
VOML: A Framework for Modelling Virtual Organizations
and Virtual Breeding Environment

NOOR JEHAN RAJPER*, AND STEPHAN REIFF-MARGANIEC**

RECEIVED ON 17.04.2014 ACCEPTED ON 17.03.2015

ABSTRACT

This paper presents the VOML (Virtual Organization Modelling Language) framework. VOML is a
formal approach for specifying VOs (Virtual Organizations) and their VBEs (Virtual Breeding
Environments).The VOML framework allows domain users to model a system in terms of their domain
terminology and from that domain specific model IT community can derive a complete operational model
closer to underlying execution environment. The framework is a collection of three sub-languages, each
covering different aspects which are considered paramount at a particular level of VO representation.
We present VOML and its underlying methodological approach in detail and demonstrate how to model
VOs. Our focus will be on the methodological approach that VOML supports and on the language
primitives that VOML offers for modelling VOs.

Key Words: Virtual Organizations, Modelling Languages Received.

* Assistant Professor, Institute of Mathematics & Computer Science, University of Sindh, Jamshoro.
** Senior Lecturer, Department of Computer Science, University of Leicester, UK

1. INTRODUCTION

In frequently evolving business environments,
cooperation and collaboration of autonomous
partners to exploit or respond to emergent business

opportunities is becoming a norm. This trend is due to the
fact that it is not possible (or at least very costly) for most
of the organizations to have all the skills and resources
that might be needed in the future due to changing
business context. Therefore, it is becoming a prerequisite
for the survival of the organizations to cooperate and
collaborate with other organizations in order to make-up
for missing skills and resources, venture into new emergent
domains or to compete with rival giant corporations. This
collaboration is only possible if the organizations are
flexible enough to evolve and adapt [1-8]. To cater for
these demands the concept of VOs has emerged. VOs are

ensembles that are dynamically created by sharing a
number of resources in a distributed way to provide high-
level functionalities, or services. A WBE is the
organizational context in which VOs are created and
operate. It lays down basic long-term agreements of
cooperation among its participants (individuals or
institutions) and characterizes the interoperable
infrastructure used by the participants.

Formal models of a VO provide unambiguous description
of VOs and the capability to reason about core aspects;
which aids in understanding the behavior of VOs as well.
Hence, there is a need to have a formal modelling language
for VOs [9]. Different methodologies, paradigms, languages
and architectures have been put forward in the recent years

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
221

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
222

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

to tackle such challenges. However, most solutions focus
one particular aspect of the problem and fail to
accommodate the problem as a whole. Some efforts have
been made at describing formal models of VOs which aim
at representing and evaluating different characteristics of
VOs using a rigorous modeling language, (what is called a
structural model in this paper). Analysis and evaluation at
this rigorous level demands more pragmatic descriptions
of the model stripped away leading to model description
that is not readily executable on the underlying execution
environment. More concrete counterparts of the rigorously
analyzed and verified models are usually derived manually.
These concrete counterparts, (named operational models
in our paper) describe in detail the coordination and
communication aspect closer to IT community. This has
usually lead to the introduction of discrepancies in the
executable model and there is no systematic approach to
assure that the abstract rigorous model and the underlying
execution model are actually different views of the same
system. This problem is compounded when the system
represented by the model undergoes frequent
reconfigurations during its execution.

So far there has not been any effort towards developing
a richer and more expressible language which could not
only express structurally adaptable dimension of VOs,
but simultaneously their functional dimension. We have
attempted to fill this gap with a consolidated modeling
framework which besides paving the way for different
kinds of analysis and evaluation, not only encompasses
structural and functional dimensions but allows
generating (semi-)automatically more concrete functional
models from abstract structural models. The systematic
generation of functional models out of structural models
provides consistency and conformance between the two
models of the same system. This paper presents
languages for formal specification of VOs at a level which
not only covers domain concepts abstractly but also
captures the functionality (service) offered by the VO;

which other specification languages such as [10-11] fail
to capture. The domain specific constructs pave the way
for VO models to easily adapt to the changing
circumstances dynamically. Specifically, there are three
different modelling languages each capturing a different
aspect of VO. The first language named VO-Structural
modelling language (VO-S for short) focuses on structural
aspects and many of the characteristics peculiar to VOs
such as relationship between two members, etc. The
second language permits different reconfigurations on
the structure of the VO. These reconfigurations change
the core model itself. This language is called the VO-
Reconfiguration (VO-R for short). The third language
named VO-Operational modelling language (VO-O for
short) describes operational models of VOs in more
details, out of VO-S model.

Overview: In Section 2, a review is given related to work
on VO modelling languages. Section 3 presents the
methodological approach that the VOML framework has
taken. In Section 4, the Structural modelling language
(VO-S) has been introduced, and in Section 5 a discussion
about operational modelling language (VO-O) is
provided. Section 6 shows how VO-S is mapped to VO-
O. Finally, Section 7 presents some conclusion and future
work.

2. RELATED WORK

This work is related to [9] as it also focuses on modelling
of VOs which are termed 'dynamic coalition' there. Dynamic
coalitions are modelled using the VMD (Vienna
Development Method) specification language [12] in which
a VO specification consists of specific choices made in
five orthogonal dimensions including membership,
information representation, provenance, time and trust.
The specific choices made in each dimension gives rise to
VOs with unique properties. The analysis and verification
of these unique properties is the main purpose of the [9].
Our work on the other hand we have developed a modelling

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
223

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

language for VBEs and VOs that incorporate domain
notions and concepts as first class entities.

In [13] Agent Technology is used to capture VO notion
by modelling VOs as system of cooperating agents.
Whereas, we aim to develop a modelling language which
is agnostic to any specific platform and technology. In
[13] reconfiguration is limited to replacing one agent
with another one having exact same behavior and
capabilities, we on the other hand allow for dividing or
sharing a task between members each having different
behavior and capabilities but collectively equivalent to
the task being shared. This is captured in the definition
of tasks.

The field of dynamic adaptability can also be related to
our work in general [14]. ASSL [10-11] is one such work
that allows for dynamically adapting an autonomous
system. However, business level requirements are
abstracted away in the ASSL specification. We believe
that business level requirements have an immense effect
on the overall system (VO), in particular at the operational
level. Our structural modelling language is able to capture
these effects and helps direct its operational model (VO-
O). Therefore, our modelling language provides constructs
that on the one hand precisely describe a VO with enough
abstraction that allow to easily restructure VO and on the
other hand provides a complete operational model
capturing the business level details.

3. VOML METHODOLOGY

Most modelling languages are dedicated to either the
application aspect of the system i.e the actual goal or
service (specification of business functionality) offered
by the system, or the coordination and communication
model close to the underlying execution environment. The
advantage gained by this separation of concerns is the
achieved simplicity which divides the complexity into easily
manageable chunks. However, there are disadvantages as

well; especially for domains where adaptability demands
are so high that they require adaptations which change
the core operational model of the VO itself. When the
domain model and the reconfigurations (adaptations) that
it may undergo are defined separately to its operational
model (business functionality) then quite often both
models cannot be easily combined in our experience. Any
restructuring (reconfiguration) which adds something new,
modifies or deletes something from the system does
change the coordination and communication model
representing the business aspect. Consider a scenario in
which a VO demands a certain level of resource stock for
some task; at the domain level (abstract level) of modelling
it is just a matter of adding more than one member using a
construct equivalent to an Add operation. What is usually
left untouched is that at the operational level it is not just
the matter of a simple Add operation. The implications are
that now more than one member needs to be communicated
with, which implies addition of some coordination,
communication and possible computation operations and
a possible increase in the number of components or other
concrete entities representing the elements of the
underlying execution paradigm. A model describing the
domain is abstract enough to give it the flexibility of making
changes at the structural level; but fails to capture how
these reconfigurations are reflected at the operational
level. On the other hand the language which covers the
operational aspects for particular application is able to
define its process in concrete details such that it can readily
be realized; but it comes at the cost of loosing the ability
to reconfiguring itself dynamically; hence is inconsistent
with its domain model's reconfigurations. In order to reduce
complexity by adapting separation of concerns concept
and at the same time to ensure that models focusing on
different dimensions of the same system remain consistent
VOML takes the incremental approach. First of all it defines
different levels of representation for the VBE; each level
focusing on particular aspects of the VBE and its VOs,
and with each level being supported by an appropriate

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
224

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

language. Our approach [15] supports the definition of a
structural and behavioral model of a fixed VBE based on
three different levels of representation: (1) the definition
of the persistent functionalities of the VBE; (2) the
definition of the transient functionalities of the VOs that
are offered by the VBE at a specific moment in time (a
business configuration of the VBE) and (3) the ensemble
of components (instances) and connectors that, at that
time, deliver the services offered by the VOs present in
the business configuration (a state configuration). The
first level is invariant, i.e. it provides a representation of
those aspects of a VBE that will not change; the business
configuration at the level below captures the way the VBE
is logically organized at that time in terms of VOs; the
state configuration represents the actual `physical
instances' of the VOs that are currently operational, i.e.
which specific services are currently being provided within
the VBE. These different levels of representation then
enable us to focus on different dimensions of VO at each
level individually. For example at the business level we
talk about the concepts which are specific to VOs
irrespective of the functionality VOs offer. This dimension
is captured through the VO-S (Structural Language). At
this level we are also able to talk about the adaptability
needs of VOs in general; we cover this dimension through
our VO-R (Reconfiguration Language), which we are going
to explore in the sequel. At the state configuration level
we focus on the business functionality offered by any
VO, in sufficient detail to allow for ready execution. We
have developed VO (Operational Language) for describing

this business functionality. Models at this level are derived
from the information available in the VO-S models. One
particular structural configuration of the VO model gives
way to a set of its operational (instance level)
configurations. Changing the structural model through
reconfiguration might invalidate some or all of different
operational configurations possible from the previous
structural model and allow for new set of valid operational
configurations. This situation is shown in Fig. 1 [16].

Where M1, M2 and M3 represent structural models
designed by domain experts who are proficient in their
area but usually have no IT background. Therefore, VO-S
language designed for domain experts at this level
accommodates VO and VBE domain concepts as language
constructs. Based on the structural description of a VO at
that time, a more concrete level description of that VO can
be generated in VO-O language. The VO-O model is
represented through titles such as IM1.1 in Fig. 1, where
IM stands for "Instance Model" and the first "1" in 1.1
refers to VO-S model named "M1" and the second "1"
points to concrete instance named "1" of VO-O which
conform to current configurations laid out at VO-S level
model M1. The arrows between instance models represent
reconfiguring one VO-O model to another VO-O model
that is permitted by the current configurations at the VO-
S level and the arrows between VO-S level and VO-O level
models signify the different VO-O reconfigurations
permitted by current VO-S model. Likewise, arrows
between VO-S level models represent the reconfigurations

FIG. 1. VOML METHODOLOGY [16]

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
225

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

at the structural level reconfiguration. Structural level
reconfigurations invalidate set of VO-O level
reconfigurations that were permitted in the previous VO-S
setting and offers whole new VO-O reconfiguration set
that conforms to the new VO-S model, such as VO-S model
configuration M1 permits three different VO-O level
configurations namely IM1.1, IM1.2 and IM1.3 but, once
M1 is evolved to M2 then the VO-O level configurations
are IM2.1 and IM2.2.

4. VO STRUCTURAL LANGUAGE

The VO-S (Structural Modelling Language) defines the
basic structure of the VO, its constituent elements, abstract
process, and other details which define the essential
structure of the VO and provide the basis for its
operational models. The VO structural model consists of
five basic elements: (1) Members, (2) Process, (3) Tasks,
(4) VBE resource and (5) Data-Flow. We will discuss these
in more detail next.

4.1 Members

We differentiate between three types of membership to
VBE/VO as follow:

(i) A Partner is one who is permanent member of the
VBE.

(ii) An Associate is one who is not a permanent
(transient) member of the VBE, but rather has
temporarily joined the VBE based on demands of
some VO which requires some capability for
which there is currently no member available on
the VBE.

(iii) An ExtEntity is one which is neither a permanent
nor a transient member of the VBE.External
entities are transient members of VO and are
discovered each time a VO launches a new
instance; they leave the VO when the instance
finishes its life.

Partners and associates are provided by the VBE to a VO
and at the VO level they are permanent members of the
VO. A permanent member of a VO exists beyond a single
instantiation of its operational model; whereas external
entities are discovered from the open universe. An excerpt
for members description in VO-S is given in Fig. 2. In this
example one partner named partnerX is involved in task
named TourGuide and partnerY is assigned subtask hotel.
An associate named associateA is performing the task
FlightBooking.

4.2 Process

This element describes the workflow which leads to
meeting the requirements of the customer of VO at the
highest level of abstraction. It lists only those tasks that
contribute towards achieving the goals of the VO. The
other tasks on which the main tasks of the VO depend
are specified by the tasks themselves in their supported
by attribute. An excerpt given in Fig. 3 specifies a sample
process in VO-S. The process description in Fig. 3
consists one of the VBE resources UsrDB and three
tasks. The control flow between tasks is parallel and
sequential (indicated by the leads to keyword) between
VBE resource and the tasks.

Process

{

useAset (UsrDB) leadsToSatisfyTasks(Flight Booking,

Hotel&Transport Book, TourGuide)

}

FIG. 3. VO-S PROCESS SPECIFICATION

Members
Partner ParnerX

{performsTask :Tour Guide}
ParnerParnerY

{performsTask :Hotel&Trasnport.hotel}
Associate AssociateA

{PerformsTaks :Flight Booking}

FIG. 2. VO-S MEMBER DESCRIPTION

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
226

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

4.3 Task

We have put task specifications at the centre of our
specification methodology; because this is where it is
defined what service(s) is required by the VO from its
members. The task requirements shape the behavior and
competencies expected from the member who is going to
perform the task, hence they control the VO membership.
It is also the task description which helps in deciding the
kind of restructuring that a task and hence a VO can
undergo, having effects ranging from VO topology to
member relationships. We are going to explain each of the
above in detail next. Fig. 4(a) introduces an example task
described using VO-S, as a reference example. Tasks are
divided into two parts; one pertaining to the domain of
the VO and the other pertaining to the actual business
goal, respectively called STRUCTURE and BUSINESS
FUNCTIONALITY. The STRUCTURE part provides
primitives that describe VOs in terms of the concepts that
are relevant at the domain level irrespective of the business
functionality that is being offered by the task. This
description also adds the flexibility to the VO to adapt to
the changing environments through reconfigurations. The
STRUCTURE part is further divided into TaskScope and
ConfScope. TaskScope attributes provide a domain of
discourse of configurations that a VO can undergo while
conforming to the model description. It is the ConfScope
part whose attributes decide exactly which configuration
(from the domain of discourse) the VO is currently in.
Consider the example of the allowed Members attribute in
the TaskScope category. The value of this attribute
specifies the maximum number of members a particular
task can be shared by. At the operational model level this
task can be performed by one participant in one
configuration, two in another configuration, up to the value
specified in the allowedMembers attribute in some other
configuration. The current Members attribute of
ConfScope keeps track of exactly how many members are
involved in the configuration at that particular moment in
time. The BUSINESS FUNCTIONALITY part of task

description consists of what the task is actually offering
in terms of the business functionality. This part is mapped
to the business protocol at the VO-O level which is
discussed further in Sections 5 and 6. Elements of
paramount importance of STRUCTURE part are further
explained below:

Competency: Each task expects a certain set of capabilities
that the VO members performing the task must possess.
These capabilities are listed under the keyword
Competency which list one or more capabilities required
by the task. A Capability lists one or more resources it
depends on and the capacity shows required quantity of
that capability. VO-S uses this concept to allow a task to
be shared by more than one member, which is explained in
more detail while describing the task types.

Task Types: The two most common purposes suggested
behind the formation of virtual organizations are (a) some
entity (organization) posses some of the capabilities
necessary to perform the task at hand but lacks a few i.e.
it falls short of some others; and (2) an entity has all the
capabilities required but lacks the required
capacity(usually the case with SMEs (Small and Medium
Organizations) competing for large jobs). VO-S offers
provisions for such requirements by offering following
three types tasks:

(i) AtomicTask: An AtomicTask is a task that must
be performed by only one member. Any
configuration of the VO which associates more
than one member for this task is considered
invalid.

(ii) ReplicableTask: A ReplicableTask is one for which
it is permissible to add more than one member if
need be. For example if there are two members
who both are eligible to carry out the task, but
both of them fall short of the amount of resources
required (specified through the capacity
attribute),then they can perform the task

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
227

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

collectively. Note that all the members are equally
capable of carrying out the task individually; it is
the amount (capacity) of resources required
which forces them to cooperate.

(iii) ComposableTask: A ComposableTask can be
performed by more than one members; here the

criteria are a capability shortage of the members
rather than the capacity. The task is actually
divided into two or more different subtasks and
each subtask can be performed by different
member(s). Fig.4(b) shows a ComposableTask
which has been divided into two subtasks (hotel
and transport).

ComposableTask Hotel&Transport
STRUCTURE

TaskScope{
performedBy : Partner
allowedMembers : 3
allowedSubTasks : 2

}
ConfScope {

currentMembers : 1
currentState : atomic

}
Competency{

CapabilityroomReservation
{

resource:hotel.room
capacity : {totalRooms: 50}

}
CapabilitylocalTransport

{
resource: vehicle

capacity :{totalVehicles: 50}
}
}

BUSINESS FUNCTIONALITY
request:

from, to : location
checkin, checkout : date

name :usrData
reply:

amount :moneyValue
roomReservation.hconf :hcode
localTransport.taxiInfo: tCode

ComposableTask Hotel&Transport
STRUCTURE

TaskScope{
performedBy : Partner
allowedMembers : 3
allowedSubTasks : 2

subTaskFlow: sequential
}

ConfScope {
currentMembers : 2

currentState : composed
currentSubTaks: hotel,

transport
}

Competency{
CapabilityroomReservation

{
resource:hotel.room

 capacity : {totalRooms: 50}
 } CapabilitylocalTransport

{
resource: vehicle

capacity :{totalVehicles: 50}
}
}

AtomicTaskhotel{
STRUCTURE

TaskScope
{competencies: roomReservation}

}
ConfScope {}

}
AtomicTasktransport{

STRUCTURE
TaskScope

{competencies: localTransport}
}

ConfScope {}
}

BUSINESS FUNCTIONALITY

FIG. 4(a). VO-S COMPOSABLETASK IN ATOMIC STATE FIG. 4(b). VO-S COMPOSABLETASK IN COMPOSED STATE

FIG. 4. A VO-S COMPOSTABLE TASK DESCRIPTION

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
228

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

Relationship between Members: In situations where more
than one member VO is responsible for a task; a relationship
between those members is implied. This element also has
an effect on the workflow of the virtual organization. The
relationship between members performing the same task
can be of the type cooperation, but the members could
also be competitors, based on the business demands. The
relationship attribute of the task is used to describe the
exact relationship between all the members who are sharing
the responsibility of the same task. Cooperation
relationship expresses that all the members are required
for the task to satisfy its goal. An example of this could be
the task of supplying the catalyst for a VO. If the quantity
demanded by the customer is 500kg, and each member is
committed to provide 250kg then the customer's demand
is satisfied by providing 250kg from one member and 250Kg
from the other member.

Competition(comp-param) is a relationship where members
compete. Considering the same example now if the customer
demands just 250Kg of catalyst then both members are
able to satisfy the demands. If the members are in a
competition relationship then all the members will bid for
that business opportunity.

The criteria over which bidding is performed are specified
through the comp-param. For example if the comp-param
is cost then the bidder with the lowest cost offer will be
selected.

4.4 VBEresource

Besides tasks that are carried out by partners and
associates, a VO might need other basic resources that
are offered by the VBE. These are represented with the
VBEresource keyword by VO-S. What differentiates
between tasks and VBE resources is that VBE resources
are made available to all the VOs of the VBE. Any VO can
use them but can not specify criteria over the VBE
resources. They are considered to be always available. At

the VO-O level they are mapped to the layer protocol which
effectively assumes those assets are persistent entities.
The VO-S description for a VBEresource consists only of
the BUSINESS FUNCTIONALITY part as a VO does not
have any control over it and it cannot specify any other
criteria over it as well.

4.5 Business Functionality

This part consists of all the data required at the operational
level for the functionality (service) to be carried out. It is
divided into two parts Request and Reply. The Request
part lists all the data which is required by the member who
is performing the task and the Reply part is the data
provided by the member to the VO once the task has been
performed. Each data item can be prefixed by a capability
name as well. This helps in associating the data item with
the corresponding subtask, in case the task is divided.
Data items which are not prefixed with any capability name
are associated with all subtasks. Let's assume there is a
composable task named Hotel&Transport in some VBE
which provides two services: a hotel booking service and
a transport provision service. This task has two data items
called hconf which can be thought of as a receipt for
booking the hotel and taxiInfo which is the receipt for
transport booking. But when this task is divided into two
subtasks one which books the hotel and the other which
books the transport; it is clear that hconf must be part of
the hotel booking subtask and taxiInfo be part of the
transport booking subtasks. Both of the parameters are
useless for the other subtask, so they must not be part of
their BUSINESS FUNCTIONALITY. This is achieved by
prefixing the parameter hconf with the roomReservation
capability and the taxiInfo with the local Transport
Provision capability in the BUSINESS FUNCTIONALITY
part.

This concept has the added advantage of getting the
flexibility of describing at run-time the number of subtasks
a composable task can be divided into, rather than fixing
the number and structure of subtasks at design time.

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
229

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

4.6 Data-Flow

Data-Flow specifies the relationship between data items
in such a way that it helps in realizing concrete
orchestrations, transitions and wires in operational
model. It consists of one or more sentences as shown
in Fig. 5. In this example a data item named ‘to’ from the
customer is assigned to the corresponding data items
of three tasks named Hotel&Transport, TourGuide and
FlightBooking.

5. VO-O LANGUAGE

For the operational model we realized that another language
already developed by our colleagues could meet most of
the needs of the VO-O with minor extension and
adaptation. This language is called SRML (Sensoria
Reference Modelling Language) [17] which is aimed at
service oriented systems. We will return to discuss the
differences after defining the concepts used for VOs, as
we can then refer to them while highlighting key differences
between SRML and VO-O.

5.1 VO Module

A VO is defined by a ̀ VO module' at VO-O level; it consists
of:

(i) Component specifications that are used in state
configurations as serves interfaces for the VO-S
tasks performed by the partners and associates),
or uses-interfaces to VBEresources involved in
the VO.

(ii) Component specifications that are used as
requires-interfaces for ExtEntity(external
entities) or as the provides-interface for the

customer of the VO. The specification of
requires-interfaces identifies the behavioral
properties that are expected of external parties
to be eligible to be chosen as ExtEntity (service
providers) for the VO. The specification of the
provides-interface identifies the properties that
customers can expect of the service offered by
the VO-module.

(iii) Specifications of the components and wires that
model the (possibly distributed) process that
orchestrates the services provided by the VO.

(iv) An internal configuration policy, which identifies
the triggers of the discovery process for the
ExtEntity.

(v) An external configuration policy, which consists
of the competency constraints that determine the
quality profile to which the external entities need
to adhere.

VO-modules are design primitives that define patterns that
can be reused in the definition of multiple VBE business
configurations. We use a graphical notation to depict VO-
modules as illustrated in Fig. 6 for a VO named travelBK.
In order to account for the behavior that emerges from the
interconnections established inside the ensembles that
deliver services through VOs, we need a uniform
representation of the entities and resources involved, which
in our approach we do in terms of component and wire
specifications. A component specification is a pair
<signature, behavior> where:

(i) Signature declares the interactions in which the
component may be involved.

(ii) Behavior is a formal model of the behavior of the
entity that the component represents expressed

Costomer.to ==> Hotel&Transport.to,

Flight Booking.to, Tour Guide.to

FIG. 5. VO-S PROCESS DESCRIPTION

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
230

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

in terms of the interactions identified in the
signature and a number of parameters that reflect
resource consumption or quality-of-service
attributes.

Given the space available, we are not able to define in

detail the formalisms that we use in component

specifications (these are similar to those proposed for the

SRML (Service Modelling Language) [17]). Fig. 7 shows a

VO-O description of provides-interface of some VO, which

is of type Customer. This specification is what we call a

business protocol: it uses patterns of typical business

conversations, which are abbreviations of sentences of a

temporal logic that we have adapted from SRML [17].

In the formalism that we adopt, interactions can be either
synchronous or asynchronous, one-way or two-way (i.e.
conversational); Table 1 summarizes the options. In our
example, the interface that the VO offers to its customers
specifies that the VO can engage in the interaction
bookTrip (initiated by the customer). Interactions of type

r&s
The interaction is initiated by the co-party, which

expects a reply. The co-party does not block
while waiting for the reply.

s&r
The interaction is initiated by the party and expects a

reply from its co-party. While waiting for the
 reply, the party does not block.

rcv The co-party initiates the interaction and
 does not expect a reply.

snd The party initiates the interaction and does
 not expect a reply.

ask The party synchronizes with the co-party to
 obtain data.

rpl The party synchronizes with the co-party to
 transmit data.

tll The party requests the co-party to perform an
operation and blocks.

prf The party performs an operation and frees
 the co-party that request it.

TABLE 1. INTERACTION TYPES

Interaction  The event of initiating interaction.

Interaction  The reply-event of interaction

TABLE 2. CONVERSATIONAL INTERACTIONS

FIG. 6. THE VO MODULE, TRAVELBK [17]

r&s and s&r are conversational in the sense that they
expect a reply from the receiving party.

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
231

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

Events can have several parameters (for instance, the
initiation event bookTrip carries data about airports
and dates), and the corresponding reply event
bookTrip carries reservation codes for the flight and
the hotel. These events are used as atomic formulae in the
language that we use to specify the properties that a
customer can expect from the service. For instance, the
first property specifies that the VO is ready to receive the
initiation event of bookTrip. The declaration of the
interactions in a signature is local to the component, i.e.
all interaction names are local. This implies that there are
no implicit relationships between components that result
from the accidental use of the same name: all
interconnections are externalized instead in what we call
'wires'. A wire defines a connector through which two
components can be interconnected so that they can
interact identical to their role in SRML.

Differences between VO-O and SRML: As indicated,
VO-O is based on SRML, but there are some key
differences. For a start, (a) in SRML all the members
(service providers) are transient in the sense that each
time a new instance is triggered (when new customer comes
in) all the members are discovered and bounded to the
instance; once the instance has served its goal all the
members' association gets terminated as well. For VOs we
considers two types of members (a) those whose
membership with VO goes beyond single instantiation -

persistent ones; and (2) those whose membership is only
limited to the single instantiation (same as SRML service
providers) - transient ones. (b) In VO-O partners and
associates sit at the `top-end' of the module, but their
behavior is defined using Business Protocol ; SRML uses
Layer Protocol for ̀ top-end' entities.(c) In VO-O entities at
the ̀ bottom-end' of a module still represent resources but
those resources are provided by the VBE only.
VBEresource use layer protocol just as in SRML. (d) In
VO-O partners and associates are assumed to be already
available and hence the external configuration policies of
SRML for members are not part of the business protocol.
(e) In SRML conversational interactions consists of five
events request, reply, commit, cancel and revoke whereas
VO-O has limited those events only to request and reply
as VO members are obliged to provide what they have
promised (part of the member definition) so rest of the
events are not needed.

6. MAPPING VO-S (DOMAIN)
MODEL TO VO-O (BUSINESS)
MODEL

Consistency between different models representing
specific dimensions of the same system is paramount. One
of the contributions of this paper is to provide such
consistency with the help of mappings which relate some
piece of information available at one model to another
model. These mappings help in automatically generating
the basic skeleton of the VO-O model from VO-S model.
Due to space constraints we are only going to discuss
how an AtomicTask at VO-S level is mapped to a business
protocol at the VO-O level, as this is seen as one of the
most interesting happenings due to the centrality of task.
Fig. 8 shows VO-S description of an atomic task; this VO-
S description gets mapped to VO-O description of Fig. 9
description.

Recall that the VO-O language focuses on the operational
dimension, the business protocol only talks about the

Business Protocol Customer is
Interactions

s&r bookTrip
from, to: airport

out, in : date
traveler :userdata

Reply:
fconf :fcoded

Behavior
InitiallyEnbabled bookTrip?

bookTrip? Ensures bookTrip!

FIG. 7. BUSINESS PROTOCOL DESCRIPTION IN VO-O

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
232

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

BUSINESS FUNCTIONALITY part of the VO-S task
description. A business protocol specification mainly
consists of signature and behavior pair.

Interaction Part: Though BUSINESS FUNCTIONALITY
can be divided into more than one interaction at the VO-O
level (provided the union of all the parameters of all the
requesting and replying interactions is the same as the
data items of the BUSINESS FUNCTIONALITY's Request
and Reply parts, this examples looks at a case where the
whole BUSINESS FUNCTIONALITY is replaced by one
conversational interaction at the VO-O level and each part
of BUSINESS FUNCTIONALITY in turn becomes a
corresponding event of the interaction at the VO-O level.
The name of the interaction starts with the name of the
task, followed by hyphen symbol, then appending the

word "interaction". A bell symbol is appended before the
request (instantiation) parameters and an envelope symbol
is appended before the reply parameters.

The VO customer is one, on whose request the VO is
created. The rest of the parties only become involved
after the creation. This means that all the parties involved
in the VO are passive, except the customer of the VO.
This fact is the underlying argument for considering the
interactions (of every component) of type r&s and of
type s&r for the customer. Behavior part. The Behavioral
part always starts with the initiallyEnabled keyword which
lists the first communication that the business protocol
is going to receive or send. In VO-O '?' symbolizes the
processing of the interaction and '!' symbolizes the
triggering of the interaction. The task's first interaction
is always triggered by some entity external to the task,
hence ̀ ?' is appended at the end of the interaction name,
which implies that the member is waiting for the
communication to get triggered. initiallyEnabled is always
followed by the initiation event of first interaction
(usually the only interaction). All the business protocols
representing member's tasks wait for their first interaction
to get triggered hence a ?is appended at the end of the
interaction name. The next line in the given example
ensures that once the instantiation event of the
interaction has been received by the member, it is
guaranteed that the member will send its reply.

7. CONCLUSIONS

In this paper we put forward a new and promising modelling
language for VO-VOML. It is a compendium of
sublanguages each focusing on a particular dimension
(here the domain and business levels) of VOs at a particular
level of its representation. Through these sublanguages
VOML exposes an incremental approach where domain
level details are defined in isolation of the functionality at
the business configuration level using the VO-S language,

FIG. 8. VO-S ATOMICTASK DESCRIPTION

AtomicTask Flightbooking
Structure

…
Business Functionality

Request:
from, to: airport

out, in : date
traveler :userdata

Reply:
fconf :fcoded

Business Protocol Flightbookingis
Interactions

S&R lockFlight
from, to: airport

out, in : date
traveler :userdata

Reply:
fconf :fcoded

Behavior
InitiallyEnbabled lockFlight?

bookTrip? Ensures lockFlight !

FIG. 9. VO-O BUSINESS PROTOCOL DESCRIPTION

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
233

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

but at the same time provides enough details that allow
the specification of a corresponding and consistent
operational model using the VO-O language at its state
configuration level. A third language, concerned with
reconfigurations at the structural and operational level
will complete the picture. The formally defined models will
allow for quantitative and qualitative analysis that can
help in making decisions for the creation, evolution or
termination of VOs (besides business motives), for
instance by supporting stochastic analysis on the usage
that VOs can make of VBE resources or validation of
functional properties that VOs offer through services. We
are also investigating tools for VOML, mainly a compiler
to automatically generate VO-O skeletons from VO-S
descriptions.

ACKNOWLEDGEMENT

Authors would like to thanks University of Leicester, UK,
for providing facilities and technical support to complish
this study.

REFERENCES

[1] Camarinhamatos, L.M., Silveri, I., Afsarmanesh, H., and

Oliveira, A.I., "Towards a Framework for Creation of

Dynamic Virtual Organizations" 6thIFIP Working

Conference on Virtual Enterprises, Camarinhamatos,

L.M., et.al. (Editors), Volume 186, pp. 26-28, Springer,

2005.

[2] Cummings, J., Finholt, T., Foster, I., and Kesselman, C.,

"Beyond being There: A Blueprint for Advancing the

Design, Development, and Evaluation of Virtual

Organizations". Technical Report, Final Report from

Workshops on Building Effective Virtual

Organizations,2008.

[3] Foster, I., "The Anatomy of the Grid: Enabling Scalable

Virtual Organizations", International Journal on High

Performance Computing Applications, Volume 15, No.

3, pp. 200-222, USA, 2001.

[4] Mamarinhamatos, L.M., Afsarmanesh, H., and Ollus,

M.,(Editors), "Virtual Organizations Systems and

Practices", Springer, 2005.

[5] Esposito, E., and Pietro, E., "Investigating Virtual

Enterprise Models: Literature Review and Empirical

Findings", International Journal of Production

Economics, Volume 148, pp. 145-157,Elsevier, 2014.

[6] Noran, O., "Collaborative Disaster Management: An

Interdisciplinary Approach", Computers in Industry,

Volume 65, No. 6, pp. 1032-1040, Elsevier, 2014.

[7] Coates, K., and Kimberly, F., "A Case for Collaborative

Networks for Clinical Nurse Educators", Nurse Education

Today, Volume 34, No. 1, pp. 6-10, Elsevier, 2014.

[8] Ovidiu, N., "Collaborative Networks in the Tertiary

Education Industry Sector: A Case Study", International

Journal of Computer Integrated Manufacturing, Volume

26, pp. 29-40, Taylor & Francis, 2013.

[9] Bryans, J., Fitzgerald, J., Jones, C., and Mozolevsky, I.,

"Formal Modelling of Dynamic Coalitions, with an

Application in Chemical Engineering", IEEE

2ndInternational Symposium on Leveraging

Applications of Formal Methods, Verification and

Validation, pp. 91-98,Cyprus, 2006.

[10] Vassev, E., and Hinchey, M., "ASSL: A Software

Engineering Approach to Autonomic Computing", IEEE

Computer, Volume 42, No. 6, pp.90-93, 2009.

[11] Vassev, E., and Paquet, J., "ASSL - Autonomic System

Specification Language", IEE Software Engineering

Workshop, pp. 300-309, 2007.

[12] Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., and

Verhoef, M., "Validated Designs for Object-Oriented

Systems", Springer-Verlag TELOS, Santa Clara, CA,

USA, 2005.

[13] Norman, T.J., Preece, A., Jennings, N.R., Luck, M., Dang,

V.D., Nguyen, T.D., Deora, V., Shao, J., Gray, W.A., and

Fiddian, N.J., "Agent-Based Formation of Virtual

Organizations", Knowledge Based Systems, Volume 17,

pp. 103-111, UK, 2004.

Mehran University Research Journal of Engineering & Technology, Volume 34, No. 3, July, 2015 [ISSN 0254-7821]
234

VOML: A Framework for Modelling Virtual Organizations and Virtual Breeding Environment

[14] DiMarzo, S.G., Fitzgerald, J., Romanovsky, A., and Guel,
N., "A Metadatabased Architectural Model for
Dynamically Resilient Systems", Proceedings of ACM
Symposium on Applied Computing. pp. 566-572, ACM,
New York, USA, 2007.

[15] Laura, B., Jose, F.N.R., and Reiff-Marganiec, S., "Structure
and Behaviour of Virtual Organization Breeding
Environments", EPTCS, Volume 16, pp. 26-40, 2010.

[16] Rajper, N.J., "Virtual Organization Modelling Languages",

Ph.D. Thesis, 2012, http://hdl.handle.net/2381/10942.

[17] Fiadeiro, J.L., Lopes, A., and Bocchi, L., "A Formal

Approach to Service Component Architecture",

Proceedings of 3rd International Conference on Web

Services and Formal Methods, pp.193-213, Vienna,

Austria, Springer, 2006.

	221
	222
	223
	224
	225
	226
	227
	228
	229
	231
	232
	233
	234

