property Specification using Status

P1
DC _ 10Read data l⇒ ≤⎡ ⎤⎢ ⎥

Satisfied
ECTL () _ . _ _ . 10E card reader Card Inserted and card reader y<> <=

P2
DC _ 10Validate Amount l⇒ ≤⎡ ⎤⎢ ⎥

Satisfied
ECTL () . _ . 10E controller Validate Amount and controller z<> <=

P3
DC (10)Validate mountA Fillil ng⎡ ⎤⎢ ⎥ < ⇒ ⎡ ⎤⎢ ⎥

Satisfied
ECTL () () . _ . 10 .E controllerValidate Amount and controller z and filler Filling<> <

P4
DC (10)A lValidate mount Card jectedE∧ > ⇒⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

Not
Satisfied ECTL () (). _ . 10 _ . _E Controller Validate Amount and controller z and card reader Card Inserted<> >

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
152

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

functionality of concurrent and component based

system, for such reason, formal semantics for activity

diagram have been proposed which describe the type of

interactions e,g. bounded stable, unbounded stable,

synchronous or progress. The proposed semantics are

based on DC implementables which are very helpful to

demonstrate the functionality of RTS. One of the major

benefits of these semantics is effectively specifying the

time for all nodes of activity diagram. Moreover, by using

these semantics the time for concurrent actions and

components based systems can be more precisely

specified for individual actions. Although the activity

diagram uses fork and swim line nodes for graphical

modeling these systems, however, it lacks in specifying

different type of time for individual action. The presented

case study is a component based system that is more

efficiently specified which proves its usefulness for

component based applications.

The proposed formal semantics describes all type of

nodes, interactions among the nodes, timed constraints

and DC implementable based control flow. The individual

pattern of proposed semantic is tagged on left side of the

pattern that presents the type of control flow and the

element used other than an action e.g. merge, fork, join,

decision, signal, interrupt region, exception handler and

control flow.

As the duration calculus is based on discrete time

therefore the methodology is only useful for such

systems. For verification of discrete time based systems,

a discrete model checker UPPAAL is used with ECTL

temporal logic. In this paper, the UPPAAL model checker

is used to model the functionality of each component

individually which communicates among the other

components using communication channels and timed

functional requirements are verified against ECTL

temporal logic.

As the methodology is verified using UPPAAL model

checker that is a sequential model checker and it takes

more time for verification of large industrial

applications. DiVinE is a parallel model checker that

uses multiple processers for verification of industrial

application which ultimately accelerate verification

speed [5,16] . DiVinE is also compatible with UPPAAL

model checker, for that reason, we have used DiVinE

model checker to verify the UPPAAL’s model with

accelerated speed. The timed properties are verified

using UPPAAL and untimed properties is verified using

DiVinE model checking tool.

8. CONCLUSIONS

With increase in demand, dependency and complexity,

the real-time systems are required to be more reliable and

efficient. The proposed methodology is more useful to

fulfill such industrial requirements with more accuracy,

safety and efficiency in a very cost effective way. The

methodology validates user’s requirements in earlier

design phase and reduces the verification cost by

accelerating verification speed. In this paper, we have

extended the DC implementable based formal semantics

to effectively model the functionality of RTS and generate

an accurate activity diagram. The generated diagram is

further verified against time and untimed properties using

UPPAAL and DiVinE model checkers. The DiVinE model

checker accelerates the verification speed and saves the

time for verification of large scale real-time industrial

applications.

In this paper, the formal semantics have been defined for

all nodes of activity diagram which are more useful to

precisely describe the functionality of RTS. A component

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
153

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

based case study of fuel filling machine is efficiently

specified using defined semantics and generated more

accurate activity diagram.

9. FUTURE WORK

In future, other SysML diagrams will be generated using

DC implementable based formal semantics and a tool will

be developed for specification and verification of user

requirements.

ACKNOWLEDGEMENT

Authors would like to acknowledge the technical support

provided by Research Centre for Modeling and

Simulation, National University of Science & Technology,

Islamabad, Pakistan, for implementing and running the

case study.

REFERENCES

[1] Object Modeling Group, “Specificaiton System Modeling

Language (OMG SysML)”, Object Modeling Group, June

2012. [Online]. Available: www.omgsysml.org/INCOSE-

OMGSysML-Tutorial-Final-090901.pdf. [Accessed 28

September 2014].

[2] Olderog, E.R., and Dierks, H., “Real-Time Systems -

Formal Specification and Automatic Verification”,

Cambridge University Press, New York, 2008.

[3] Rahim, M.A.B, Arif, F., Mehmood, R., and Ahmad, J.,

“Modeling and Validation of Real-time Systems”, Design

Automation of Embedded System, pp. 18,

November, 2014.

[4] Rahim, M.A.B., Ahmad, J., and Arif, F., “Parallel

verification of UML using DiVinE tool”, 5th

International Conference on Computer Science and

Information Technology, Amman, Jordan, 27-28 March,

2013.

[5] Rahim, M.A.B., Arif, F., and Ahmad, J., “Modeling of

Embedded System Using SysML and Its Parallel

Verification Using DiVinE Tool”, Computational Science

and Its Applications, Guimarães, pp. 541-555, Portugal,

Springer, July, 2014.

[6] Hansen, M.R., and Chaochen, Z., “Semantics and

Completeness of Duration Calculus”, Real-Time: Theory

in Practice, pp. 209-225, The Netherland, Springer

Berlin Heidelberg, June, 1992.

[7] Pandya, P.K., “Specifying and Deciding Quantified

Discrete-Time Duration Calculus Formulae using

DCVALID”, Proceedings of Real-Time Tools, Aalborg,

2000.

[8] Hansen M.R., Phan, A.D., and Brekling, A.W., “A

Practical Approach to Model Checking Duration Calculus

using Presburger Arithmetic”, Annals of Mathematics

and Artificial Intelligence, Volume 71, Nos. 1-3,

pp. 251-278, July, 2014.

[9] Guelev, D., and Hung, D.W., “Reasoning about QoS

Contracts in the Probabilistic Duration Calculus”, 5th

International Workshop on Formal Foundations of

Embedded Software and Component-Based Software

Architectures, Budapest, Hungary, June, 2010.

[10] Ouchani, S., Mohamed, O.A., and Debbabi, M., “A Formal

Verification Framework for SysML Activity Diagrams”,

Expert Systems with Applications, Volume 41, No. 6,

pp. 2713-2728, May, 2014.

[11] Ouchani, S., Mohamed, O.A., and Debbabi, M., “A

Security Risk Assessment Framework for SysML Activity

Diagrams”, IEEE 7th International Conference on

Software Security and Reliability, Gaithersburg, MD,

18-20 June, 2013.

[12] Ouchani, S., Mohamed, O.A., and Debbabi, M., “A

Property-Based Abstraction Framework for SysML

Activity Diagrams”, Knowledge-Based Systems,

Volume 56, pp. 328-343, 2014.

[13] Ouchani, S., “A Probabilistic Verification Framework

for SysML Activity Diagrams”, Proccedings of 11th

Conference on New Trends in Software Methodologies,

Tools and Techniques, Volume 24, pp. 108, 2012.

Mehran University Research Journal of Engineering & Technology, Volume 35, No. 1, January, 2016 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
154

Translating Activity Diagram from Duration Calculus for Modeling of Real-Time Systems and its Formal Verification using UPPAAL and DiVinE

[14] Rahim, M.A.B., Arif, F., and Ahmad, J., “Modeling of

Real-Time Embedded Systems using SysML and its

Verification using UPPAAL and DiVinE”, 5th IEEE

International Conference on Software Engineering and

Service Science, Beijing, China, June, 2014.

[15] Olderrod, E.R., and Dierks, H., “Real-Time Systems”,

Oldenburg, Cambridge University Press, 2008.

[16] Barnat, J., Brim, L., Havel, V., Havlíèek, J., Kriho, J.,
Lenèo, M., Roèkai, P., Štill, V., and Weiser, J., “DiVinE
3.0 - An Explicit-State Model Checker”, Computer Aided
Verification, pp. 863-868, Springer, 2013.

[17] Rahim, M.A.B.,, Arif, F., and Ahmad, J., “Parallel
Verificaiton of UML using DiVinE Tool”, 5th
International Conference on Computer Science and
Information Technology, Amman, Qatar, March, 2013.

