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ABSTRACT

Subdivision schemes are famous for the generation of smooth curves and surfaces in CAGD (Computer

Aided Geometric Design). The continuity is an important property of subdivision schemes. Subdivision

schemes having high continuity are always required for geometric modeling. Probability distribution is

the branch of statistics which is used to find the probability of an event. We use probability distribution in

the field of subdivision schemes. In this paper, a simplest way is introduced to increase the continuity of

subdivision schemes. A family of binary approximating subdivision schemes with probability parameter

p is constructed by using binomial probability generating function. We have derived some family members

and analyzed the important properties such as continuity, Holder regularity, degree of generation, degree

of reproduction and limit stencils. It is observed that, when the probability parameter p = 1/2, the family

of subdivision schemes have maximum continuity, generation degree and Holder regularity. Comparison

shows that our proposed family has high continuity as compare to the existing subdivision schemes. The

proposed family also preserves the shape preserving property such as convexity preservation. Subdivision

schemes give negatively skewed, normal and positively skewed behavior on convex data due to the probability

parameter. Visual performances of the family are also presented.

Key Words: Binary, Approximating Subdivision Schemes, Binomial Distribution, Continuity Analysis,

Convexity Preservation.

C
AGD concerns with the mathematical

description of shape for use in computer

graphics. Subdivision schemes are iterative

formulas for generation of smooth curves and surfaces.

They give effective approaches to generate smooth

curves and surfaces from discrete arrangement of control

points.

1. INTRODUCTION

Initially, De Rham [1] gave the idea of CAGD with

geometry. After that Chaikin [2] introduced a procedure

to generate curves from limited number of points. This

algorithm was one of the first refinement algorithms to

generate curves. Dyn et. al. [3] presented a subdivision

scheme with tension parameter which is C1 continuous

for a certain range of parameter. Mustafa and Liu [4]

presented a new solid parametric subdivision scheme.
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Mustafa et. al. [5] proposed and analyzed the m-point

binary approximating parametric subdivision scheme and

compared the proposed scheme with existing schemes.

Ghaffar and Mustafa [6] introduced new families of

subdivision schemes for curve design. Mustafa et. al. [7]

presented a family of (2n-1)-point binary approximating

subdivision schemes with free parameters for describing

curves. Ashraf et. al. [8] presented a new family of

subdivision schemes by using a variant of Lane-

Riesenfeld algorithm.

Cao and Tan [9] presented and analyzed the important

properties of new 5-point relaxed subdivision scheme.

Their scheme produce C2 limit curve when .
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Mustafa et. al. [10] presented a proof of 6-point scheme.

They said that the scheme produce C2 and C3 limit curve

when  w[0,0425], and w[0.0139, 0.0143], respectively.

Bari et. al. [11] presented shape preserving subdivision

schemes. Siddiqi and Noreen [12] presented the convexity

preserving property of 6-point ternary interpolating

subdivision scheme with the tension parameter. Tan et.

al. [13] also discussed the convexity preserving property

of 5-point binary scheme.

Zheng et. al. [14] presented a technique to increase the

continuity of any subdivision scheme. They multiply the

symbol of the scheme with (1+z/2)k factor to get Cn+k

continuous subdivision schemes. But the technique used

by them increase the complexity of the scheme. In this

paper, we have presented a way to introduce a new family

of subdivision schemes. Our technique is based on

probability generating function of Binomial probability

distribution. By using this technique one can able to

increase the continuity, Holder regularity, degree of

generation, degree of reproduction of any subdivision

scheme without increasing the complexity of the scheme.

Probability is the chance of occurrence. A variable that

shows the probabilities as the outcome of an experiment

is called random variable. A list of probabilities associated

to each value of random variable is called probability

distribution and a function that is used for this purpose

is called probability generating function. Binomial

probability distribution was introduced by Bernoulli [15].

The paper is organized as follows. In Section 2, we

construct a general symbol of family of binary

approximating subdivision scheme. Complete analysis of

some family members of proposed family is presented in

Section 3. Convexity preservation is discussed in Section

4. Applications and comparison are presented in Section

5. Conclusions are drawn in Sections 6.

2. CONSTRUCTION OF A FAMILY OF

SCHEMES

In this section, we will present a generalized symbol for

the construction of a family of binary approximating

subdivision schemes. For this, we consider a well-known

4-point scheme [16] given by:
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The Laurent polynomial of the scheme Equation (1) is:

   765432
27121235235121271

384

1
zzzzzzzzB  (2)

Binomial probability generating function [17] is given as:
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where i = 0,1,2,…,n.

Here n is the number of trails, p is the probability of

success, q = 1 - p is the probability of failure and also p +

q = 1. For the construction of a family of binary

approximating subdivision schemes, we multiply B(z) and

H
n
(z).
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We can easily derive symbol of the schemes by

substituting = 1,2,…, in Equation (4) with p(0,1). Before

going onward to elaborate behavior and considerable

properties of the proposed family of schemes A
n
 = {A

n
: n

= 1,2,…}, let us have a smart look at some members of this

family.

2.1 DERIVATION OF FAMILY MEMBERS

Relaxed 4-Point Scheme (i.e. A
1
): After substituting n = 1

in Equation (4), we get the following symbol of relaxed 4-

point binary approximating subdivision scheme
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The scheme corresponding to Equation (5) is:
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5-Point Scheme (i.e. A
2
): By putting n = 2 in Equation (4),

we obtain the symbol of 5-point binary approximating

subdivision scheme

          22225

2 1122211
384

1
zpzpppzzzzA  (7)

The scheme corresponding to Equation (7) is:
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Similarly by substituting n = 3,4,5,…, we obtain 6-point

relaxed, 6-point, 7-point relaxed subdivision schemes

respectively.

3. ANALYSIS OF THE SCHEMES

Aim of this section is to present the analysis of proposed

family of binary approximating subdivision schemes. Here

we only present the analysis of one family member A
2
 of

binary subdivision schemes. The analysis of rest of the

schemes are similar.

We use Laurent polynomial (symbol) method [18] to

calculate integer class continuity, degree of generation

and degree of reproduction of the A
n
schemes. Moreover,

Holder regularity analysis is done by using Riouls [19]

method. Using [18], the subdivision scheme with symbol

A
n
(z) reproduces polynomials of degree d with respect to

the parameterizations  = A
n
(1)/2 if and only if

     





1

0

d0,1,2,...,k   ,21 and ,01
k

j

k
n

k
n jAA  (9)

Polynomial reproduction of degree d requires polynomial

generation of degree d.
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Theorem-1: The 5-point binary subdivision scheme A
2
 is

C4-continuous.

Proof: We re-write Equation (7) as:
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Consider a difference scheme S
b
 corresponding to b(z)

and S
c
 corresponding to c(z) obtained from b(z), such

that b(z) = (1+z)c(z) where
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To prove C4-continuity of the scheme A
2
, we need to

show that S
c
 is contractive. For contractiveness of S

c
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The condition for 1
cS is p(0,1). Therefore by [20],

if 1
cS , then c(z) is contractive and b(z) is

convergent. If b(z) is convergent then the scheme

Equation (8) is C4-continuous. Which completes the proof.

Remark-1: The 5-point binary approximating subdivision

scheme Equation (8) is C6-continuous atp = 1/2.

Theorem-2: The lower and upper bounds on the Hlder

regularity of the scheme Equation (8) is 6.1256 at p = 1/2.

Proof: From Equation (7), we have b
0
 = 1/12, b

1
 = 22/12, b

2

= 1/12, k = 7, m = 2 thus 1 = 0,1 and B
0
 and B

1
are the

matrices with elements

(B
0
)

ij
 = b

2+i-2j
 and (B

1
)

ij
 = b

3+i-2j

where i,j = 1 and 2. Thus B
0
 and B

1
are given by

The eigenvalues of B
0
 and B

1
 are 1.8333 and 0.08333. The

norm infinity of B
0
 and B

1
 are 1.8333 and 1.8333

respectively. For bounds on Holder regularity, we

calculate, where is joint spectral radius of the matrices

of 
0
 and 

1
, that is,  = (B

0
,B

1
). Then by [19], lower

bound and upper bound on Holder regularity are defined

as:

So, max(1.8333,0.08333)max(1.8331, 1.8333). So the

lower and upper bounds on the Holder regularity is 6.1256.

This completes the proof.

Theorem-3: The degree of the polynomial generation of

5-point binary approximating subdivision scheme

Equation (8) is 4.

Proof: By Equation (7), we can re-write the Laurent

polynomial as:

A
2
(z) = 1+z)4+1 b

1
(z)

where

Hence by [18], generation degree is 4.

Remark-2: At p = 1/2, the degree of generation of the

scheme Equation (8) is 6.

Theorem-4: The 5-point binary approximating subdivision

scheme Equation (8) has linear reproduction with

parametrization depends on the value of p.

Proof: By taking the first derivative of Equation (7) and

put z = 1, we get A’
2
(1) = - 2p2 – 10p + 9. This implies that

 = 1/2 (-2p2 – 10p + 9), for different values of p, the

scheme corresponding to thesymbol A
2
 has dual as well

as primal parametrization. We can easily verify that first
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and second derivative of A
2
 at z = - 1 are equal to 0.

Further we can also verify Equation (9) for k = 0 and 1.

This completes the proof.

In Table 1, we present the complete analysis of some

family members of the proposed family of binary

approximating subdivision schemes. Here we see that at

p = 1/2 the order of continuity and degree of generation

have been increased. Moreover, we also present the Holder

regularity analysis.

Table 1 shows the analysis of proposed family of schemes,

here n, A
n
, GD, GD

1/2
, RD, OC, OC

1/2
 and HR

1/2
, represent

trial number, proposed schemes, degree of generation,

degree of generation at p = 1/2, degree of reproduction,

order of continuity, order of continuity at p = 1/2 and

Holder regularity of proposed schemes at p = 1/2

respectively.

3.1 Limit Stencil

The limit stencil is a way to obtain a point on the limit

curve by using initial control points. The procedure for

calculating the limit stencils is presented in [18]. In Table

2, we present the limit stencil of some family members of

binary approximating subdivision schemes at p = 1/2.

Table 2 shows the limit stencils of some family members

of family of binary approximating subdivision schemes at

p = 1/2.

4. CONVEXITY PRESERVATION

In this section, we show the convexity preservation of

the scheme A
2
. It is clear from Fig. 1(a-c) that if initial

control points are strictly convex. Then the limit curves

generated by the scheme corresponding toA
2
 show

positively, normal and negatively skewed behavior on

convex data for p 1/2, p = 1/2 and prespectively.

Theorem-5: Suppose that initial control points   
Ziip



0
are

strictly convex, i.e.  .  ,
0

Zipi   Let   k
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k
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k
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be defined as second order differences,
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satisfies 0  p  1 and  Z,

where

,
1

 and 
0

21 


  R
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 16910046692134422
709021

1 2242
21 


 pppppp

pp
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n A
n

GD RD OC OC
1/2

GD
1/2

HR
1/2

1 A
1

4 1 C4 C5 5 5.1256

2 A
2

4 1 C4 C6 6 6.1256

3 A
3

4 1 C4 C7 7 7.1256

4 A
4

4 1 C4 C8 8 8.1256

5 A
5

4 1 C4 C9 9 9.1256

An Limit Stencils

A
1

{0.0027, 0.0715, 0.2487, 0.2127, 0.1489, 0.0605}

A
2

{0.0021, 0.0840, 0.4139, 0.4139, 0.0840, 0.0021}

A
3

{0.0004, 0.0268, 0.2389, 0.4722, 0.2365, 0.0263, 0.0003}

A
4

{0.0007, 0.0096, 0.1024, 0.3603, 0.3811, 0.1299, 0.0364,
0.0084, 0.0005}

TABLE 1. ANALYSIS OF FAMILY OF SUBDIVISION SCHEMES

TABLE 2. LIMIT STENCILS ANALYSIS OF FAMILY OF
SUBDIVISION SCHEMES
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then 5-point binary approximating subdivision scheme

Equation (8) is convexity preserving.

Proof: Using second order divided difference formula
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(a) Positively Skewed A
2

at p = 1/10
(b) Normal A

2
 at p = 1/2 (c) Negatively Skewed A

2

at p = 1/10

FIG. 1. PRESENT THE BEHAVIOR OF THE SCHEME A
2
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Hence proposed schemeA
2 

preserves convexity. This

completes the proof.

5. COMPARISON AND APPLICATIONS

In this section, we present the comparison and

applications of the proposed family of schemes.

5.1 Comparison of Continuity Analysis

Here we present the comparison of continuity analysis of

the proposed family of schemes with existing parametric

subdivision schemes. It is clear from Table 3 that our

proposed family gives higher continuity comparative to

the existing parametric subdivision schemes.

Table 3 shows the comparison of continuity analysis.

Here, E, OC, A
n 
and OC

1/2
 denote the existing schemes,

order of continuity of existing schemes, proposed family

of schemes and continuity of proposed schemes at p = 1/

2 respectively.

5.2 Applications

Here we discuss the visual performance of the proposed

family of subdivision schemes. The control polygons are

drawn by doted lines and the smooth curves obtained by

our proposed schemes by full lines. Fig. 2(a-c) represents

the applications of proposed scheme A
2
 at p = 1/64, 1/2

and 9/10. Fig. 3(a-f) is the applications of scheme A
2
 at

different values of p.

E OC A
n

OC
1/2

5-Point [20]

A
2

C6

5-Point [8] C4

5-Point [13] C5

5-Point [9]

5-Point [21] C4

6-Point [22] C7

6-Point [10] C2 if w [0,0.0425]

A
4

C8

6-Point [10] C3 if w  [0.0139, 0.0143]

6-Point [11] C6

6-Point [12]

6-Point [23] C3

6-Point [24] C4

162

1
w

324

1
 if C

2


162

1
w

64

3-
 if C

2


1215

11
w

972

7
 if C

2


TABLE 3. COMPARISON TABLE
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(a) (b) (c)

FIG. 2. PRESENT COMPARISON OF THE LIMIT CURVES FOR CLOSE POLYGONS PRODUCED BY THE
SCHEME CORRESPONDING TO A

2

(a) p = 1/10 (b) p = 9/10 (c) p = 1/2

(d) p = 2/9 (e) p = 1/2 (f) p = 1/10

FIG. 3. PRESENT LIMIT CURVES FOR OPEN AND CLOSE POLYGONS PRODUCED BY THE SCHEME CORRESPONDING TO A
2

6. CONCLUSION

In this paper, Binomial probability distribution is used for

the construction of new family of binary approximating

subdivision schemes. A complete analysis of some family

members of the proposed family is presented.  We also

analyzed that our proposed family give high continuity

at p = 1/2 comparative to the existing subdivision schemes.

At all other values of probability parameter p the results

of subdivision schemes remain same.
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The parametrization of the subdivision schemes changes

at different values of p. Subdivision schemes give skewed

behavior on the convex data due to the probability

parameter. Visual performances of the proposed family of

subdivision schemes are also discussed.
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