Cache Memory: An Analysis on Replacement Algorithms and
Optimization Techniques

QAISAR JAVAID*, AYESHA ZAFAR**, MUHAMMAD AWAIS**, AND MUNAM ALI SHAH**
RECEIVED ON 18.07.2016 ACCEPTED ON 16.08.2016

ABSTRACT

Caching strategiescan improvetheoverall performanceof a system by allowing thefast processor and
dow memory toat asamepace. Oneimportant factor in cachingisthereplacement policy. Advancement
intechnology resultsin evolution of ahugenumber of techniquesand algorithmsimplemented toimprove
cacheperformance. I n thispaper, analysisisdone on different cache optimization techniquesaswell as
replacement algorithms. Further mor ethispaper presentsacomprehensivestatistical comparison of
cacheoptimization techniques.Tothebest of our knowledgethereisno numerical measurewhich can
tell ustherating of specific cache optimization technique. Wetried to comeup with such anumerical
figure. By statistical comparison wefind out which techniqueismoreconsistent amongall others. For
said pur posewe calculated mean and CV (Coefficient of Variation). CV tellsusabout which techniqueis
mor econsisent. Compar ativeanalysisof different techniquesshowsthat victim cachehasmor econsistent

technigueamongall.

KeyWords: Recency, CacheHti, CacheMiss, MissL atency, Threshold, Optimization.

1. INTRODUCTION

he is a high speed memory which is not as
costly as registers but it is faster when
compared to main memory. Cache memory is
basically used to store data and information which are
currently being used. To access data from main memory
takes more time, therefore to reduce this time a special
memory inside the CPU (Central Processing Unit) is
reserved to keep small amount of data for some time.
CPU having cache memory needslesstimeto wait for an
instructionto befetched from the memory for processing.
Absence of cache memory decreases execution rate
which affect the performance of CPU.

Themain purpose of cache memory isto reduce the speed
gap between slow memory and fast processor at areduced
cost [1]. It mostly consists of most recently accessed piece
of main memory.All information isstored in some storage
media like main memory.Whenever CPU/processor use
some data or piece of information it is copied into some
faster storage media like cache. when processor try to
approach a particular piece of information again, the
system checksit in cachefirgt, if it isin cache processor
use it from thereif not found in cache it must be brought
from main memory and copy it into cache assuming we
will need it again.

Corresponding Author: (gaisar@iiu.edu.pk)
Department of Computer Science & Software Engineering, International Islamic University, |slamabad.
* % Department of Computer Science, COMSATS Institute of Information Technology, |slamabad.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

Generally the cache memory is categorized in three L
(Levels)i.e. L1, L2andL3cache[2]. L1 cacheisactualy
the fastest or smallest than L2 and L3. Usually L1 cache
residesin memory or itisalso called on chip memory. L2
cacheisfaster than L3. Last level that isL3islargest and
slowest among all three levels. Inmulti-core processor
severy processor hasitsown L1 and L2 cache. L3 cache
isshared among al processors[3]. Thishierarchy of cache
levelsisshownin Fig. 1.

Whenever desired chunk of information whether it isdata
or instruction is present in cache this situation is called
cache hitand time taken to find out whether it is present
in cache or not is called hit latency [4].If required datais
not found in cache then it would be brought into the
cache from main memory this situation is called cache
miss [5]. Mainly, three type of cache misses exist: (i)
compulsory misses which take place when a memory
location is accessed for thefirst time, (ii) conflict misses
which occur due to insufficient space when two blocks
are mapped on the same location (iii) capacity misses
takes place due to small space[6].

Due to small size of Cache Memory it is needed that its
content has to be replaced according to the usage and

Core-1:

Processor
Lj L1 L 1 L1
() (D)) (D)

L2

Main Memory

FIG. 1. SHOWING CACHE HIERARCHY

specific time period. An important component of cacheis
its replacement policy which is a decision about which
page or data is replaced from cache to make space in
cachefor new data. Herethe problem isthat what piece of
data is going to be replaced. Different history based
prediction algorithm were developed and implemented
these algorithms map pages according to their suitability
for eviction. Although they have some drawbacks but in
order to achieve better performance they are used.

There exists afair distance between the processor speed
and the memory access|atency, so agreat effort has been
put in thisregard to reduce this gap. Thereislot of work
done to overcome this gap that is hardware based,
compiler based and operating system based.

This paper discusses several basic and advance cache
optimization techniques and replacement policies
proposed till date. Rest of the paper is categorized is as
follows: Section 2 isbased on cachereplacement policies,
Section 3 discusses cache optimization techniques,
Section 4 is about performance evaluation ,Section 5 is
discussion and Paper is concluded in section 6.

2. REPLACEMENTALGORITHMS

Replacement algorithms/policies are used in order to
attain optimized usage of cache. When cacheisfull, then
replacement policiesdecidewhich piece of dataisreplaced
in order to make spacefor new datathat is currently being
used. An efficient algorithm is that which can take less
time and number of cache misses are low and also
bal ancing cost. Following are some of the algorithms.

LRU (Least Recently Used) Algorithm): Thisalgorithm
discards the least recently used item from the cache in
order to make space for the new data item. In order to
achieve this, history of all data items that is which data
item isused when, iskept. A variable known asAging Bit
isused to storethisinformation, Although thisalgorithm

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

832

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

provides better performance but cost of implementation
ismuch more [6]. Variants of LRU are the most popular
among all other algorithms. Key advantage of thispolicy
isits simple implementation, time and space overhead is
constant. “Recency” is a main factor in this algorithm
while LRU takes into account the characteristics
of"recency” of the workload; it ignores and exploits the
capabilitiesof “frequency” of aworkload [7].

HLFU (History L east Recently Used) Algorithm): Cache
replacement in typical LFU algorithm is performed by
replacing the least frequently requested objects. But in
HLFU whichisan extension of LFU considersthe History
function in cache replacement process. Respective LFU
threshold which is a linear function on the amount of
currently used cache. The HLFU algorithm will replace
the cached objects based on Hist value as compared to
the defined threshold in LFU.

L FU (Least Frequently Used) Algorithm: Thisalgorithm
counts how often data items have been used. The data
itemswhich are used less are deleted from the cachefirst.
If al objects have same frequency then this algorithm
randomly discards any dataitem[8].

GDS (Greedy Dual Size): In this algorithm index is
calculated according to the size of afile. Larger thefile
smaller istheindex. Filewith the smallest index isreplaced
in thisalgorithm. Inflation value is used to keep track of
frequently accessed filesin the cache[9].

CAR (Clock with Adaptive Replacement) Algorithm:
CARissimpletoimplement and it hasvery low overhead
on cache hits. It shows high performance and it also
provides service of self-tuning. It is scan resistant which
result in low space overheads that are less than 1% [10].
CAR doesnot carefor certain workloads[11].

ARC (Adaptive Replacement Cache): Thisalgorithmis
easy to implement running timeis not dependent on cache

size. ARC has a low space overhead of approximately
0.75% of the size of the cache. ARC is a scan resistant
also leads to self-tuning. This algorithm continuously
bal anced recency and frequency features by responding
to changing access pattern [12]. In this algorithm cache
is divide into two queues, each is handle by using
CLOCK or LRUthat contains pages accessed only once,
while the other contains the page which are accessed
morethan onetime[13]. Like other algorithmsARC also
has a constant complexity per request. “Ghost cache” is
a special term used in this algorithm to handle the data
element which will be used in near future[14-15].

RR (Random Replacement) Algorithm: Thisalgorithm
randomly selectsany of the dataitem from the cacheand
replaceit with thedesire one[4]. Thisalgorithm does not
need to keep track of the history of the data contents and
it does not need any data structure. Due to which it
consumes less resources, therefore its cost is less as
compareto other algorithms[16].

SLRU (Segmented LRU) Algorithm: This algorithm
partitionsthe cacheinto two portions, oneisunprotected
and the other is protected. Protected portion is reserved
for mostly used objects. When first request for an object
has been done then this object is inserted into the
unprotected portion. On a cache hit the object is moved
into the protected portion [17]. Both portions are managed
by LRU technique. But content from unprotected part
has been removed and content from protected part has
been moved back to the unprotected part arecently used
content. This method requires a variable that calculates
what percentage of the cache space is reserved for
protected part [18].

LR+5LF Algorithm: LR+5FU replacement policy is a
combination of two popular replacement policiesi.e. LRU
and LFU. Theproblemsarrivedin LRU and LFU policies
are solved by new policy called LR+5FU [6]. Theweighing

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

833

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

problem of LRU AND LFU is solved by this agorithm.
LR+5LF policy reduces cache misswith greater amount
than LRU, FIFO, andLFU at L 1and L2 cache[19].

FIFO Algorithm: Thefirstinfirst out agorithm removes
the page that has not been used for along time. It treats
the pagesasacircular buffer, and pagesareremovedina
round robin fashion. It cause early page fault [20].

LLF (Lowest Latency First): Thisagorithm keeps the
averagelatency to aminimum by first expelling the obj ect
with thelowest download latency [7].Thisalgorithm gives
the best result in cases where the data is retrieved by

executing aquery against arelational database.

Algorithms that are discussed above are classified in
severa classes. These classesare madein term of different
parameters discussed in [9-2]. In all parametersrecency
and frequency are the most important factors. This
calcification is also used by other authors.Classification

of classesis:

0] Recency Based Algorithms

(i) frequency Based Algorithms

(iii) Recency/Frequency Based Algorithms
(iv) Function based algorithms

V) Randomized algorithms

This classification described in Fig. 2 and comparisons
between different algorithmsare shownin Table 1.

3. OPTIMIZATION TECHNIQUES

Cache optimization techniques are classified on the basis
of their application and comparisonismadein their own
domain to ensure homogeneity prevails.Cache
optimization is achieved by reducing hit time, reducing
miss penalty, increasing cache bandwidth and by reducing
miss rate. Above said task is achieved by different
techniques.

One way to minimize the gap between memory latency
and CPU cycleisthe use of amultilevel cache. Missrate

Content Replacement Algorithms

| | | | | | |
Frequenc Recency/
Recency Based d y Frequency Function Based Randomized
Based
. . Based _ .
| IRU | LFU LLF GDS Re%?;‘i‘;‘]‘;n .
(6] (8] (71 [9]
[16]
SLRU ARC
Threshold LRU | | == 1
[17] [12-13]
CAR
HLFU[2
LR+5LF

[18]

FIG. 2. SHOWING CLASSIFICATION OF REPLACEMENT ALGORITHMS

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

834

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

of L1 (First Level) cache can be reduced by introducing
L2 cache. Anothertechnique called ULCC (User Level
Cache Control) [21] has been implemented through which
user can control spaceallocation in cache. Thistechnique
ishard toimplement but it producesless hit rate and also
reduce cache pollution[22].

One of the other ways of cache optimization is compiler
based optimization in which loops are optimizing through
compiler. To set the accessed datain cacheloops must be

reduced to smaller size. In thisway al the tasks will be
executed consecutively which will be using same data
from cache[23].

Different methods are used to make cache's performance
better. One of them is jigsaw [24]. It is used to solve
scalability and interferenceissues. It helpsto define how
datawould be mapped to shares. Every share hasaunique
id. Jigsaw produces better performance than NUCA
design[25]. InNUCA (Non Uniform CacheAccess) cache

TABLE 1. COMPARISON OF REPLACEMENT ALGORITHMS

Algorithms
Performance
Paraeters LRU HLFU LFU LLF CAR ARC FIFO GDS RR SLRU || pusiF [19]
(1 [2] [8] [7 [10] [15] [20] (9l [16] [17]
. Low cache Minimum misq Miss rate Low miss ! Higher miss Reduces
Cache Miss miss rate latency decreases latency high rate 293 cache misses
4.24% on }
16mb cache ;‘I’:’; Z'St 61.87%
) and 9.19% 1077k 0 on o Minimum |Low cache hi)
Cache Hit on 4GB contgare [10] 42.42% 512 byte size 33.8% it rate rate. 1553k high
cache LFU pages
[11]
High
Need to Need to Minimum Cost of because it
track down I_Extra gorage track down | Minimum ' Maximum resource Very smell segmentation track
Resource i is require to ¢ | High resource izt amourt of Hah | d both
Utilization recert list keep requently resources utilization resource ilizetion resources needs hig own (.)t
update histor accessed utilize utilization because required resource recent list
overhead &4 data. block with | " utlization and
frequency.
Complexty Complexity Pertition the Both singe
fluctuate fluctuate) .
: : Over head of | cache into ! ! No queue use] and circular Same as
. biw Single b/w constant Single) Single Single
Queuing :) two circular | two queues) randomly queues LFU and
constant and | queue is used and queve is used queve is used| queue used
N A buffers [11] selected ae LRU.
logarithmic logarithmic imolemented
values values mp
Doesrit Coﬁpa‘fzxeity
Conplexity Logarithmic | With the Ignore usage) retter because
! Constant pattern and Size of because -
Size of Physical | increase mplementatior] increase in complex as paging cache content has different Large
Mermory Vlvrfr';;%e cac(:)kllr;ize aslgeilri% Size increase overhead due|doesn't matter to be segr;ro’er;)tz hes| memory size
to large size. replaced
randonly. Anaged
" | accordingly
High Almost low Low Very low Low Low High Very low Low
No need to
R / It doesn't It capture Pay no Capture both ridmzdﬁ have a ’r\le(t): neel? g(firep track Uses both
ccency capture ca attention to recency and ency recency or ency equency recency and
Frequency frequency frequency recency frequency frequency frequency frequency of cache frequency
work. paraeter parameter elements
Needs a Maintenance
Needs to Needs a tune able Cost Relative cost | of different | Needs both
Extra Parameter pre-tune parameter raeter arameter caculation segments tune able
parameter | to controlling topco rtrol P needed parameters needed and pre-tune
[13] references refer 9 needed extra parameter
parameter

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

835

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

ismanaged in such away that most of the datais served
by fastest bank. To more data to faster banks in steps, a
switched network is used. The core feature of NUCA
design isthe low latency access.

A set of compiler algorithms have been written for the
prediction about the data to be reused in near future.
These predictions are used to make the hit rates better.
The algorithm used for the purpose is evict-me which
uses cachelinetag of one bit. So when ever evict-metag
is set for any cache line, the cache line will be replaced
[26] but this technique is complex and consume high
energy.

Different methods are used to implement two way set
associative cache. One of them is predictive sequential
associative cache. Using this method to implement set
associative cache access time becomes approximately
equal to direct mapped cache [27]. This method uses
different prediction which helps to reduces access time
and hit rate.

One way to improve the performance of the cache isto
produce the next data to be used by the cache, data
perfecting is used to produce data in advance which is
next to be used [28].

Enlarging the size of cache reduce the chance to occur
capacity misses. Simple cache and way prediction
methods are used to reduce cache hit time.Comparison of
different techniquesis shown in Table 3.

4. PERFORMANCE EVALUATION

To dateresearcher came up with many cache optimization
techniques. People judged them by actually using them.
Tothebest of our knowledgethereisno numerical measure
which can tell us about rating of specific cache
optimization techniques. Wetried to come up with such a
numerical figure.

Table 2 shows collected performance parameters against
cache optimization techniques. Their value are given as
H (High), M (Medium), L (Low) and N (Not Applicable).
In Table 3 numerical values are assigned against, H, M
and L .Table4isnumerical replacement of Table 2 which
isexplained by Table 3.

In Table 4 if the particular parameter decreases the
performancethenvauesareassignedas 1, 2, and 3for H,
M and L, respectively, if performance increases values
areassigned as 3, 2, and 1 for H, M and L, respectively.
The last two column of Table 4 shows Mean and CV
which tells us about more consistent technique for cache
optimization.

CV providesinformation about datai.e. how much datais
scattered from itsmean. Aslow asthe value of coefficient
is, technique is more consistent. It is calculated in last
column of Table 4.These tables give us a better view to
judge the subject techniques. Fig. 3 shows the graphical
representation of Table 4.

S. DISCUSSIONS

In section 1 different cache replacement policies which
have been implemented in the past have been studied
and compared with each other. Policies are compared on
the basis of following parameters, Cache miss, cache hit,
and Resource utilization, Queuing, Size of physical
memory, Page movement overhead, Recency/frequency
and extraparameter.

We also studied different optimization techniques and
compared them in Table 2. Table 2 islittle bit modified
form of table presented in [6]. We use thistableto perform
statistical analysis on different techniques. By using
statistical comparison we are able to find out that which
technique is more consistent and reliable.

By comparing different techniqueswe analyzethat cache
miss rate is reduced by using larger block size, larger

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

836

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

TABLE 3. WEIGHTS ARE GIVEN TO PARAMETERS IN

cache, and way prediction method. Larger block size TABLE 4 AS FOLLOWING CRITERIA

reduces hit time, increases miss penalty and consume If Decrease If Increase
Performance Performance

high power. Higher associativity producefast accesstime

but they havelow cycletime. ULCC havefast accesstime High 1 3

and also used to eliminate cache pollution. Pipelined Medium 2 2

cache reduced miss penalty. Multilevel cache has very Low 3 L

less miss penalty but yields high cycle time and have

high power consumption. Not Applicable 0 0

TABLE 2. COMPARISON OF OPTIMIZATION TECHNIQUES ON THE BASIS OF MR, MPHT, HR, PC, AT, COST AND
COMPLEXITY, CT [6]

Cache Comparison Performance Parameters
Techniques
MR MP HT HR PC AT Cost Conplexity cT
. Reduce compuisory
Larger Block Size [ecoc and increase | H L H H L N 0 H
[29-30] C o
conflict misses
. - Reduce
H'W[i)‘;c'a“o” corflict and capacity| L H L H H H 1 H
misses
Way rediction Cortlict
[28] misses reduce H H H L L N 2 H
Column ssociative conflict misses
cache [31] e N H L H H H 2 H
Reactive associative reduce
cache misses L H H N L H 1 L
[32]
Victim cache Cache misses H
[33] educe L M H L M H 1
Pipelined N L H L N H H 2 L
cache
Jigsaw I nterference misses N
[24] reduce L H L L H H 3
Larg[egoclache Miss rate reduces N H H H L H 2 L
Cache miss Conflict misses
lookaside [34] reduce L H L H H H 2 H
Muitilevel cache | Cache misses (M) M H H H L H 2 H
Predictive sequertial
associative cache Asaz2 way L L L H H H 1 H
associative cache
[27]
Small cache MRIncrease
N L N L H L 0 N
[1] (H)
ULCC Cache pollution
[21] dlirrinate N H L N H H 2 N
Resizing and N N N N L N N 2 N
remapping [35]

MR is Miss Rate, MP is Miss Pendlity, HT is Hit Time, HR is Hit Rate, PC is Power Consumption, AT is Access Time, and CT is Cycle Time

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
837

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

N
W
(=

g
[=3
(=]

CV Values Against Each Technique

Ranked Consistency of Cache Optimization lechniques

® Ranked Consistency of
Cache Optimization
Techniques

Techniques

FIG. 3. STATISTICAL COMPARISON OF CACHE OPTIMIZATION TECHNIQUES GIVEN IN TABLE 4 USING COEFFICIENT OF

VARIATION

TABLE 4. STATISTICAL COMPARISON OF CACHE OPTIMIZATION METHODS GIVEN IN TABLE 3

Cache Performance Parameters Numerical Representation

Techniques Coefficient
MR MP HT HR PC AT Cost [Complexityl CT Mean of
Variation
Larger block size 2 1 3 3 1 3 0 0 1 155 | 79.45
Higher associativity 2 3 1 1 1 1 1 1 1 133 | 5303
Way prediction 2 1 1 3 3 3 0 2 1 1.77 61.47
Colum associative 2 0 1 1 1 1 1 2 1 111 54.08
cache
Reactive associative | 3 1 3 0 3 1 1 3 188 | 6176
cache
Victim cache 2 3 2 3 3 2 1 1 1 2 4330
Pipelined cache 0 3 1 1 0 1 1 2 3 133 83.85
Jigsaw 2 3 1 1 3 1 1 3 0 1.66 67.08
Larger cache 2 0 1 3 1 3 1 2 3 177 | 6174
Cache miss lookaside 2 3 1 1 1 1 1 2 1 1.44 50.29
Mutilevel cache 2 2 1 1 1 3 1 2 1 155 | 4687
Predictive sequertial 2 3 3 1 1 1 1 1 1 155 | 56.60
associative cache
Small cache 1 0 1 0 3 1 1 0 0 077 | 12622
uLce 3 0 1 1 0 1 1 2 0 1 00
Resizing ard 0 0 0 0 3 0 0 2 0 055 | 20346
remapping

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

838

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

6. CONCLUSION

Thecacheisacritical part of performancethere are many
cache replacement policies and optimization techniques
exist. Wetried to provide comprehensive review on both
proposed till date.

At the end we presented a comprehensive tabular
representation of cache optimization techniques and their
ranked numerical representation is made, which enable
us to see which technique is more consistent. We
compared total of 15 techniques. By computing values
graph shows that victim cache has lowest coefficient of
variation which shows that it is more consistent among
all other techniques. Resizing and Remapping has highest
coefficient of variation which means that it is less
consistent technique among all compared techniques.

In future we would like to perform experiments on
techniqueslike LRU+5LF, CAR, ARC and comparetheir
results by homogeneously passing them through alarge
set of instructions.

ACKNOWLEDGMENT

Authors would like to acknowledge with thanks the
anonymous referees for their useful suggestions that led
us to enhance the quality of the paper. Authors are also
thankful to the International Islamic University, and
COMSATS Institute of Information Technology,
Islamabad, Pakistan, for providing platform to carry out
this research.

REFERENCES

[1] Gagged, G., Paresh, R., and Madarkar, J., “Survey on
Hardware Based Advanced Technique for Cache
Optimization for RISC Based System Architecture”,
International Journal of Advanced Research in Computer
Science and Software Engineering, Volume 3, No. 9,
pp. 156-160, 2013.

[2] Patidar, K., “A Taxonomy of Cache Replacement
Algorithms”,International Journal of New Technologies
in Science & Engineering, Volume 2, No. 3, pp. 98-108,
2015.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Khatoon, H., Mirza, S.H., and Altaf, T., “Operating
System-Aware Cache Optimization Techniques for Multi
Core Processors’, Proceedings of International
Conference on Frontiers of Information Technology
(FIT), pp. 99-105, 2011..

Psounis, K., Prabhakar, B., and Science, C., “A
Randomized Web-Cache Replacement Scheme”,
Proceedings of IEEE 20" Annual Joint Conference on
Computer and Communications Societies, Volume 3,
pp. 1407-1415, 2001.

Kowarschik, M., and Wei, B.C., “An Overview of Cache
Optimization Techniques and Cache-Aware Numerical
Algorithms”, Algorithms for Memory Hierarchies,
Springer Berlin Heidelberg, pp.213-232, 2003.

Ahmed, M.W., andShah, M.A., “Cache Memory: An
Analysis on Optimization Techniques’, International
Journal of Computer and IT, Volume 4, No. 2,
pp. 414-418, 2015.

Butt, A.R., Gniady, C., and Hu, Y.C.,” The Performance
Impact of Kernel Prefetching on Buffer Cache
Replacement Algorithm”, IEEE Transactions on
Computers, Volume 56, No. 7, pp. 889-908, 2007.

Swain, D., Paikaray, B., and Swain, D., “AWRP:Adaptive
Weight Ranking Policy”, arXiv Preprint arXiv,
Volume 3, No. 2, pp. 1107,4851, 2011.

Podlipnig, S., and Bdszérmenyi, L., “A Survey of Web
Cache Replacement Strategies”, ACM Computing
Surveys, Volume 35, No. 4, pp. 374-398, 2003.

Chavan, A.S., Nayak, K.R., Vora, K.D., Purohit, M.D.,
and Chawan, PM., “A Comparison of Page Replacement
Algorithms”, International Journal of Engineering and
Technology, Volume3, No. 2, pp. 171-174, 2011.

Bansal,S.,and Modha,D.S.,” CAR: Clock with Adaptive
Replacement”, Proceedings of 3¢ USENIX Conference
on File and Storage Technologies, Volume 4,
pp. 187-200, 2004.

Megiddo, N.,and Modha, D.S., “Outperforming LRU with
an Adaptive Replacement Cache Algorithm”, Computer,
Volume 37, No. 4, pp. 58-65, 2004.

Megiddo,N., Modha, D.S., and Jose, S., “A Simple
Adaptive Cache Algorithm Outperforms LRU”, IBM
Research Report, Computer Science, 2003.

Butt, A.R.,Gniady, C., and Hu, Y.C., “The Performance
Impact of Kernel Prefetching on Buffer Cache
Replacement Algorithms”, ACM SIGMETRICS
Performance Evaluation Review, Volume 37, No. 1,
pp. 157-168, 2005.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

839

Cache Memory:An Analysis on Replacement Algorithms and Optimization Techniques

(18]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

Janapsatya, A., Ignjatoviee A., Peddersen, J., and
Parameswaran, S., “Dueling CLOCK: Adaptive Cache
Replacement Policy Based on The CLOCK Algorithm”,
Proceedings of Conference on Design, Automation and
Test in Europe, pp. 920-925, 2010.

Bhattacharjee, A., and Debnath, B.K., “A New Web Cache
Replacement Algorithm”, Proceedings of |EEE
Conference on Rim Conference on
Communications, Computers and Signal Processing,
pp. 420-423, 2005.

Pacific

Gao, H., and Wilkerson, C., “A Dueling Segmented LRU
Replacement Algorithm with Adaptive Bypassing”, 1%
JILP Worshop on Computer Architecture Competitions:
Cache Replacement Championship, 2010.

Morales, K.,and Lee, B.K., “Fixed Segmented LRU Cache
Replacement Scheme with Selective Caching”, |EEE
Proceedings of 31 International Conference on
Performance Computing and Communications,
pp. 199-200, 2012.

Abdel FA., and Samra, A.A., “Least Recently Plus Five
Least Frequently Replacement Policy (LR+5LF)",
International Arabic Journal of Information Technology,
Volume 9, No. 1, pp. 16-21, 2012.

Wang, Q., “WLRU CPU Cache Replacement Algorithm”,
Doctoral Dissertation, The University of Western
Ontario London, 2006.

Ding, X., Wang, K., and Zhang, X, “ULCC: A User-
Level Facility for Optimizing Shared Cache Performance
on Multicores”, ACM Sigplan Notices, Volume 46,
No. 8, pp. 103-112, 2011.

Sandberg, A., Eklov, D., and Hagersten, E., “Reducing
Cache Pollution Through Detection and Elimination of
Non-Temporal Memory Accesses’, Proceedings of IEEE
Conference on High Performance Computing,
Networking, Storage and Analysis, pp. 1-11, 2010.

Ishizaka, K., Obata, M., and Kasahara, H, “Cache
Optimization for Coarse Grain Task Parallel Processing
Using Inter-Array Padding”, International Workshop
on Languages and Compilers for Parallel Computing.
Springer Berlin Heidelberg, pp. 64-76, 2003.

Beckmann, N., and Sanchez,D, “Jigsaw: Scalable
Software-Defined Caches’, Proceedings of |EEE 22nd
International Conference on Parallel Architectures and
Compilation Techniques, pp. 213-224, 2013.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Kim, C., Burger, D., and Keckler, SW., “An Adaptive,
Non-Uniform Cache Structure for Wire-Delay
Dominated On-Chip Caches’, ACM Sigplan Notices,
Volume 37, No. 10, pp.211-222, 2002.

Wang, Z., McKinley, K.S., Rosenberg, A.L., and Weems,
C.C., “Using the Compiler to Improve Cache
Replacement Decisions”, Proceedings of |EEE
International Conference on Parallel Architectures and
Compilation Techniques, pp. 199-208, 2002.

Calder, B., Grunwald, D., and Emer, J.,” Predictive
Sequential Associative Cache”, Proceedings of |EEE 2™
International Symposium on High-Performance
Computer Architecture, pp. 244-253, 1996.

VanderWiel, S., and Lilja, D.J., “A Survey of Data
Prefetching Techniques”, Proceedings of the 23rd
International Symposium on Computer Architecture,
1996.

Huang, C.C., and Nagarajan, V., “Increasing Cache
Capacity via Critical-Words-Only Cache”, Proceedings
of IEEE 32nd International Conference on Computer
Design (ICCD), pp. 125-132, 2014.

Sawant, R., Ramaprasad, B.H., Govindwar, S., and Mothe,
N., “Memory Hierarchies-Basic Design and
Optimization Techniques Survey on Memory Hierarchies
— Basic Design and Cache Optimization Techniques”,
2010.

Agarwal, A., and Pudar, S.D., “Column-Associative
Caches: Caches A Technique for Reducing the Miss Rate
of Direct-Mapped”, ACM, Volume 21, No. 2,
pp. 179-190, 1993.

Batson, B., and Vijaykumar, T.N., “Reactive-Associative
Caches’, Proceedings of IEEE International Conference
on Parallel Architectures and Compilation Techniques,
pp. 49-60, 2001.

Stiliadis, D., and Varma, A., “ Selective Victim Caching: A
Method to Improve the Performance of Direct-Mapped
Caches’, |IEEE Transactions on Computers, Volume 46,
No. 5, pp. 603-610, 1997.

Bershad, B.N., Lee, D., Romer, T.H., and Chen, J.B.,
“Avoiding Conflict Misses Dynamically in Large Direct-
Mapped Caches’, ACM SIGPLAN Notices, Volume 29,
No. 11, pp. 158-170, 1994.

Ramaswamy, S., and Yalamanchili, S., “Improving Cache
Efficiency via Resizing + Remapping”, Proceedings of
|IEEE 25th International Conference on Computer
Design (ICCD), pp. 47-54, 2007.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

840

