
Cache Memory: An Analysis on Replacement Algorithms and
Optimization Techniques

QAISAR JAVAID*, AYESHA ZAFAR**, MUHAMMAD AWAIS**, AND MUNAM ALI SHAH**

RECEIVED ON 18.07.2016 ACCEPTED ON 16.08.2016

ABSTRACT

Caching strategies can improve the overall performance of a system by allowing the fast processor and

slow memory to at a same pace. One important factor in caching is the replacement policy. Advancement

in technology results in evolution of a huge number of techniques and algorithms implemented to improve

cache performance. In this paper, analysis is done on different cache optimization techniques as well as

replacement algorithms. Furthermore this paper presents a comprehensive statistical comparison of

cache optimization techniques.To the best of our knowledge there is no numerical measure which can

tell us the rating of specific cache optimization technique. We tried to come up with such a numerical

figure. By statistical comparison we find out which technique is more consistent among all others. For

said purpose we calculated mean and CV (Coefficient of Variation). CV tells us about which technique is

more consistent. Comparative analysis of different techniques shows that victim cache has more consistent

technique among all.

Key Words: Recency, Cache Hti, Cache Miss, Miss Latency, Threshold, Optimization.

Corresponding Author: (qaisar@iiu.edu.pk)
* Department of Computer Science & Software Engineering, International Islamic University, Islamabad.
** Department of Computer Science, COMSATS Institute of Information Technology, Islamabad.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
831

1. INTRODUCTION

Cache is a high speed memory which is not as

costly as registers but it is faster when

compared to main memory. Cache memory is

basically used to store data and information which are

currently being used. To access data from main memory

takes more time, therefore to reduce this time a special

memory inside the CPU (Central Processing Unit) is

reserved to keep small amount of data for some time.

CPU having cache memory needs less time to wait for an

instruction to be fetched from the memory for processing.

Absence of cache memory decreases execution rate

which affect the performance of CPU.

The main purpose of cache memory is to reduce the speed

gap between slow memory and fast processor at a reduced

cost [1]. It mostly consists of most recently accessed piece

of main memory.All information is stored in some storage

media like main memory.Whenever CPU/processor use

some data or piece of information it is copied into some

faster storage media like cache. when processor try to

approach a particular piece of information again, the

system checks it in cache first, if it is in cache processor

use it from there if not found in cache it must be brought

from main memory and copy it into cache assuming we

will need it again.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
832

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

Generally the cache memory is categorized in three L

(Levels) i.e. L1, L2 and L3 cache [2]. L1 cache is actually

the fastest or smallest than L2 and L3. Usually L1 cache

resides in memory or it is also called on chip memory. L2

cache is faster than L3. Last level that is L3 is largest and

slowest among all three levels. Inmulti-core processor

severy processor has its own L1 and L2 cache. L3 cache

is shared among all processors [3]. This hierarchy of cache

levels is shown in Fig. 1.

Whenever desired chunk of information whether it is data

or instruction is present in cache this situation is called

cache hitand time taken to find out whether it is present

in cache or not is called hit latency [4].If required data is

not found in cache then it would be brought into the

cache from main memory this situation is called cache

miss [5]. Mainly, three type of cache misses exist: (i)

compulsory misses which take place when a memory

location is accessed for the first time, (ii) conflict misses

which occur due to insufficient space when two blocks

are mapped on the same location (iii) capacity misses

takes place due to small space [6].

Due to small size of Cache Memory it is needed that its

content has to be replaced according to the usage and

specific time period. An important component of cache is

its replacement policy which is a decision about which

page or data is replaced from cache to make space in

cache for new data. Here the problem is that what piece of

data is going to be replaced. Different history based

prediction algorithm were developed and implemented

these algorithms map pages according to their suitability

for eviction. Although they have some drawbacks but in

order to achieve better performance they are used.

There exists a fair distance between the processor speed

and the memory access latency, so a great effort has been

put in this regard to reduce this gap. There is lot of work

done to overcome this gap that is hardware based,

compiler based and operating system based.

This paper discusses several basic and advance cache

optimization techniques and replacement policies

proposed till date. Rest of the paper is categorized is as

follows: Section 2 is based on cache replacement policies,

Section 3 discusses cache optimization techniques,

Section 4 is about performance evaluation ,Section 5 is

discussion and Paper is concluded in section 6.

2. REPLACEMENT ALGORITHMS

Replacement algorithms/policies are used in order to

attain optimized usage of cache. When cache is full, then

replacement policies decide which piece of data is replaced

in order to make space for new data that is currently being

used. An efficient algorithm is that which can take less

time and number of cache misses are low and also

balancing cost. Following are some of the algorithms.

LRU (Least Recently Used) Algorithm): This algorithm

discards the least recently used item from the cache in

order to make space for the new data item. In order to

achieve this, history of all data items that is which data

item is used when, is kept. A variable known as Aging Bit

is used to store this information, Although this algorithmFIG. 1. SHOWING CACHE HIERARCHY

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
833

provides better performance but cost of implementation

is much more [6]. Variants of LRU are the most popular

among all other algorithms. Key advantage of this policy

is its simple implementation, time and space overhead is

constant. “Recency” is a main factor in this algorithm

while LRU takes into account the characteristics

of”recency” of the workload; it ignores and exploits the

capabilities of “frequency” of a workload [7].

HLFU (History Least Recently Used) Algorithm): Cache

replacement in typical LFU algorithm is performed by

replacing the least frequently requested objects. But in

HLFU which is an extension of LFU considers the History

function in cache replacement process. Respective LFU

threshold which is a linear function on the amount of

currently used cache. The HLFU algorithm will replace

the cached objects based on Hist value as compared to

the defined threshold in LFU.

LFU (Least Frequently Used) Algorithm: This algorithm

counts how often data items have been used. The data

items which are used less are deleted from the cache first.

If all objects have same frequency then this algorithm

randomly discards any data item [8].

GDS (Greedy Dual Size): In this algorithm index is

calculated according to the size of a file. Larger the file

smaller is the index. File with the smallest index is replaced

in this algorithm. Inflation value is used to keep track of

frequently accessed files in the cache [9].

CAR (Clock with Adaptive Replacement) Algorithm:

CAR is simple to implement and it has very low overhead

on cache hits. It shows high performance and it also

provides service of self-tuning. It is scan resistant which

result in low space overheads that are less than 1% [10].

CAR does not care for certain workloads [11].

ARC (Adaptive Replacement Cache): This algorithm is

easy to implement running time is not dependent on cache

size. ARC has a low space overhead of approximately

0.75% of the size of the cache. ARC is a scan resistant

also leads to self-tuning. This algorithm continuously

balanced recency and frequency features by responding

to changing access pattern [12]. In this algorithm cache

is divide into two queues, each is handle by using

CLOCK or LRUthat contains pages accessed only once,

while the other contains the page which are accessed

more than one time [13]. Like other algorithms ARC also

has a constant complexity per request. “Ghost cache” is

a special term used in this algorithm to handle the data

element which will be used in near future [14-15].

RR (Random Replacement) Algorithm: This algorithm

randomly selects any of the data item from the cache and

replace it with the desire one [4]. This algorithm does not

need to keep track of the history of the data contents and

it does not need any data structure. Due to which it

consumes less resources, therefore its cost is less as

compare to other algorithms [16].

SLRU (Segmented LRU) Algorithm: This algorithm

partitions the cache into two portions, one is unprotected

and the other is protected. Protected portion is reserved

for mostly used objects. When first request for an object

has been done then this object is inserted into the

unprotected portion. On a cache hit the object is moved

into the protected portion [17]. Both portions are managed

by LRU technique. But content from unprotected part

has been removed and content from protected part has

been moved back to the unprotected part a recently used

content. This method requires a variable that calculates

what percentage of the cache space is reserved for

protected part [18].

LR+5LF Algorithm: LR+5FU replacement policy is a

combination of two popular replacement policies i.e. LRU

and LFU. The problems arrived in LRU and LFU policies

are solved by new policy called LR+5FU [6]. The weighing

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
834

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

problem of LRU AND LFU is solved by this algorithm.

LR+5LF policy reduces cache miss with greater amount

than LRU, FIFO, and LFU at L1 and L2 cache [19].

FIFO Algorithm: The first in first out algorithm removes

the page that has not been used for a long time. It treats

the pages as a circular buffer, and pages are removed in a

round robin fashion. It cause early page fault [20].

LLF (Lowest Latency First): This algorithm keeps the

average latency to a minimum by first expelling the object

with the lowest download latency [7].This algorithm gives

the best result in cases where the data is retrieved by

executing a query against a relational database.

Algorithms that are discussed above are classified in

several classes. These classes are made in term of different

parameters discussed in [9-2]. In all parametersrecency

and frequency are the most important factors. This

calcification is also used by other authors.Classification

of classes is:

(i) Recency Based Algorithms

(ii) frequency Based Algorithms

(iii) Recency/Frequency Based Algorithms

(iv) Function based algorithms

(v) Randomized algorithms

This classification described in Fig. 2 and comparisons

between different algorithms are shown in Table 1.

3. OPTIMIZATION TECHNIQUES

Cache optimization techniques are classified on the basis

of their application and comparison is made in their own

domain to ensure homogeneity prevails.Cache

optimization is achieved by reducing hit time, reducing

miss penalty, increasing cache bandwidth and by reducing

miss rate. Above said task is achieved by different

techniques.

One way to minimize the gap between memory latency

and CPU cycle is the use of a multilevel cache. Miss rate

FIG. 2. SHOWING CLASSIFICATION OF REPLACEMENT ALGORITHMS

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
835

of L1 (First Level) cache can be reduced by introducing

L2 cache. Anothertechnique called ULCC (User Level

Cache Control) [21] has been implemented through which

user can control space allocation in cache. This technique

is hard to implement but it produces less hit rate and also

reduce cache pollution [22].

One of the other ways of cache optimization is compiler

based optimization in which loops are optimizing through

compiler. To set the accessed data in cache loops must be

reduced to smaller size. In this way all the tasks will be

executed consecutively which will be using same data

from cache [23].

Different methods are used to make cache’s performance

better. One of them is jigsaw [24]. It is used to solve

scalability and interference issues. It helps to define how

data would be mapped to shares. Every share has a unique

id. Jigsaw produces better performance than NUCA

design [25]. In NUCA (Non Uniform Cache Access) cache

ecnamrofreP
sretemaraP

smhtiroglA

URL
]7[

UFLH
]2[

UFL
]8[

FLL
]7[

RAC
]01[

CRA
]51[

OFIF
]02[

SDG
]9[

RR
]61[

URLS
]71[

]91[FL5+RL

ssiMehcaC
ehcacwoL

etarssim
ssimmuminiM

ycnetal
etarssiM
sesaerced

ssimwoL
ycnetal

hgih
ssimrehgiH

etar
k392

secudeR
sessimehcac

tiHehcaC

no%42.4
ehcacbm61

%91.9dna
BG4no
ehcac
]11[

tihwoL
saoitar
erapmoc

ot
UFL

k7701
]01[

%24.24

%78.16
no

ezisetyb215
segap

%8.33
muminiM
etartih

tihehcacwoL
.etar

k3551 hgih

ecruoseR
noitazilitU

otdeeN
nwodkcart
tsiltnecer

etadpu
daehrevo

egarotsartxE
oteriuqersi

peek
yrotsih

otdeeN
nwodkcart

yltneuqerf
dessecca

.atad

muminiM
secruoser

ezilitu

ecruoserhgiH
noitazilitu

mumixaM
ecruoser
noitazilitu

muminiM
ecruoser
noitazilitu
esuaceb
htiwkcolb

llamsyreV
fotnuoma
secruoser

deriuqer

fotsoC
noitatnemges

hgihsdeen
ecruoser
noitazilitu

hgiH
tiesuaceb

kcart
htobnwod
tsiltnecer

dna
.ycneuqerf

gniueuQ

ytixelpmoC
etautculf

w/b
dnatnatsnoc

cimhtiragol
seulav

elgniS
desusieueuq

ytixelpmoC
etautculf

tnatsnocw/b
dna

cimhtiragol
seulav

elgniS
desusieueuq

fodaehrevO
ralucricowt

sreffub

ehtnoititraP
otniehcac
seueuqowt

]11[

elgniS
desusieueuq

elgniS
desueueuq

.esueueuqoN
ylmodnar

detceles

elgnishtoB
ralucricdna

seueuq
era

detnemelpmi

saemaS
dnaUFL

.URL

lacisyhPfoeziS
yromeM

ytixelpmoC
esaercni
ezisnehw

esaercni

cimhtiragoL
noitatnemelpmi

nino
ezisehcac

ehthtiW
niesaercni
ycnetalezis
esaercniosla

tnatsnoC
saxelpmoc
esaercniezis

egasuerongI
dnanrettap

gnigap
euddaehrevo
.ezisegralot

foeziS
ehcac

rettamt'nseod

t'nseoD
rettam
esuaceb

sahtnetnoc
ebot
decalper

.ylmodnar

esuaC
ytixelpmoc

esuaceb
tnereffid

sahstnemges
ebot

deganam
ylgnidrocca

egraL
ezisyromem

hgiH woltsomlA woL wolyreV woL woL hgiH wolyreV woL

/ycneceR
ycneuqerF

t'nseodtI
erutpac
ycneuqerf

erutpactI
ycneuqerf

onyaP
otnoitnetta

ycnecer

htoberutpaC
dnaycnecer

ycneuqerf

decnalaB
dnaycnecer

ycneuqerf
.krow

otdeenoN
aevah

roycnecer
ycneuqerf
retemarap

deenoN
/ycnecer
ycneuqerf
retemarap

kcartpeeK
ycneuqerffo

ehcacfo
stnemele

htobsesU
dnaycnecer

ycneuqerf

retemaraPartxE

otsdeeN
enut-erp
retemarap

]31[

asdeeN
retemarap

gnillortnocot
secnerefer

asdeeN
elbaenut
retemarap
gnillortnocot

secnerefer

tsoC
retemarap

dedeen

tsocevitaleR
noitaluclac
sretemarap

dedeen

ecnanetniaM
tnereffidfo

stnemges
dedeen
artxe

retemarap

htobsdeeN
elbaenut

enut-erpdna
retemarap

TABLE 1. COMPARISON OF REPLACEMENT ALGORITHMS

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
836

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

is managed in such a way that most of the data is served

by fastest bank. To more data to faster banks in steps, a

switched network is used. The core feature of NUCA

design is the low latency access.

A set of compiler algorithms have been written for the

prediction about the data to be reused in near future.

These predictions are used to make the hit rates better.

The algorithm used for the purpose is evict-me which

uses cache line tag of one bit. So when ever evict-me tag

is set for any cache line, the cache line will be replaced

[26] but this technique is complex and consume high

energy.

Different methods are used to implement two way set

associative cache. One of them is predictive sequential

associative cache. Using this method to implement set

associative cache access time becomes approximately

equal to direct mapped cache [27]. This method uses

different prediction which helps to reduces access time

and hit rate.

One way to improve the performance of the cache is to

produce the next data to be used by the cache, data

perfecting is used to produce data in advance which is

next to be used [28].

Enlarging the size of cache reduce the chance to occur

capacity misses. Simple cache and way prediction

methods are used to reduce cache hit time.Comparison of

different techniques is shown in Table 3.

4. PERFORMANCE EVALUATION

To date researcher came up with many cache optimization

techniques. People judged them by actually using them.

To the best of our knowledge there is no numerical measure

which can tell us about rating of specific cache

optimization techniques. We tried to come up with such a

numerical figure.

Table 2 shows collected performance parameters against

cache optimization techniques. Their value are given as

H (High), M (Medium), L (Low) and N (Not Applicable).

In Table 3 numerical values are assigned against, H, M

and L .Table 4 is numerical replacement of Table 2 which

is explained by Table 3.

In Table 4 if the particular parameter decreases the

performance then values are assigned as 1, 2, and 3 for H,

M and L, respectively, if performance increases values

are assigned as 3, 2, and 1 for H, M and L, respectively.

The last two column of Table 4 shows Mean and CV

which tells us about more consistent technique for cache

optimization.

CV provides information about data i.e. how much data is

scattered from its mean. As low as the value of coefficient

is, technique is more consistent. It is calculated in last

column of Table 4.These tables give us a better view to

judge the subject techniques. Fig. 3 shows the graphical

representation of Table 4.

5. DISCUSSIONS

In section 1 different cache replacement policies which

have been implemented in the past have been studied

and compared with each other. Policies are compared on

the basis of following parameters, Cache miss, cache hit,

and Resource utilization, Queuing, Size of physical

memory, Page movement overhead, Recency/frequency

and extra parameter.

We also studied different optimization techniques and

compared them in Table 2. Table 2 is little bit modified

form of table presented in [6]. We use this table to perform

statistical analysis on different techniques. By using

statistical comparison we are able to find out that which

technique is more consistent and reliable.

By comparing different techniques we analyze that cache

miss rate is reduced by using larger block size, larger

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
837

cache, and way prediction method. Larger block size

reduces hit time, increases miss penalty and consume

high power. Higher associativity produce fast access time

but they have low cycle time. ULCC have fast access time

and also used to eliminate cache pollution. Pipelined

cache reduced miss penalty. Multilevel cache has very

less miss penalty but yields high cycle time and have

high power consumption.

TABLE 2. COMPARISON OF OPTIMIZATION TECHNIQUES ON THE BASIS OF MR, MP,HT, HR, PC, AT, COST AND
COMPLEXITY, CT [6]

seuqinhceT

sretemaraPecnamrofrePnosirapmoCehcaC

RM PM TH RH CP TA tsoC ytixelpmoC TC

eziSkcolBregraL
]03-92[

yroslupmocecudeR
esaercnidnasessim

sessimtcilfnoc
H L H H L N 0 H

noitaicossrehgiH
]03[

ecudeR
yticapacdnatcilfnoc

sessim
L H L H H H 1 H

noitcideryaW
]82[

tcilfnoC
ecudersessim

H H H L L N 2 H

evitaicossnmuloC
]13[ehcac

sessimtcilfnoc
ecuder

N H L H H H 2 H

evitaicossaevitcaeR
ehcac
]23[

ecuder
sessim

L H H N L H 1 L

ehcacmitciV
]33[

sessimehcaC
ecuder

L M H L M H 1
H

denilepiP
ehcac

N L H L N H H 2
L

wasgiJ
]42[

sessimecnerefretnI
ecuder

L H L L H H 3
N

ehcacregraL
]03[

secuderetarssiM N H H H L H 2 L

ssimehcaC
]43[edisakool

sessimtcilfnoC
ecuder

L H L H H H 2 H

ehcaclevelitluM)M(sessimehcaC M H H H L H 2 H

laitneuqesevitciderP
ehcacevitaicossa

]72[

yaw2asA
ehcacevitaicossa

L L L H H H 1 H

ehcacllamS
]1[

esaercnIRM
)H(

N L N L H L 0 N

CCLU
]12[

noitullopehcaC
etanimile

N H L N H H 2 N

dnagniziseR
]53[gnippamer

N N N N L N N 2 N

emiTelcyCsiTCdna,emiTsseccAsiTA,noitpmusnoCrewoPsiCP,etaRtiHsiRH,emiTtiHsiTH,ytilanePssiMsiPM,etaRssiMsiRM

esaerceDfI
ecnamrofreP

esaercnIfI
ecnamrofreP

hgiH 1 3

muideM 2 2

woL 3 1

elbacilppAtoN 0 0

TABLE 3. WEIGHTS ARE GIVEN TO PARAMETERS IN
TABLE 4 AS FOLLOWING CRITERIA

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
838

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

seuqinhceT

noitatneserpeRlaciremuNsretemaraPecnamrofrePehcaC

RM PM TH RH CP TA tsoC ytixelpmoC TC naeM
tneiciffeoC

fo
noitairaV

eziskcolbregraL 2 1 3 3 1 3 0 0 1 55.1 54.97

ytivitaicossarehgiH 2 3 1 1 1 1 1 1 1 33.1 30.35

noitciderpyaW 2 1 1 3 3 3 0 2 1 77.1 74.16

evitaicossanmuloC
ehcac

2 0 1 1 1 1 1 2 1 11.1 80.45

evitaicossaevitcaeR
ehcac

2 3 1 3 0 3 1 1 3 88.1 67.16

ehcacmitciV 2 3 2 3 3 2 1 1 1 2 03.34

ehcacdenilepiP 0 3 1 1 0 1 1 2 3 33.1 58.38

wasgiJ 2 3 1 1 3 1 1 3 0 66.1 80.76

ehcacregraL 2 0 1 3 1 3 1 2 3 77.1 47.16

edisakoolssimehcaC 2 3 1 1 1 1 1 2 1 44.1 92.05

ehcaclevelitluM 2 2 1 1 1 3 1 2 1 55.1 78.64

laitneuqesevitciderP
ehcacevitaicossa

2 3 3 1 1 1 1 1 1 55.1 96.65

ehcacllamS 1 0 1 0 3 1 1 0 0 77.0 22.621

CCLU 3 0 1 1 0 1 1 2 0 1
00

dnagniziseR
gnippamer

0 0 0 0 3 0 0 2 0 55.0 64.302

TABLE 4. STATISTICAL COMPARISON OF CACHE OPTIMIZATION METHODS GIVEN IN TABLE 3

FIG. 3. STATISTICAL COMPARISON OF CACHE OPTIMIZATION TECHNIQUES GIVEN IN TABLE 4 USING COEFFICIENT OF
VARIATION

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
839

6. CONCLUSION

The cache is a critical part of performance there are many

cache replacement policies and optimization techniques

exist. We tried to provide comprehensive review on both

proposed till date.

At the end we presented a comprehensive tabular

representation of cache optimization techniques and their

ranked numerical representation is made, which enable

us to see which technique is more consistent. We

compared total of 15 techniques. By computing values

graph shows that victim cache has lowest coefficient of

variation which shows that it is more consistent among

all other techniques. Resizing and Remapping has highest

coefficient of variation which means that it is less

consistent technique among all compared techniques.

In future we would like to perform experiments on

techniques like LRU+5LF, CAR, ARC and compare their

results by homogeneously passing them through a large

set of instructions.

ACKNOWLEDGMENT

Authors would like to acknowledge with thanks the

anonymous referees for their useful suggestions that led

us to enhance the quality of the paper. Authors are also

thankful to the International Islamic University, and

COMSATS Institute of Information Technology,

Islamabad, Pakistan, for providing platform to carry out

this research.

REFERENCES

[1] Gagged, G., Paresh, R., and Madarkar, J., “Survey on

Hardware Based Advanced Technique for Cache

Optimization for RISC Based System Architecture”,

International Journal of Advanced Research in Computer

Science and Software Engineering, Volume 3, No. 9,

pp. 156-160, 2013.

[2] Patidar, K., “A Taxonomy of Cache Replacement

Algorithms”,International Journal of New Technologies

in Science & Engineering, Volume 2, No. 3, pp. 98-108,

2015.

[3] Khatoon, H., Mirza, S.H., and Altaf, T., “Operating

System-Aware Cache Optimization Techniques for Multi

Core Processors”, Proceedings of International

Conference on Frontiers of Information Technology

(FIT), pp. 99-105, 2011..

[4] Psounis, K., Prabhakar, B., and Science, C., “A

Randomized Web-Cache Replacement Scheme”,

Proceedings of IEEE 20th Annual Joint Conference on

Computer and Communications Societies, Volume 3,

pp. 1407-1415, 2001.

[5] Kowarschik, M., and Wei, B.C., “An Overview of Cache

Optimization Techniques and Cache-Aware Numerical

Algorithms”, Algorithms for Memory Hierarchies,

Springer Berlin Heidelberg, pp.213-232, 2003.

[6] Ahmed, M.W., andShah, M.A., “Cache Memory: An

Analysis on Optimization Techniques”, International

Journal of Computer and IT, Volume 4, No. 2,

pp. 414-418, 2015.

[7] Butt, A.R., Gniady, C., and Hu, Y.C.,”The Performance

Impact of Kernel Prefetching on Buffer Cache

Replacement Algorithm”, IEEE Transactions on

Computers, Volume 56, No. 7, pp. 889–908, 2007.

[8] Swain, D., Paikaray, B., and Swain, D., “AWRP:Adaptive

Weight Ranking Policy”, arXiv Preprint arXiv,

Volume 3, No. 2, pp. 1107,4851, 2011.

[9] Podlipnig, S., and Böszörmenyi, L., “A Survey of Web

Cache Replacement Strategies”,ACM Computing

Surveys, Volume 35, No. 4, pp. 374-398, 2003.

[10] Chavan, A.S., Nayak, K.R., Vora, K.D., Purohit, M.D.,

and Chawan, P.M., “A Comparison of Page Replacement

Algorithms”, International Journal of Engineering and

Technology, Volume3, No. 2, pp. 171-174, 2011.

[11] Bansal,S.,and Modha,D.S.,”CAR: Clock with Adaptive

Replacement”, Proceedings of 3rd USENIX Conference

on File and Storage Technologies, Volume 4,

pp. 187-200, 2004.

[12] Megiddo, N.,and Modha, D.S., “Outperforming LRU with

an Adaptive Replacement Cache Algorithm”, Computer,

Volume 37, No. 4, pp. 58-65, 2004.

[13] Megiddo,N., Modha, D.S., and Jose, S., “A Simple

Adaptive Cache Algorithm Outperforms LRU”, IBM

Research Report, Computer Science, 2003.

[14] Butt, A.R.,Gniady, C., and Hu, Y.C., “The Performance

Impact of Kernel Prefetching on Buffer Cache

Replacement Algorithms”, ACM SIGMETRICS

Performance Evaluation Review, Volume 37, No. 1,

pp. 157-168, 2005.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
840

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

[15] Janapsatya, A., Ignjatoviæ, A., Peddersen, J., and

Parameswaran, S., “Dueling CLOCK: Adaptive Cache

Replacement Policy Based on The CLOCK Algorithm”,

Proceedings of Conference on Design, Automation and

Test in Europe, pp. 920-925, 2010.

[16] Bhattacharjee, A., and Debnath, B.K., “A New Web Cache

Replacement Algorithm”, Proceedings of IEEE

Conference on Pacific Rim Conference on

Communications, Computers and Signal Processing,

pp. 420-423, 2005.

[17] Gao, H., and Wilkerson, C., “A Dueling Segmented LRU

Replacement Algorithm with Adaptive Bypassing”, 1st

JILP Worshop on Computer Architecture Competitions:

Cache Replacement Championship, 2010.

[18] Morales, K.,and Lee, B.K., “Fixed Segmented LRU Cache

Replacement Scheme with Selective Caching”, IEEE

Proceedings of 31st International Conference on

Performance Computing and Communications,

pp. 199-200, 2012.

[19] Abdel F.A., and Samra, A.A., “Least Recently Plus Five

Least Frequently Replacement Policy (LR+5LF)”,

International Arabic Journal of Information Technology,

Volume 9, No. 1, pp. 16-21, 2012.

[20] Wang, Q., “WLRU CPU Cache Replacement Algorithm”,

Doctoral Dissertation, The University of Western

Ontario London, 2006.

[21] Ding, X., Wang, K., and Zhang, X, “ULCC: A User-

Level Facility for Optimizing Shared Cache Performance

on Multicores”, ACM Sigplan Notices, Volume 46,

No. 8, pp. 103-112, 2011.

[22] Sandberg, A., Eklöv, D., and Hagersten, E., “Reducing

Cache Pollution Through Detection and Elimination of

Non-Temporal Memory Accesses”, Proceedings of IEEE

Conference on High Performance Computing,

Networking, Storage and Analysis, pp. 1-11, 2010.

[23] Ishizaka, K., Obata, M., and Kasahara, H, “Cache

Optimization for Coarse Grain Task Parallel Processing

Using Inter-Array Padding”, International Workshop

on Languages and Compilers for Parallel Computing.

Springer Berlin Heidelberg, pp. 64-76, 2003.

[24] Beckmann, N., and Sanchez,D, “Jigsaw: Scalable

Software-Defined Caches”, Proceedings of IEEE 22nd

International Conference on Parallel Architectures and

Compilation Techniques, pp. 213–224, 2013.

[25] Kim, C., Burger, D., and Keckler, S.W., “An Adaptive,

Non-Uniform Cache Structure for Wire-Delay

Dominated On-Chip Caches”, ACM Sigplan Notices,

Volume 37, No. 10, pp.211–222, 2002.

[26] Wang, Z., McKinley, K.S., Rosenberg, A.L., and Weems,

C.C., “Using the Compiler to Improve Cache

Replacement Decisions”, Proceedings of IEEE

International Conference on Parallel Architectures and

Compilation Techniques, pp. 199-208, 2002.

[27] Calder, B., Grunwald, D., and Emer, J.,”Predictive

Sequential Associative Cache”, Proceedings of IEEE 2nd

International Symposium on High-Performance

Computer Architecture, pp. 244-253, 1996.

[28] VanderWiel, S., and Lilja, D.J., “A Survey of Data

Prefetching Techniques”, Proceedings of the 23rd

International Symposium on Computer Architecture,

1996.

[29] Huang, C.C., and Nagarajan, V., “Increasing Cache

Capacity via Critical-Words-Only Cache”, Proceedings

of IEEE 32nd International Conference on Computer

Design (ICCD), pp. 125-132, 2014.

[30] Sawant, R., Ramaprasad, B.H., Govindwar, S., and Mothe,

N., “Memory Hierarchies-Basic Design and

Optimization Techniques Survey on Memory Hierarchies

– Basic Design and Cache Optimization Techniques”,

2010.

[31] Agarwal, A., and Pudar, S.D., “Column-Associative

Caches: Caches A Technique for Reducing the Miss Rate

of Direct-Mapped”, ACM, Volume 21, No. 2,

pp. 179-190, 1993.

[32] Batson, B., and Vijaykumar, T.N., “Reactive-Associative

Caches”, Proceedings of IEEE International Conference

on Parallel Architectures and Compilation Techniques,

pp. 49-60, 2001.

[33] Stiliadis, D., and Varma, A., “Selective Victim Caching: A

Method to Improve the Performance of Direct-Mapped

Caches”, IEEE Transactions on Computers, Volume 46,

No. 5, pp. 603–610, 1997.

[34] Bershad, B.N., Lee, D., Romer, T.H., and Chen, J.B.,

“Avoiding Conflict Misses Dynamically in Large Direct-

Mapped Caches”, ACM SIGPLAN Notices, Volume 29,

No. 11, pp. 158-170, 1994.

[35] Ramaswamy, S., and Yalamanchili, S., “Improving Cache

Efficiency via Resizing + Remapping”, Proceedings of

IEEE 25th International Conference on Computer

Design (ICCD), pp. 47–54, 2007.

